Indonesian Journal of
Electrical
Engineer
ing and
Computer Science
V
o
l. 10
, No
. 3, Jun
e
20
18
, pp
. 88
3
~
88
9
ISSN: 2502-4752,
DOI: 10.
11591/ij
eecs.v10
.i3.pp883-889
8
83
Jo
urn
a
l
h
o
me
pa
ge
: http://iaescore.c
om/jo
urnals/index.php/ijeecs
Compact Meander Line Teleme
tr
y Ante
nna
fo
r Impla
n
table
Pacemaker Applications
N. H. Sulaim
a
n
1
N.
A
.
S
a
ms
uri
2
, M
.
K
.
A.
Ra
him
3
,
F
.
C. Seman
4
, M. In
am
5
1,2,3,5
Faculty
of Electrical
Engin
e
ering,
Un
iv
ersiti Teknologi
Ma
lay
s
ia (UTM),
81301 Johor Bahru, Malay
s
ia
4
Facult
y
of
Ele
c
t
r
ica
l
and
E
l
e
c
tro
n
ic,
Univ
ersi
ti
T
un Hussein Onn
Mala
y
s
ia
(UTHM),
86400 Batu
Pah
a
t, Johor, M
a
laysia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Ja
n
9, 2018
R
e
vi
sed M
a
r
2,
2
0
1
8
Accepted
Mar 18, 2018
The dem
a
nd f
o
r heal
th t
echn
o
log
y
is
incr
ea
s
i
ng rapidl
y
es
peci
all
y
i
n
tel
e
m
e
tr
y app
lic
ations.
These
ap
plic
a
tions gener
a
lly
use implanted antennas
to be utili
zed fo
r data transfer f
r
om
patients to another re
ader d
e
vic
e
. This
procedure
can
m
a
ke the hea
lth
care m
o
re effi
cien
t, s
i
nc
e it p
r
ovides
fas
t
diagnosis and treatment to the patient
. This work presents
a design of
tel
e
m
e
tr
y
ant
e
n
n
a to be us
ed i
n
P
acem
aker ap
plic
ation in M
e
dica
l Im
plant
Communication Services (MICS) (401
MHz-406
MHz). B
y
introducin
g
Com
p
act M
eand
e
r Line T
e
l
e
m
e
tr
y Antenn
a (CM
LTA), leng
th (
L
s
) and width
(
W
s
) of substrate hav
e
been r
e
d
u
ced
b
y
36.84%
and 40%
respectiv
ely
.
Th
e
proposed antenn
a offers
advan
t
ages of
eas
y
fabr
ications,
low co
st and
ligh
t
weight with
a 13
3 MHz bandwid
th.
K
eyw
ords
:
Com
p
act Meander Line
Tele
m
e
try An
t
e
n
n
a
Electrom
a
gnetic I
n
terfe
ren
ces
Im
planted Medical Devices
Copyright ©
201
8 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
N. H.
S
u
laim
an,
Facu
lty of Electri
cal Engineering,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia,
8
131
0 Sk
ud
ai,
Jo
hor
.
1.
INTRODUCTION
An active m
e
dical im
planted de
vice offers a very
effec
tive and preci
se
m
e
dical tre
a
tm
ent for
specific diseas
e [1]. T
h
e m
o
st popu
l
a
r act
i
v
e
im
pl
ant
e
d m
e
di
cal
devi
ces
nowa
days are ca
rdiac pac
e
m
a
ker due
t
o
an i
n
crease
i
n
heart
pr
o
b
l
e
m
s
[2]
.
In or
de
r t
o
pr
ovi
de ve
ry
effi
ci
ent
t
r
eatm
e
nt
usi
ng p
acem
a
ker, t
e
l
e
m
e
t
r
y
antennas
to be use
d
in
pacem
aker have bee
n
devel
ope
d. By
using tele
m
e
try antenna
, com
m
unication between
pacem
aker
and
othe
r de
vices can be done
t
o
observe the
level of pa
tient c
o
nditions
[3].
Th
e cap
ab
ilities o
f
an
tenn
a p
e
rfo
r
m
a
n
ce for
h
ealth
care,
rad
i
o
co
mm
u
n
i
c
a
tio
n
s
and
m
o
n
ito
ri
n
g
h
a
v
e
becom
e
m
a
jor co
ncer
n
f
o
r
d
e
si
gni
ng
hi
gh
per
f
o
r
m
a
nce ant
e
n
n
as.
Th
e t
e
l
e
m
e
t
r
y
ant
e
nna
of
fers
n
u
m
b
er
o
f
ad
v
a
n
t
ag
es in
clu
d
i
ng
f
l
ex
ib
ility an
d
can
d
i
r
e
ctly co
mm
u
n
i
cate w
ith
o
t
h
e
r
d
e
v
i
ces
[
4
]-[5
]. V
a
r
i
ou
s telemetr
y
ant
e
n
n
a desi
gn
s have
been
pr
op
ose
d
by
sev
e
ral
resear
c
h
ers. The re
quire
m
ents in
clude com
p
act
size,
wide
r
b
a
ndwid
th, radiatio
n
efficien
cy an
d
th
e m
o
st
i
m
p
o
r
tan
tly
th
e p
a
tien
t
safety [6
]-[7
]. Min
i
atu
r
izatio
n
is on
e of
th
e im
p
o
r
tan
t
p
a
ram
e
ters to
d
e
sign
a telemetry an
tenn
a
es
pecially for bi
om
edical devic
e
s [2]. Moreover, low
fre
que
ncy
i
s
v
e
ry
cruci
a
l
an
d nee
d
very
s
p
eci
fi
c t
ech
ni
q
u
e t
o
obt
ai
n s
m
al
l
si
ze for opt
i
m
i
zati
on o
f
t
h
e
antenna. A re
view of
im
pla
n
table
an
tenn
as fo
r
h
ealth ap
p
lication
s
and
b
i
o
m
ed
ical tele
m
e
try h
a
s b
e
en
pr
o
v
i
d
e
d
i
n
[
4
]
.
Hy
bri
d
pat
c
h/
sl
ot
i
m
pl
ant
a
bl
e ant
e
nna
was
desi
g
n
e
d
f
o
r M
I
C
S
.
I
n
[
8
]
,
a
h
y
b
ri
d
pat
c
h a
n
t
e
nn
a
has
been
p
r
o
p
o
se
d by
em
beddi
ng t
h
e m
e
ande
r sl
ot
a
n
d s
i
x o
p
e
n
sl
ot
s i
n
t
h
e
gr
o
u
n
d
whi
c
h o
f
f
e
rs e
ffect
i
v
e
size redu
ction
s
at a fix
e
d
op
eratio
n.
Prev
ious research
er h
a
s p
r
op
o
s
ed
im
p
l
an
tab
l
e an
ten
n
a
t
o
b
e
u
tilized
in
MI
CS b
a
nd
b
y
u
s
ing
exp
e
n
s
i
v
e d
i
electr
i
c su
bstr
ate and
sup
e
r
s
tr
ate su
ch as
Ro
g
e
r
s
R
0
3210
/RO3
010
[9
].
M
I
C
S
ba
nd i
s
t
h
e
m
o
st
co
m
m
onl
y
used fr
eque
ncy
f
o
r i
m
pl
ant
e
d ant
e
nna
, w
h
i
c
h i
s
al
l
o
cat
ed by
MI
CS fo
r
b
i
o
t
ele
m
etr
y
ap
p
licatio
n
s
acco
r
d
i
n
g
t
o
Reco
mmen
d
a
tion
s
of
ITU
-
R
SA.1346
an
d
later
super
s
ed
ed
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
88
3 – 88
9
88
4
by
R
S
.1
3
46
[
9
]
.
H
o
we
ve
r,
t
h
e ba
nd
4
0
1
-
40
6
M
H
z i
s
pre
v
i
o
usl
y
al
l
o
cat
ed t
o
t
h
e M
e
t
e
orol
ogi
cal
l
y
Ai
ds
Service. The
r
e
f
ore, in orde
r to
reduce th
e harm
ful interfe
rence that
m
i
ght
occur
t
o
t
h
e operat
i
ons o
f
M
e
t
e
orol
ogi
cal
l
y
Ai
ds Ser
v
i
ce, a
m
a
xim
u
m
l
i
m
i
t
of -1
6 dB
m
for t
h
e ef
fec
t
i
v
e i
s
ot
ro
pi
cal
l
y
radi
at
ed p
o
w
er
of
MICS is s
p
ecified [10]-[11].
M
o
re
ove
r,
fre
que
ncy
ra
nge
s
for
wi
rel
e
ss
po
wer t
r
a
n
s
m
i
ssi
on i
n
t
o
hum
an t
i
ssues
have
been
i
nvest
i
g
at
e
d
i
n
or
der t
o
ob
se
rve t
h
e e
ffect
on t
h
e
h
u
m
a
n bo
dy
. I
n
o
r
de
r t
o
r
ealize the CMLTA effect on
hum
an body,
CMLTA is placed in the
body
m
odel consisting of different tissu
es such as
m
u
scle, skin
and
fat
(n
o
n
-
hom
oge
n
ous
). T
h
e di
el
ect
ri
c pro
p
e
r
t
i
e
s at
402.
5 M
H
z fo
r t
h
ese t
i
ssue
s
are sho
w
n i
n
Tabl
e 1. I
n
o
r
d
e
r t
o
obs
er
ve t
h
e e
f
f
ect
of s
k
i
n
t
h
i
c
kne
ss,
vari
at
i
o
ns o
f
t
h
i
c
kne
ss
al
so ha
ve i
n
ve
st
i
g
at
ed. B
a
se
d
on
p
r
evi
ous
w
o
r
k
,
fo
r ef
fi
ci
ent
m
odel
l
i
ng, o
n
e
l
a
y
e
r ski
n
m
odel
(hom
og
eno
u
s
)
can al
so be
use
d
f
o
r im
pl
ant
a
bl
e
ant
e
n
n
a
desi
g
n
[1
2]
.
Table 1. Dielectric
properties of
m
u
scle, fat
an
d sk
in
at
40
2.5
M
H
z
Tissues
Relative per
m
ittivity (
ɛ
r
)
T
a
ngent loss
(
σ
) S/
m
M
u
scle 58.
79
0.
84
Fat 5.
57
0.
04
Skin 46.
72
0.
69
Fi
gu
re
1.
Desi
gn
fl
ow
o
f
t
h
e
pr
o
pose
d
C
M
L
T
A
In t
h
i
s
pape
r,
C
o
m
p
act
M
eande
r Li
ne Te
l
e
m
e
t
r
y
Ant
e
n
n
a (C
M
L
T
A
)
i
s
pr
o
pose
d
a
s
sh
o
w
n i
n
Fi
gu
re
1.
A C
M
LTA i
s
de
si
gne
d
base
d o
n
m
odi
fi
cat
i
on and
o
p
t
i
m
i
zat
i
o
n o
f
basi
c m
e
ande
r l
i
n
e a
n
t
e
n
n
a. B
y
pr
o
p
erl
y
em
pl
oy
i
n
g
c
o
m
p
act m
eander
o
n
t
h
e
pat
c
h
,
t
h
e
cur
r
ent
pat
h
c
a
n
be l
e
ngt
he
ned
f
o
r
t
h
e
p
r
op
ose
d
an
tenn
a wh
ich lo
w
e
r
i
ng
th
e an
tenn
a r
e
son
a
nt f
r
e
qu
en
cy. M
o
r
e
ov
er
, t
h
e pro
p
o
s
ed
CMLTA
can
pr
ov
id
e
w
i
d
e
bandwidth and com
p
act antenna
size for pa
ce
m
a
ker a
pplic
atio
n
s
. Details o
f
t
h
e
an
tenn
a d
e
sign
are p
r
ov
id
ed
and
di
sc
usse
d i
n
t
h
e
f
o
l
l
o
wi
n
g
sect
i
o
n
.
I
n
a
d
d
i
t
i
on, c
o
m
p
ari
s
on
bet
w
een
C
M
LTA
desi
g
n
s
i
n
hom
oge
no
u
s
an
d
no
n
-
h
o
m
ogen
o
u
s b
o
d
y
m
odel
s
has bee
n
c
a
rri
ed
o
u
t
t
o
obs
er
ve t
h
e ef
fect
on
ret
u
rn
l
o
ss pe
rf
orm
a
nces
.
M
o
re
ove
r,
t
h
e
opt
i
m
i
zati
on
of
si
ze o
f
C
M
LT
A
has
bee
n
do
ne i
n
h
o
m
ogen
ous
p
h
a
n
t
o
m
.
2.
R
E
SEARC
H M
ETHOD
The i
nve
st
i
g
at
i
ons
ha
ve
bee
n
ca
rri
e
d
out
i
n
o
r
der
t
o
o
b
t
ai
n t
h
e
o
p
t
i
m
u
m
si
ze of t
h
e t
e
l
e
m
e
t
r
y
an
tenn
a.
Th
e i
n
v
e
stig
atio
n b
e
g
i
n
s
b
y
in
t
r
oducin
g
C
o
m
p
act Mean
d
e
r
Li
n
e
Tele
m
e
tr
y A
n
ten
n
a
(
C
MLTA)
to
b
e
reso
nat
e
d at
4
0
2
.
5
M
H
z
.
I
n
t
h
i
s
wo
rk
, C
M
L
T
A
has bee
n
d
e
si
gne
d
usi
n
g
3.
2 m
m
t
h
i
c
k FR
-4
(
ɛ
r
= 4
.
7
and
ta
n
δ
=0.025) as
dielectric subs
trate and s
u
pe
rstrate. Fo
r thi
s
design, c
o
mmercially available CST com
puter
m
odel
was
use
d
t
o
m
odel
C
M
LTA.
In th
is
wo
rk
, th
e
p
r
op
osed an
tenn
a is ex
amin
ed
with
h
u
man
bod
y tissu
es i
n
o
r
d
e
r t
o
ob
serv
e t
h
e
ef
f
ect of
hu
man
bod
y o
n
t
h
e an
tenn
a pr
op
o
s
ed
an
te
nn
a p
e
rf
or
m
a
n
ce. Th
er
ef
or
e, the CMLTA ha
s bee
n
desi
g
n
e
d
wi
t
h
sub
s
t
r
at
e a
n
d
s
upe
rst
r
at
e l
a
y
e
rs.
The
s
upe
rst
r
at
e i
s
ca
pabl
e
o
f
pr
ot
ect
i
n
g
nei
g
hb
o
r
i
n
g t
i
s
sues
sur
r
o
u
ndi
n
g
t
h
e p
r
o
p
o
se
d a
n
t
e
nna
. T
h
e
su
pe
rst
r
at
e l
a
y
e
r
ac
t
s
as
bu
ffe
r
bet
w
een
t
h
e
m
e
t
a
l
radi
at
or
an
d
h
u
m
a
n
t
i
ssues by
re
d
u
ci
n
g
R
a
di
o F
r
eq
ue
ncy
(R
F)
po
wer at
t
h
e
l
o
cat
i
ons o
f
l
o
ssy
h
u
m
a
n t
i
ssues. M
o
re
o
v
e
r, by
em
pl
oy
i
ng t
h
e
sup
e
rst
r
at
e l
a
y
e
r, t
h
e a
n
t
e
n
n
a
can be
ass
u
re
dl
y
m
a
t
c
hed t
o
50
Ω
t
h
rough
decreasi
n
g effe
cts of
Design of CM
L
T
A
in one lay
e
r
of
phanto
m
m
odel
Optim
i
zation of size of CM
L
T
A by
var
y
in
g
stri
p
line
Placem
e
nt of CM
LT
A in ho
m
ogenous and non
ho
m
o
g
enous
p
hant
o
m
Opti
m
i
zation of CMLT
A in
ho
m
ogenous phant
o
m
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Co
mp
act Meand
er Li
n
e
Telemetry An
tenna
f
o
r
Imp
l
an
tab
l
e Pa
cema
ker …
(N. H.
Su
la
iman
)
88
5
th
e h
i
gh
co
nductiv
e b
i
o
l
og
ical tissu
es [
1
5
]
.
Tr
ansm
issio
n
lin
e and
co
m
p
act
m
ean
d
e
r
elemen
t h
a
v
e
b
e
en
u
s
ed
to achieve sm
aller dim
e
nsion as com
p
ared to a co
nv
en
ti
o
n
a
l m
i
cro
s
trip
p
a
tch
an
tenna [13
]
. Th
e C
M
LTA
d
e
sign
is
shown
in Figur
e
2
.
M
o
re
ove
r, t
h
e
vari
at
i
o
n o
f
st
r
i
p l
i
n
e,
t
s
has
b
een car
ri
ed
out
i
n
or
de
r
to
g
e
t th
e op
ti
m
u
m
size o
f
the
CMLTA. T
h
e
com
p
arative re
sults are
p
r
o
v
i
d
ed i
n
R
e
sul
t
s
and
A
n
al
y
s
i
s
sect
i
ons. B
a
se
d
on t
h
e
h
u
m
a
n bo
dy
whi
c
h co
nsi
s
t
s
of
di
ffe
re
nt
l
a
y
e
rs of
ski
n
, fa
t
and m
u
scl
e
t
i
ssues, a
s
sh
o
w
n i
n
Fi
gu
re 3
,
t
h
e p
h
a
n
t
o
m
bo
x ca
n
al
so be creat
e
d
wi
t
h
si
ngl
e l
a
y
e
r [2]
.
As s
h
o
w
n i
n
Fi
gu
re 3
,
t
h
e ga
p bet
w
een t
h
e com
p
act
l
oop a
n
t
e
n
n
a
s and
o
u
t
si
d
e
is
4
mm
wh
ich
is co
nsid
ered
in th
e desig
n
as estim
a
t
ed
sk
in
t
h
ickness.
Fig
u
re
2
.
Detai
l
d
e
sign
con
f
igu
r
ation
o
f
th
e
CMLTA
for tele
m
e
try ap
p
licatio
n
s
L
s
= 21.02 mm
,
W
s
=3 0.
5 m
m
,
L
p
=15.
01 m
m
,
W
p
=2
6.5 mm
,
t
s
=3.63,
w
t
=1 mm
)
(a)
(
b
)
Fig
u
re
3
.
Mu
ltilayer hu
m
a
n
bo
d
y
ph
an
t
o
m
a
t
4
0
2
.
5
M
H
z. (a) Persp
ectiv
e
v
i
ew
(b
)
Sid
e
view
3.
R
E
SU
LTS AN
D ANA
LY
SIS
The vari
at
i
o
n of
st
ri
p
l
i
n
e,
t
s
has
been ca
rri
ed o
u
t
i
n
or
der
t
o
o
b
t
a
i
n
t
h
e
desi
re
d res
o
na
nt
fre
q
u
ency
with
o
p
tim
ized
CMLTA. Th
e
resu
lts are shown in
Figu
re
4
an
d d
e
tailed summary is p
r
ov
i
d
ed in
Tab
l
e
2
.
Tabl
e
2. C
M
L
T
A
per
f
o
rm
ance d
u
e t
o
st
ri
p
l
i
n
e va
ri
at
i
ons
Variation of Strip
line (mm
)
Dim
e
nsion (
m
m
)
Fr
equency
Range
% Bandwidth
W
p
I
p
(MHz
)
2.
5
40
43.
8
322.
8 -
449.
7
31.
5
3.
0
40
43.
0
320.
7 -
453.
7
33.
0
3.
6
40
42.
0
326.
2 -
453
33.
5
4.
0
41
42.
5
326.
2 -
453.
7
31.
5
Su
p
erstrate
Radiator
Substrate
W
s
Fe
e
d
t
s
t
s
W
p
L
s
L
p
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
88
3 – 88
9
88
6
Fi
gu
re
4.
Va
ri
at
i
on
of
si
ze st
ri
p si
ze
of
C
o
m
p
act
M
eande
r Li
ne Tel
e
m
e
t
r
y
Ant
e
nna
As depi
ct
ed
i
n
Fi
gu
re 4, di
ffe
r
e
nt
si
ze
o
f
st
ri
p
line f
o
r CM
LTA a
ffects t
h
e retu
rn l
o
ss
p
e
rf
orm
a
nces.
From
t
h
e resul
t
s sho
w
n i
n
Ta
bl
e 2, i
t
can be
obse
r
ve
d t
h
at
by
usi
n
g st
ri
p l
i
ne of
3.
6 m
m
hi
g
h
er
ban
d
w
i
d
t
h
o
f
33.5% can be a
c
hieve
d
as com
p
ared to
strip line of 2.5,
3.0 and
4.0 mm. It
is because for the propose
d
design
configuration,
the surfa
ce c
u
rr
ents travel l
o
ng
distance i
n
side the
lo
op. T
h
ere
f
ore t
h
e el
ectrical dim
e
nsion
of
t
h
e pat
c
h el
em
ent
el
on
gat
e
s a
nd
pr
o
v
i
d
es a
n
op
p
o
rt
uni
t
y
t
o
desi
g
n
a p
a
t
c
h
at
t
h
e sam
e
reson
a
nt
f
r
e
que
n
c
y
of
402.5
M
H
z wi
th com
p
act phy
sical dim
e
nsions
. In
orde
r to elab
orate this phenomenon surface
current
di
st
ri
b
u
t
i
o
n
s
a
nd el
ect
ri
c fi
e
l
d i
n
t
e
nsi
t
y
ha
ve bee
n
gene
r
a
t
e
d usi
ng C
S
T M
W
S si
m
u
lat
i
ons as s
h
o
w
n i
n
Figure
5. It is shown that the maxi
m
u
m
surface curre
nt occ
u
rs in the ce
nt
er of the m
eander a
n
tenna when the
electric field
is
ex
cited
in
th
e Y-d
i
rection
.
B
y
in
tro
d
u
c
ing
co
m
p
act
mean
der lin
e an
tenn
a, it is
sh
own
that th
e
surface c
u
rre
n
t de
nsity (
J
) a
n
d electric field intensity (
E
),
the dim
e
nsion
of t
h
e a
n
tenna
can
be re
duced. T
h
e
increase i
n
the
surface c
u
rrent density (
J
)
on the c
o
nducting m
a
terial ca
uses
a
n
inc
r
eas
e in the electri
c field
in
ten
s
ity (
E)
whi
c
h i
s
gi
ven
b
y
M
a
xwel
l
E
q
uat
i
o
n
1
.
(1
)
Whe
r
e (
H
) is mag
n
e
tic field
in
ten
s
ity an
d (
J
) is curre
nt
density
thro
u
gh the s
u
r
f
ace
reflectarray
ele
m
ent. The current de
nsit
y (
J
) can be c
o
rrelated to electric field intensity (
E
) and co
nd
u
c
tiv
ity, (
σ
) o
f
con
d
u
ct
o
r
m
a
teri
al
w
h
i
c
h i
s
g
i
ven i
n
E
q
uat
i
o
n
2.
(2
)
(a)
(
b
)
(c)
(
d
)
(e)
Fi
gu
re
5.
S
u
r
f
a
ce cu
rre
nt
di
st
r
i
but
i
o
n
on
t
h
e
pr
o
pose
d
C
M
T
L
A.
(a
)
t
s
=2.
5
m
m
,
(b)
t
s
=3
.0mm,
(c)
t
s
=
3
.
63m
m
(d
)
t
s
=4
.0m
m
,
(e) A
n
t
e
n
n
a ori
e
nt
at
i
on
As m
e
n
tio
n
e
d
earlier, th
e telemetry an
ten
n
a
h
a
s b
e
en
ex
amin
ed
b
y
em
b
e
d
d
i
ng
it in
fat,
m
u
scle
and
sk
in
layer. In o
r
d
e
r t
o
inv
e
stig
ate th
e effect o
f
th
e
sk
i
n
th
ick
n
e
ss,
d
e
t
a
iled
an
alysis b
y
v
a
riatio
n
of sk
i
n
‐
50
‐
45
‐
40
‐
35
‐
30
‐
25
‐
20
‐
15
‐
10
‐
5
0
30
0
3
5
0
40
0
4
5
0
50
0
5
5
0
60
0
S11
(dB
)
Frequenc
y
(MHz)
ts
=
2.
50
ts
=
3.
00
ts
=
3.
63
ts
=
4.
00
Y
X
ൈܪ
ൌ
ܬ
ܬ
߱
ߝ
ܧ
ܬൌ
ߪ
ܧ
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Co
mp
act Meand
er Li
n
e
Telemetry An
tenna
f
o
r
Imp
l
an
tab
l
e Pa
cema
ker …
(N. H.
Su
la
iman
)
88
7
t
h
i
c
kne
ss has
b
een car
ri
ed
out
. The s
k
i
n
t
h
i
c
kne
ss was
vari
ed f
r
om
1
m
m
t
o
5 m
m
and t
h
e ef
fect
of
va
ri
at
i
o
n
on
t
h
e
ret
u
rn
l
o
ss an
d a
b
s
o
r
b
e
d
po
we
r w
e
re
obs
er
ved
as s
h
ow
n i
n
Fi
gu
re
6 a
n
d
Ta
bl
e 3
r
e
spect
i
v
el
y
.
Figu
re
6.
Retur
n
lo
ss f
o
r
diffe
rent t
h
ick
n
ess
skin
Table 3. Absorbed
power
by placing
an
tennas und
er
d
i
ff
eren
t sk
in
t
h
icknesses
Skin thickness
(m
m
)
Power Absorbed
(W
)
1 0.
9163
37
2 0.
9108
52
3 0.
9995
72
4 0.
9350
55
5 0.
8360
95
Fro
m
Fig
u
re 6 it can
b
e
ob
serv
ed
th
at th
e sk
in
th
ick
n
e
ss h
a
s a sign
ifi
can
t effect
o
n
th
e an
tenn
a
ret
u
r
n
l
o
ss a
n
d
reso
nant
f
r
e
q
u
e
ncy
.
The
reso
nant
f
r
eq
ue
ncy
vari
es wi
t
h
a
chan
ge i
n
t
h
e s
k
i
n
t
h
i
c
kness
d
u
e t
o
t
h
e cou
p
l
i
n
g ef
fect
and t
h
e s
k
i
n
t
h
i
c
kne
ss of
1
m
m
offer
hi
gh
of ret
u
r
n
l
o
ss of -
1
0
.
8
9
d
B
as co
m
p
ared
t
o
ski
n
t
h
i
c
kne
ss
of
5
m
m
whi
c
h
of
f
e
rs -
2
5.
12
dB
of
ret
u
r
n
l
o
ss
.
Thi
s
i
s
due
t
o
t
h
e co
u
p
l
i
n
g
ef
fect
bet
w
een
a
n
t
e
n
n
a
and t
h
i
c
k
n
ess
of s
k
i
n
l
a
y
e
r.
The abs
o
rbe
d
po
we
r usi
n
g di
ffe
rent
ski
n
t
h
i
c
kne
ss has al
s
o
bee
n
i
n
vest
i
g
at
ed i
n
th
is wo
rk
. Th
e resu
lts are sh
own in Ta
bl
e
3
.
It
ca
n
be
o
b
se
rve
d
t
h
at
f
o
r s
k
i
n
t
h
i
c
k
n
ess
o
f
5 m
m
l
e
sser po
we
r
is absorbe
d
as com
p
ared to
sk
in
th
ickn
ess
of 1
mm. Fro
m
th
ese resu
lts, it
can
b
e
con
c
lud
e
d
th
at th
e th
i
c
k
n
e
ss
of s
k
in can
ha
s a significant
effect
on t
h
e
resona
nt fr
equency, ret
u
rn loss as well as t
h
e absorbed
powe
r.
There
f
ore
the
placem
ent of
a tele
m
e
tr
y antenna
inside
the hum
a
n body
is crucial a
n
d detailed
analy
s
is i
s
neede
d
t
o
be c
a
rri
ed
o
u
t
base
d
on
t
h
e
re
qui
r
e
m
e
nt
s of
t
h
e
s
p
eci
fi
c a
ppl
i
cat
i
ons
.
On t
h
e
ot
her
h
a
nd
, t
e
l
e
m
e
t
r
y
ant
e
n
n
a has
be
en l
o
cat
ed i
n
a
pha
nt
om
wi
t
h
t
h
ree di
f
f
ere
n
t
bi
ol
o
g
i
cal
t
i
ssues (
n
on
h
o
m
ogeno
us m
odel
)
as
de
scri
b
e
d ea
rl
i
e
r i
n
Fi
gu
re
3.
T
h
e C
M
LTA i
n
no
n-
hom
oge
neo
u
s
hum
an
body m
odel
was com
p
are
d
with CMLTA pl
aced i
n
hom
og
eneous
body
m
odel in orde
r to
observe t
h
e
effe
ct
of
b
ody
t
i
s
s
u
e
s
o
n
t
h
e
ant
e
n
n
a
per
f
o
r
m
a
nce. F
o
r
h
o
m
ogeno
us
b
ody
m
odel
,
t
h
e
p
r
o
p
e
r
t
i
e
s used
f
o
r
p
h
ant
o
m
are (
ɛ
r
= 5.67,
σ
= 0.
94
S/
M
and
ta
n
δ
=
0
.
7
4
).
Figu
re
7
sh
ow th
e co
m
p
arison
of
return
lo
ss b
e
t
w
een th
e t
w
o
bo
dy
m
odel
s
b
e
fo
re a
n
d
aft
e
r
opt
i
m
i
zati
on re
spect
i
v
el
y
.
T
h
e
t
a
bul
at
e
d
dat
a
i
s
pr
o
v
i
d
e
d
i
n
Tabl
e
4.
Fi
gu
re
7.
C
o
m
p
ari
s
on
o
f
ret
u
rn
l
o
ss
aft
e
r
o
p
t
im
i
zat
i
on bet
w
een
h
o
m
ogen
ous
a
n
d
n
o
n
-
h
om
ogen
o
u
s
-4
0
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
20
0
2
5
0
30
0
3
5
0
40
0
4
5
0
50
0
5
5
0
60
0
S11 (
d
B)
Frequency (MHz
)
skin =
1
mm
skin =
2
mm
skin =
3
mm
skin =
4
mm
skin =
5
mm
-4
0
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
20
0
2
5
0
30
0
3
5
0
40
0
4
5
0
50
0
5
5
0
60
0
S11 (
d
B)
Frequency (MHz
)
Non-
Homo
genou
s
Homo
genou
s
Homo
genou
s af
ter
Optimization
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
88
3 – 88
9
88
8
It
can
be
o
b
se
rve
d
fr
om
Tabl
e 4 t
h
at
b
o
t
h
no
n
-
h
o
m
ogene
ous
a
n
d
h
o
m
ogen
o
u
s m
odel
s
p
r
o
v
i
d
e
a
g
ood
ag
reem
en
t for th
e return
lo
ss
p
e
rforman
ces wh
ile th
e b
a
ndwid
th is sl
ig
h
tly i
m
p
r
ov
ed
in
th
e
case o
f
hom
oge
neo
u
s
m
odel
.
Thi
s
i
s
due
t
o
t
h
e t
i
ssu
e pr
o
p
ert
i
e
s
us
ed f
o
r t
h
e
desi
gn
.
Ho
we
ver t
h
e
no
n-
h
o
m
o
g
e
neo
u
s
pha
nt
om
m
ode
l
i
s
ex
pect
ed t
o
pr
o
v
ide c
o
mparatively clos
er
re
sults to the m
easurem
en
ts beca
use
det
a
iled
tissu
e pro
p
e
rties were
u
s
ed
in
th
is case.
Tabl
e
4. T
h
e
p
e
rf
orm
a
nce o
f
C
M
LTA a
f
t
e
r
opt
i
m
i
zati
o
n
M
odel
W
s
(m
m
)
I
s
(m
m
)
Fr
equency
Range
(MHz
)
Per
centage of
Bandwidth (%)
Ho
m
ogenous
34
26.
125
389.
77-
41
4.
39
6.
17
Non-
Ho
m
ogenous
34
27
389.
56-
41
1.
19
5.
37
4.
CO
NCL
USI
O
N
B
y
i
n
t
r
od
uci
n
g t
h
e p
r
o
p
o
sed
C
M
LTA desi
gn
, t
h
e di
m
e
nsi
on o
f
t
h
e ant
e
nna ca
n be m
i
ni
m
i
zed by
36
.8
4% a
nd
4
0
% f
o
r l
e
ngt
h
(
L
p
) a
nd
wi
dt
h
s
(
W
p
)
of s
u
bs
trate respectively. Va
riatio
n
o
f
sk
in
t
h
ickn
ess can
al
so af
fect
t
h
e
per
f
o
rm
ance of t
h
e a
n
t
e
n
n
a
w
h
i
l
e
h
o
m
ogeno
us a
n
d
no
n
-
h
o
m
ogen
o
u
s
hum
an b
o
d
y
m
odel
s
provide alm
o
st identical re
sul
t
s. There
f
o
r
e si
m
p
li
fi
ed hom
ogene
o
u
s b
o
d
y
m
odel
can be appl
i
e
d
fo
r re
d
u
ci
n
g
th
e co
m
p
lex
ity in
th
e d
e
si
g
n
. Moreov
er, th
e p
r
op
osed CMLTA can b
e
u
s
ed
for
tele
m
e
try ap
p
licatio
n
especially in biom
edical applicati
ons. T
h
e C
M
LTA can
b
e
furt
her i
nves
t
i
g
ated for real
ization of
pace
maker
i
n
si
de
t
h
e hum
an bo
dy
m
odel
f
o
r El
ect
rom
a
gnet
i
c
Int
e
rfe
re
nce (EM
I
)
a
n
d
Specific A
b
so
r
p
tion
Rate
(S
A
R
).
ACKNOWLE
DGE
M
ENTS
The aut
h
o
r
s w
oul
d l
i
k
e t
o
t
h
an
k t
h
e M
i
ni
st
ry
of Hi
ghe
r
Educat
i
o
n (
M
OHE
) f
o
r s
u
p
p
o
rt
i
n
g t
h
e
r
e
sear
ch
wo
rk
u
n
d
e
r
Mybr
ain1
5,
U
T
M
g
r
ant n
u
m
b
e
r
12
H0
8 and 4F883
. Th
e au
t
h
o
r
wo
u
l
d
lik
e to
t
h
an
k the
staff
of
Facult
y of Electrical
and
El
ect
ro
ni
c en
gi
neeri
n
g
of
U
n
i
v
er
si
t
y
Tek
nol
ogi
M
a
l
a
y
s
i
a
(UTM
)
and
Un
i
v
ersiti
Tu
n Hu
ssein
On
n Malaysia
(UTHM)
for t
h
e tech
n
i
cal sup
p
o
r
t
.
REFERE
NC
ES
[1]
N. A. Elias, N. A. Sam
s
uri, M.
K. A. Rahim
,
C. J. Panagam
u
wa, a
nd W
.
W
h
ittow, “
S
AR
Levels for Irradiat
ion b
y
a
Crumpled 900
MHz Flexible D
i
amond Dipole,”
Int
.
J.
E
l
ec
t
r
. Comput
.
, vol. 7, n
o
. 3
,
pp
. 1546–1
553, 2017
.
[2]
C.
J
.
Sá
nc
hez-Fe
rná
nde
z, O. Quev
edo-Teru
el
,
J
.
Requena
-Carrió
n
,
L.
In
cl
án
-S
ánchez
,
and
E
.
Ra
j
o
-Igles
i
as
,
“
D
ual
-
band microstrip
patch
antenna b
a
sed on s
hort-circuited r
i
ng
and sp
iral
resonato
rs f
o
r implantable
medical devices,”
IET Microwaves, An
tennas
Propag.
, vol. 4, no. 8, p. 1048, 2010.
[3]
F
.
C. S
.
and M
.
I
.
N
.
H
.
S
u
la
im
an, N
.
A
.
S
a
m
s
uri,
M
.
K
.
A
.
Rahim
,
“
D
es
ign and A
n
al
y
s
is
of O
p
tim
um
P
e
rform
ance
P
acem
aker Te
le
m
e
tr
y
Antenn
a,
”
TELKOMNIKA
(Telecommunication Computin
g Electronics and Control)
, 201
7;
15(2): 877-882
.
[4]
C. Liu
,
S. Member, Y. Guo,
S. Member, an
d H. Sun,
“Design and Saf
e
ty
Consider
ations
of an Implantab
l
e
Rectenna
for Far
-
Field Wireless
Power Tr
ansfer
,” vol. 62
, no
. 11
, pp. 5798–5806,
2014.
[5]
S. Gollakota, H. Hassanieh
, B.
Ransford, D. Katab
i
, and K. F
u
, “The
y
can h
ear
y
our hear
tb
eats: non-inv
a
sive
s
ecurit
y
for im
plantab
l
e
m
e
d
i
ca
l devic
e
s
,
”
Proc.
ACM SIGCOMM 2011 Conf. SI
GCOMM
, pp. 2–
13, 2011
.
[6]
W. El Hajj, C
.
Person, and J. Wiar
t, “A novel investigation of
a broadband
integrated inver
t
ed
-F antenna desig
n
;
Applica
tion
for
wearabl
e
antenn
a,”
IEEE Trans. Antennas
Propag.
, vol. 62, no. 7, pp. 3843–3846,
2014.
[7]
Z. Duan
, Y. X.
Guo, M. Je,
and
D.
L. Kwong, “
D
esign and in v
i
tro test of
a differentially
f
e
d
dual-band implan
tab
l
e
antenn
a op
eratin
g at MICS and I
S
M Bands,”
I
E
EE Trans. Antenn
as Propag.
, vol.
62, no
. 5
,
pp
. 24
30–2439, 2014
.
[
8
]
C
.
L
i
u
,
S
.
M
e
m
b
e
r
,
Y
.
G
u
o
,
S
.
M
e
mber, and S. Xiao, “A Hy
br
id Patch / Sl
ot Implantable Antenna
f
o
r Biotel
em
et
r
y
Devices,” vo
l. 1
1
, pp
. 1646–164
9, 2013
.
[9]
L. J. Xu, Y. X
.
Guo,
and W.
Wu, “Miniaturized dual-band
an
tenna fo
r implantable
wireless communications
,”
IEEE Antennas
Wire
l. Propag. Lett.
, vol. 13, pp.
1160–1163, 201
4.
[10]
B. M
a
nda
l and
S
.
K. P
a
rui
,
“
W
earab
le
tr
i-b
a
nd
SIW based antenna
on leather s
ubstrate,”
Electr
on. Lett.
,
vol
. 5
1
,
no. 20
, pp
. 1563
–1564, 2015
.
[11]
S. R. Devices,
ERC Recommend
ation 70-03
, no
.
May
.
2016
.
[12] A.
Pellegrini
et al.
, “Antennas and propagatio
n for body
-
cent
r
ic
wirel
e
ss com
m
unications at m
illim
eter-wave
frequencies: A r
e
view,”
I
EEE Antennas Propag. Mag.
, vol. 55
, n
o
. 4
,
pp
. 262–28
7, 2013
.
[13]
N. Ripin, A. A. Sulaiman, N. E.
A. Rashid, M. F. Hussin, and N. N.
Ismail, “A Miniaturized 878 MHz Slotted
Meander
Lin
e
M
onopole Antenn
a,”
Indones. J.
Electr.
Eng. Comput. S
c
i.
, vol. 7,
no. 1
,
pp
. 170–1
77, 2017
.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Co
mp
act Meand
er Li
n
e
Telemetry An
tenna
f
o
r
Imp
l
an
tab
l
e Pa
cema
ker …
(N. H.
Su
la
iman
)
88
9
BIOGRAP
HI
ES
OF AUTH
ORS
Noor Hafiz
a
h Sulaiman
obtained her Bachelor’s
and Maste
r’s degree in Electrical Engineering
from
Universiti
Tun Hussein Onn Malay
s
i
a
(UT
H
M) in 2010 an
d 2014 respectiv
el
y
.
From
2011
to 2014, she w
a
s with Wireles
s
and Radio Sc
ience C
e
ntr
e
(WARAS), UTHM working as a
graduat
e
res
ear
c
h
as
s
i
s
t
ant. Currentl
y
s
h
e is
working towards her Ph.D degree from Faculty
of
Ele
c
tri
cal
Engin
eering (F
KE)
,
Univers
iti
Tekno
l
ogi M
a
la
ys
i
a
(U
TM
). Her res
e
ar
ch int
e
res
t
s
ar
e
in design of planar and prin
ted
antenn
as and
an
tenna
array
s
. Sh
e has published
more than 10
research
pap
e
rs in various
index
e
d
journals and
conference pro
c
eedings.
Noor Asma
w
a
ti Samsuri
re
ceiv
e
d th
e B
.
E
ng. (Hons
) in
El
ectr
i
c
a
l-T
e
le
com
m
unication
Engineering fro
m
Universiti
Teknologi Mal
a
y
s
i
a
in
2001, the
MSc. in Dig
ital
Com
m
unications
S
y
stem from Lo
ughborough University
, UK in
2
004 a
nd th
e Ph.D. in Electronic and Electrical
Engineering fro
m Loughborough University
, U
K
in 2009.
She is presently
a Senior Lecturer in
the F
acul
t
y
of
Ele
c
tri
cal
Engin
eering
,
Univers
i
ti Tekno
logi M
a
la
ys
i
a
. Her r
e
s
earch
inter
e
s
t
s
includ
e wearab
le antenn
as including the inte
r
action with human body
and metallic items,
im
plantabl
e
ant
e
nna for m
e
d
i
ca
l
te
lem
e
tr
y,
an
d
Specific Absorption Rate (SAR). During
her
carrier, sh
e has
been
authored
or
co-autho
red se
v
e
ral
technical p
a
pers and book
chapters r
e
lated
to her r
e
sear
ch
interests. She has
also been
appoi
nted
as a r
e
view
er for sev
e
ral jo
urnal p
a
pers at
Nationa
l and
Int
e
rnat
ional
lev
e
l
.
Noor Asm
a
wati
Samsuri is a
member of Board of Engin
eer
Malay
s
ia
(BEM
) and a member of
IEEE (MIEEE),
and is
current
l
y
supervising
a PhD, Mast
er
and Undergr
a
du
ate students
.
M
o
hamad K
a
mal A Rahim
receiv
e
d th
e B Eng. degre
e
in Ele
c
tri
cal
and Ele
c
tron
ic
Engineering fro
m University
of
Strathcly
d
e,
U
K
, in 1987. From 1987 to 1989
, he worked as a
Management Tr
ainee
at
Sime
Ty
r
e
s Mergong Alor Star Keda
h and Production Supervisor at
Sime Shoes in K
u
lim Kedah
.
In
1
989, he jo
ined
th
e Department of
Co
mmunication Engineering,
F
acult
y o
f
E
l
ec
t
r
ica
l
Eng
i
ne
erin
g Univers
iti
T
e
k
nologi M
a
l
a
y
s
ia
Kuala
Lum
pur
as
an As
s
i
s
t
ant
Lecturer A. He obtain
e
d his M.
Eng Science fro
m University
of
New South
W
a
les Australia in
1992 and PhD d
e
grees in Electrical Eng
i
neering
from University
of Birmingham UK in 2003.
After he received his Master he
was appointed as a Lecturer
at F
aculty
of Electrical Eng
i
neer
ing.
In 2005 he w
a
s
appointed as
a s
e
nior lecturer
an
d in 2007 h
e
was appointed
as A
ssoc Professo
r
at th
e fa
cult
y.
N
o
w he is
the P
r
o
f
es
s
o
r in RF
an
d Antenna
at F
a
cult
y of
El
ectr
i
c
a
l Eng
i
nee
r
ing
Universiti T
e
kn
ologi Mala
ysia
.
His research int
e
re
st inc
l
udes th
e areas of desig
n
of Dielectr
i
c
resonator antenn
as,
m
i
crostrip an
tennas,
sm
al
l
antennas, microwave sens
ors, RFID antennas fo
r
readers
and ta
gs
,
M
u
lti-fun
c
ti
on
ant
e
nnas
,
m
i
crowave cic
u
its
, EBG, arti
fici
al
m
a
gn
eti
c
conductors, metamaterials, ph
as
ed array
antenn
as, computer
aided design for
antenn
as and
design of millimeter fr
equency
antennas. He h
a
s published
ov
er 200
articles in journals and
conferen
ce
pap
e
rs
.
F
a
u
z
iahanim Che
Se
man
is an associate professor of Resear
ch Center of Applied
Electrom
agnet
i
c. After obtain
i
n
g
her first
deg
r
ee from
Universiti T
e
knologi
Malay
s
ia in
Electrical Communication
Engineering
in y
e
ar
2001,
she contin
ued her
master
degree at Kolej
Universiti
Tun
Hussein Onn Mala
y
s
ia
and g
r
adu
a
ted
in
ye
ar
200
3 and
lat
e
r she
j
o
ined Fa
cult
y
of
Ele
c
tri
cal
Engin
eering
,
Universi
ti Tun Hussein
Onn Malay
s
ia as a lecturer
. She obtained her
PhD degree at
Queens University
o
f
Belf
ast,
United Kingdo
m in 2011. Her research in
ter
e
sts
includ
e Rad
a
r
Microwave Abs
o
rber, Frequ
e
ncy
Selectiv
e Surf
ace, Antenna D
e
sign and
copper
acc
ess networks. She has publ
ished num
ber of i
ndex journa
ls a
nd confer
ence
p
r
oceed
ing and
taken v
a
rious patents. She
is actively
invo
lved
with volunteering I
E
EE
act
ivities and organizing
com
m
ittee for v
a
rious
int
e
rna
tio
nal and
loc
a
l
co
nf
erenc
e
s
,
r
ecen
tl
y as
th
e T
echn
i
ca
l Chair
for
IEEE AP
MC 2017. Currentl
y
,
she served as the
S
ecret
ar
y
of th
e
IEEE Mal
a
y
s
ia
AP
/MTT/EMC
Joint Chap
ter.
M
uhammad I
n
am
A
bbasi
c
o
m
p
leted his BSC in Electri
ca
l Engineer
ing with m
a
jor in
Telecommunication in 2008
fr
om
Centre for
Advanced
Stu
d
ies in
Engin
e
ering (CASE
Islamabad), University
of
Engineering
and
Te
chnolog
y
(UET, Taxilla), Pak
i
stan. He jo
ined
W
i
reless and Radio Science Cen
t
re (W
ARAS),
Universiti Tun
Hu
ssein Onn Mala
ysi
a
(UTHM)
as a Graduate Research Assistan
t in 2009 where
he
completed his Master b
y
R
e
search and Ph.D.
in Electrical En
gi
neer
ing in
20
11 and 2016
res
p
ectively
.
Cu
rr
ently
,
He is wor
k
ing as
a Post
-
Doctoral r
e
sear
ch fellow a
t
W
i
rel
e
ss Comm
unica
tion Centr
e
(W
CC), Universiti Tekno
logi
M
a
la
y
s
ia (UTM
). His
recent re
s
earch int
e
res
t
s
lie in high pe
rform
ance plan
a
r
and printed
antenn
a design
, passive and
reconfigurab
le r
e
f
l
ectarray
and p
l
anar r
e
flector
antennas, novel
materials for the design of enh
a
nced perfo
rm
ance an
tenn
as. Dr. Inam has published one book
and m
o
re
than
4
0
resea
r
ch p
a
per
s
in in
tern
ation
a
l
l
y
ind
e
xed
journ
a
ls and
conf
eren
ces.
Evaluation Warning : The document was created with Spire.PDF for Python.