TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.7, July 201
4, pp
. 4996 ~ 50
0
2
DOI: 10.115
9
1
/telkomni
ka.
v
12i7.537
7
4996
Re
cei
v
ed
De
cem
ber 1
6
, 2013; Re
vi
sed
Jan
uar
y 11, 2
014; Accepte
d
February 1
0
, 2014
A Design of Rapid Pulsed Intelligent Charging Circuit
Zhang Le
fa
ng*, Li Xiaohong, Ren Zh
ihong
Schoo
l of Information En
gi
ne
erin
g,Xi'
an Eur
a
sia U
n
ivers
i
t
y
,
Xi'
a
n 710
06
5
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
zlf
_
x
a
@16
3
.
com
A
b
st
r
a
ct
As know
n that the traditio
nal
DC constant
voltag
e char
gi
ng eq
ui
p
m
ent
not only c
an c
ause th
e
battery ov
erch
arge
or
ins
u
fficient c
har
gin
g
,
but a
l
so
the
ch
argi
ng ti
me
is t
oo
lon
g
. In
the
pa
per,
base
d
o
n
the the
o
ry
of p
u
lse
char
gi
ng
meth
od
a
nd th
e d
e
sig
n
of
th
e p
u
lse
d
fast
i
n
telli
ge
nt ch
ar
gin
g
e
q
u
i
p
m
e
n
t is
prese
n
ted, th
e
imple
m
entati
o
n
of har
dw
are
a
nd s
o
ftw
are pr
ocess
of t
he s
ystem
is g
i
ven
out, the
an
aly
s
is
of the resu
lts show
that it can
e
ffectively pr
e
v
ent overc
harg
e
an
d low
char
ge p
hen
o
m
e
n
o
n
in th
e char
gi
n
g
process of batt
e
ry.
Ke
y
w
ords
: intelli
ge
nt charg
i
n
g
, rapid p
u
ls
ed
, circuit, Desig
n
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
With the dev
elopme
n
t of the storage b
a
tte
ry, chargi
ng tech
nolo
g
y is keepi
ng
update
s
.
The upd
ate chargi
ng tech
nology not o
n
ly can meet
the requirem
ents of new
battery cha
r
g
i
ng,
more im
porta
nt is that it ca
n improve th
e quality
of the cha
r
gi
ng, a
nd prol
on
g the se
rvice life
of
the battery. The tra
d
ition
a
l ch
argi
ng t
e
ch
nolo
g
y does
not ado
pt the dyna
mic tra
c
in
g b
a
ttery
cha
r
gin
g
current, thus
cau
s
e the
ch
argi
ng time
is to
o
long, and
ca
nnot meet the
need
of mod
e
rn
prod
uctio
n
an
d living, influ
ence the b
a
ttery state
of tech
nolo
g
y an
d se
rvice life. Quick
cha
r
g
e
is
to
make
th
e actual dynam
ic
battery cha
r
ging cu
rrent
track the a
cceptabl
e
ch
arg
i
ng current a
nd
the cha
r
gin
g
curre
n
t is ne
ar to acce
pta
b
le
value fro
m
beginni
ng
to end. And it can ma
ke the
battery cha
r
g
e
almo
st und
er
th
e con
d
ition
of no ga
s evolution, th
us it
ca
n
sav
e
ele
c
tri
c
ity a
nd
kee
p
the battery out of damage. At
pre
s
ent, the quick ch
arg
e
appl
ication is u
s
e
d
more an
d more
widely, espe
cially the pulse
type fast cha
r
ge meth
od h
a
s be
en wi
del
y used [1-3].
2. Pulse Cha
r
ging Theor
y
Pulse
cha
r
gin
g
method n
o
t only can foll
ow t
he in
here
n
t acceptan
ce rate of the
battery,
and but also it can increa
se the rate of chargi
ng,
thus
brea
k the limi
t
ation of the battery cha
r
gin
g
curve. It i
s
al
so th
e n
e
w d
e
velopme
n
t o
f
the batte
ry
cha
r
gin
g
the
o
r
y. In the p
u
lse charging
way,
first
step i
s
to
use p
u
lse
cu
rre
nt in th
e
chargi
ng
fo
r th
e battery,
an
d then
sto
p
t
he
cha
r
gin
g
f
o
r a
sho
r
t time, th
en
contin
ue t
o
charge. Pu
lse
ch
argi
ng
can
ma
ke
ba
ttery is full
of
po
wer, i
n
th
e
brea
k, the chemical co
m
b
ined rea
c
tio
n
of
oxygen and hydroge
n can b
e
ab
sorbed, then
the
con
c
e
n
tration
pola
r
ization
and
ohm
p
o
lari
zation
n
a
turally a
r
e
eliminated, t
hus the
battery
internal
pre
ssure i
s
redu
ce
d, the pro
c
e
s
s can
ma
ke t
he next ro
un
d of co
nsta
nt-curre
nt ch
arg
i
ng
can m
o
re sm
oothly. The b
a
ttery can
ab
sorb mu
ch m
o
re p
o
wer
an
d intermittent
pulse ma
ke
s
the
respon
se
time of the b
a
ttery is lo
ng, red
u
ce th
e
o
u
tpu
t
of the ga
s, a
nd finally imp
r
ove the
batte
ry
cha
r
gin
g
cu
rrent accepta
n
c
e rate [4
-6].
The p
r
in
ciple
of pulse ch
argin
g
meth
o
d
is to u
s
e
b
r
ea
k time to
make
the ele
c
trolyte
balan
ce thu
s
increa
se the
integrity of the re
actio
n
. In the pulse
cha
r
gin
g
met
hod, when th
e
cha
r
gin
g
is stopped
duri
n
g the cha
r
gi
ng pe
riod, th
e ele
c
trolyte
insid
e
the b
a
ttery can
obt
ain
homog
ene
ou
s diffusi
on; th
e ene
rgy of t
he batte
ry
ca
n be fully
con
v
erted into
chemical e
nergy,
so th
e cha
r
gi
ng efficie
n
cy
is hi
ghe
r
co
mpared
wi
th
the traditio
n
a
l
method
s. T
he di
scha
rgi
ng
pulse
cha
r
gin
g
meth
od i
s
f
o
llowed
by a
pulse di
sc
ha
rge
afte
r cha
r
ging pul
se
to
stop ch
arging
for
a pe
riod
of ti
me for chargi
ng
cycle
in th
e batte
ry
ch
a
r
ging,
and
th
e di
scharge
pulse aim
s
i
s
to
eliminate the
bubbl
e plate,
and redu
ce t
he internal
re
sista
n
ce, imp
r
ove the tra
n
sform
efficien
c
y
of elect
r
ical
energy into
chemic
al e
nergy. Since in
side the
se
ale
d
lead
-a
cid
b
a
ttery only ju
st
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Desig
n
of Rapi
d Pulse
d
Intelligent Ch
argin
g
Ci
rcuit (Zhan
g Lefa
ng)
4997
adde
d ele
c
tro
l
yte, so any f
o
rm of
elect
r
o
l
yte loss
will
cause the lo
ss of battery
ca
pacity, so
in t
h
e
pro
c
e
ss, the
high voltage
of the battery can't not
be used, in order to avoid the gas of the
electrolyte is faster th
an the
spee
d of gas abs
o
r
ption
which i
s
due to
excessive vo
ltage [7-11].
Figure 1. The
Pulsed Cha
r
ging Curve
3. Design of
the Pulse Ch
arging Circu
i
t
Cha
r
gin
g
sy
stem is mainl
y
con
s
ist
s
of two
pa
rts, the main
circuit and control circuit,
inclu
d
ing: in
put rectifier
module, I
G
BT, high
-fre
q
u
ency t
r
an
sfo
r
mer,
re
ctifie
r filter
ci
rcuit,
TMS320L
F24
07DSP, p
u
lse wi
dth
chi
p
, cu
rrent
sensor,
volta
ge sen
s
o
r
, the
compa
r
a
t
or
swit
che
s
, temperatu
r
e
swit
che
s
, DC aux
iliary power
supply, AC co
ntactor a
nd o
t
her pa
rts of the
system. The
diagram is a
s
sho
w
n in Fig
u
re 2
Figure 2. The
Diagram of the System
Figure 3. Fee
dba
ck
Circuit of the Current
This
device a
dopts the p
u
l
s
e
ch
argi
ng
circuit, it
i
s
the
bu
ck
ch
opp
e
r
ci
rcuit in
essential,
comp
ared wit
h
the ba
sic ty
pe of Buck
DC -
DC
circuit
,
accordi
ng to
the actu
al re
quire
ment, th
e
circuits of
pra
c
tical
is worked in
the
co
n
t
inuou
s
mo
de
, in the
de
sig
n
the i
ndu
cta
n
ce
of the
Bu
ck
circuit is get rid of, and we increa
se the
power
switch on the output
side, and form the convert
e
r
of charge pu
mp type [12-1
5
].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4996 – 50
02
4998
Con
s
id
er the
equivalent
se
ries resi
stan
ce an
d
th
e p
a
rallel
re
sistan
ce effect
of
eq
uivalent
circuits,
the
con
s
tant volt
age
so
urce
and th
e b
a
ttery inte
rnal
resi
stan
ce
in
se
rie
s
can
be
equivalent, th
e actual
stru
cture and
swit
chin
g se
que
n
c
e control
circuit is a
s
sh
o
w
n in Figu
re
4.
(a)
(b)
Figure 4. Structure a
nd Tim
e
Sequen
ce
of Charge Ci
rcuit
As mentio
ne
d above, in
o
r
de
r to elimi
n
at
e the p
o
lari
zation
phe
no
menon
of the
VRLA
battery cha
r
g
ed, and improve the
acce
ptance rate
of the battery
charg
e
, in the device fa
st
cha
r
gin
g
met
hod
com
b
ine
d
with t
he
refl
ection
type chargi
ng m
e
th
od a
r
e
ado
pted, in the
p
r
o
c
e
s
s
of pul
se
cha
r
ging a
certai
n
disch
a
rg
e p
u
l
se i
s
a
dde
d,
and th
en u
s
e
the fast
ch
arg
i
ng devi
c
e
and
the reflectio
n
type charging
method, the discha
rge p
u
l
s
e en
ergy is
con
s
um
ed in
the end of the
parall
e
l re
sist
ance, thus ca
use the
wa
ste of energy.
In this device, disch
arge
resi
stan
ce
s
is removed
,
and use many energy storag
e
cap
a
cito
rs
in
stead, sp
ecifi
c
se
rie
s
can
be set
a
c
co
rd
ing to
actu
al
need, th
e fa
st ch
arging
dev
ice
adopt
s two le
vels of
ene
rg
y storage
ca
pacito
r
. T
w
o
l
e
vels
of en
ergy sto
r
ag
e
capa
citor thro
ugh
electroni
c p
a
rallel on
both
end
s of b
a
ttery in the
begi
nning, it
s ci
rcuit stru
ctu
r
e
are
as sho
w
n
in
Figure 5, R3
and R4 are th
e equivalent resi
stan
ce of the disch
a
rg
e cap
a
cita
nce circuit.
Figure 5. Discha
rge En
erg
y
Feedba
ck
Circuit
Whe
n
the
ba
ttery need
to
disch
a
rg
e, the trig
ge
r ele
c
troni
c i
s
swi
t
ched
an
d ch
arge
to
cap
a
cita
nce, the si
ze of
the battery
discha
r
ge
current de
pen
ds o
n
t
he
capa
city of shunt
cap
a
cita
nce and pa
rallel
serie
s
. The di
scha
rge
cu
rre
n
t depen
ds
o
n
the co
ndu
ct
ion time of sh
unt
cap
a
cita
nce l
oop el
ect
r
oni
c
swit
ch, whi
c
h i
s
controll
ed by M
CU.
Wh
en the
voltage o
n
th
e
external sh
u
n
t
ca
pa
citan
c
e re
ach
e
s a
certain
val
ue,
the sin
g
l
e
-chip micro
c
omp
u
ter
co
ntrol
electroni
c switch sh
unt ca
pacit
a
n
ce co
nne
cted with
string mo
del
, and con
s
titute a bootstrap
circuit and in
crea
se capa
cit
ance voltage,
and then po
we
r i
s
inje
cte
d
to the formal level of energy
stora
ge ca
pa
citor,
the ene
rgy
re
cove
ry of
discha
rge
curre
n
t is
rea
lized, a
nd the
goal of
ene
rgy
saving i
s
achi
eved.
4. Charging
Po
w
e
r Suppl
y
Energ
y
Sa
v
i
ng Validation
In the d
e
vice of the
ch
a
r
ging
ci
rcuit, it simplifie
s the
cha
r
ge
r switch
po
wer
sup
p
ly
stru
cture, an
d new type
of ch
a
r
gin
g
power
stru
ct
ure
s
to re
mo
ve the high
freque
ncy p
u
l
se
transfo
rme
r
a
nd
el
ectroni
c swit
che
s
, rep
l
ace
it
wi
th
o
p
tically controlled
P
W
M el
ectro
n
ic swit
ch,
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Desig
n
of Rapi
d Pulse
d
Intelligent Ch
argin
g
Ci
rcuit (Zhan
g Lefa
ng)
4999
thus
red
u
ce the nu
mbe
r
of
the en
ergy d
i
ssi
pat
ion
ele
m
ent, lead th
e improveme
n
t of the po
wer
efficien
cy, it is a ne
w type
of powe
r
. In orde
r
to veri
fy the battery DC p
o
wer t
o
get rid of t
he
traditional
switch po
we
r e
nergy
con
s
u
m
ption su
ch
as the
high
freque
ncy t
r
an
sform
e
r, t
h
e
experim
ent
ci
rcuit
diag
ram
IS as sho
w
n in
Figu
re
6
,
con
s
id
erin
g
the
se
cu
rity of expe
rimen
t
al
requi
rem
ent etc, this expe
riment ad
opts
DC 24V inp
u
t
as voltage regulatio
n of PWM.
Figure 6. The
Schemati
c
Diagra
m
of Energy Transfo
rmation
As sh
own in
Figure 6, in
a ce
rtain te
st
time, the DC 24V p
o
wer con
s
um
ption
and the
con
s
um
ption
of electri
c
ity LOAD
can b
e
meas
ured,
through
rela
ted comp
ari
s
ons, the en
e
r
gy
conve
r
si
on
efficien
cy of the cha
r
gi
ng po
wer
supply ca
n b
e
obtaine
d, in the act
ually
impleme
n
tation m
e
thod,
o
n
the
pa
rts
of UT
1 a
nd
UT
2, we
test
vol
t
age valu
e, o
n
the
pa
rts
of IT1
and IT2, the
curre
n
t value
s
a
r
e d
e
tecte
d
, take the
time t=1
0
ms
a
s
the
sam
p
lin
g interval, aft
e
r
the time
of 1
00
con
s
e
c
uti
v
e sa
mpling,
so
the
po
wer
ene
rgy
co
nversi
on
efficiency
cal
c
ul
a
t
ion
formula i
s
as
(1).
10
0
1
10
0
1
22
11
ii
i
ii
i
UT
I
T
UT
I
T
(1)
Adjust frequ
e
n
cy of PWM pulse is 200
Hz, the
duty-ratio is 8%, th
e cha
r
gin
g
voltage is 5
V on
both
e
nds of th
e e
nergy
sto
r
ag
e capa
ci
to
r
C3, hi
gh volt
age i
s
24.8
V, the contin
uou
s
sampli
ng poi
nts are
100 p
o
ints, the voltage an
d cu
rrent can b
e
ca
lculate
d
re
sp
ectively:
The su
m of low-e
nd sampli
ng the voltag
e and current
value of the prod
uct:
100
1
2
2
230000
ii
i
UT
I
T
(2)
100
1
1
1
235600
ii
i
UT
I
T
(3)
Acco
rdi
ng to the form
ula (2
), power e
n
e
r
gy
conve
r
si
o
n
efficien
cy can be
cal
c
ula
t
ed, and
it is
97.62%.
Whil
e the
ordinary
switch
reg
u
late
d
po
wer supply, e
nergy
co
nversion
efficie
n
cy i
s
only abo
ut 85
%, even now
the soft switch tech
nolo
g
y
of DC/
DC
co
nv
erter, it
s en
ergy
conve
r
si
on
efficien
cy onl
y can
rea
c
h
90%. In thi
s
system,
th
e requireme
nt
o
f
the
po
we
r supply cha
r
ge
and
discha
rge
ci
rcuit, combin
e
d
with
the th
ought
of en
e
r
gy saving,
make
s th
e p
o
we
r of
ene
rgy
conve
r
si
on ef
ficien
cy is improved by mo
re than
7.62
%, so the device can re
alize the desi
gn
goal
of saving en
e
r
gy in the ne
w ch
argi
ng p
o
we
r su
pply.
As sho
w
n in
Figure 7, the measured wa
veform
in CH1 is the feed
back voltage
point of
waveform m
easure
d
wav
e
form i
n
CH2 is th
e
d
r
iving
signal
wa
veform for Q
6
, the fro
n
t-e
nd
cha
r
ge volta
ge is 1
3
.0 V, on the ene
rgy sto
r
age
cap
a
cito
r C2, when
Q6 i
s
conn
ecte
d, the
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4996 – 50
02
5000
voltage feed
back poi
nt voltage is 1
4
.2V, the
voltage ca
n re
ch
arge
d to the energy sto
r
age
cap
a
cito
r C2.
in the cond
u
c
tion cy
cle of Q6 , the abso
r
ption ele
c
tri
c
energy of C2
is:
22
2
11
(2
)
22
21
(1
)
()
()
()
()
()
11
()
(
)
(
)
(
)
22
1
10
00
1
3
.
2
5
6
.
6
3
(
)
2
ll
C
ll
ul
ul
du
Wu
i
d
C
u
d
i
Ci
d
u
C
u
t
C
u
t
Fm
W
(4)
Figure 7. The
Waveform of
Feedba
ck Voltage an
d Drive Signal
5 Pulse Char
ging Voltage
Contr
o
l Stra
teg
y
The
circuit a
dopts the vol
t
age feed
ba
ck
control of t
he pul
se
fast
ch
argi
ng te
chnolo
g
y,
the
charging
para
m
eters such
a
s
pu
lse fr
e
q
u
e
n
c
y
, du
ty c
y
c
l
e ca
n
be
set flexib
le, in o
r
de
r t
o
achi
eve the
effect of
different
stag
es o
f
cha
r
gi
ng,
so a
s
to
a
c
hie
v
e the
optim
al mo
del
of q
u
ick
cha
r
gin
g
. Through
chan
gin
g
electroni
c switch d
r
iv
en b
y
main contro
ller MCU, the cha
r
gin
g
pul
se
freque
ncy an
d duty ratio effect can b
e
chang
ed.
Figure 8. Electroni
c Swit
ch Drive Sign
a
l
Timing Wav
e
form
s
In the Figure
8, when the d
r
ive sign
al is i
n
lo
w ele
c
tri
c
i
t
y, electronic
swit
ch is
con
necte
d.
In ord
e
r to ve
rify throug
h
setting the d
r
iving si
gnal
of
duty ratio
can
cha
nge
of th
e VRLA
batte
ry
cha
r
gin
g
voltage an
d ch
arging current, the circuit is d
e
sig
ned a
s
in
Figure 9.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Desig
n
of Rapi
d Pulse
d
Intelligent Ch
argin
g
Ci
rcuit (Zhan
g Lefa
ng)
5001
Figure 9.The
Circuit of Cha
r
ging Poli
cy Verificatio
n
Whe
n
the co
ndu
ction cy
cl
e of Q2 an
d d
u
ty
cycle a
r
e
the co
nsta
nt, throug
h adj
usting the
duty ratio of the Q1, and o
b
se
rve the voltage cha
nge
s on ch
arging
capa
citor
C3
, and the charge
of voltage an
d cha
r
gi
ng cu
rre
nt cha
nge
s of Q2, so a
s
to verify the feasi
b
ility of the fast ch
argin
g
strategi
es of
pulsed contro
l.
As sho
w
n
in
Figure 7, the
CHA
RGE + a
nd CHA
RGE
-
are con
n
e
c
te
d to the positive and
negative
at b
o
th en
ds of t
he b
a
ttery, resp
ective
ly. The
filter cap
a
citor C1
i
s
1000µF,
voltage
450V, the p
o
w
er input te
rminal i
s
a
c
ce
ss to
AC4
8
V
and th
roug
h rectificatio
n m
odule KBP
C5
010
full bridge rectifier, the DC output is obta
i
ned, in
the energy sto
r
ag
e capa
cito
r chargi
ng C3, we
cho
o
se 1
000
µF and
the
4
50V ele
c
trolytic
cap
a
ci
to
r v
o
ltage. Th
e
condu
ction
dut
y ratio
of Q2
is
0.8, and we a
d
just
cond
ucti
on duty cycl
e
of Q1
ch
ang
es fro
m
0.1 to 0.8, the me
an pea
k volta
ge
at the en
ds
of the chargi
ng en
ergy st
orag
e
cap
a
cit
o
r
C3 a
nd vo
ltage, and
th
e ch
ang
e of
the
averag
e ch
arging current flows throu
gh the battery
ca
n be ob
serve
d
just as
sho
w
n in Tabl
e 1
.
Table 1. Ch
arging Policy V
e
rify Experim
ental Data Ta
ble
a
U
c1m
(V)
U
c1a
(V)
I
A
(A
)
0.1
19.2
15.2
0.1
0.2
21.6
15.5
0.4
0.3
26.4
16.7
0.5
0.4
28.4
17.2
1.0
0.5
30.6
17.3
1.2
0.6
31.6
18.5
1.2
0.7
32.8
19.1
1.2
0.8
37.6
22.8
1.2
6. Conclusio
n
From th
e
stu
d
y, we
can
find that th
e p
u
ls
e
d
cha
r
gin
g
devi
c
e p
e
rf
orma
nce batt
e
ry is
excelle
nt; it can g
r
eatly re
duci
ng the
ba
ttery ch
a
r
gin
g
time and i
m
p
r
ove the
real
-time appli
c
ati
on
perfo
rman
ce
of the battery. Becau
s
e th
e depol
ari
z
ati
on pul
se can
eliminate the
overcha
r
ging
of
the battery, a
nd effe
ctively en
sure the
service
lif
e of
the battery, a
t
the same ti
me we u
s
e
th
e
front-e
nd rect
ifier part
swit
ch power
su
pp
ly to repla
c
e tradition
al re
ct
ifier dev
ice, it greatly redu
ce
the volume
a
nd weight
of the devi
c
e. Pu
lsed fa
st
cha
r
ging d
e
vice
thus gr
eatly re
duce its vol
u
me
and
weight
of the device, pulse fast
cha
r
gi
n
g
de
vice devel
op
ed ha
s a
broad a
pplication
pro
s
pe
ct.
Referen
ces
[1]
Chaki
b
Al
ao
ui,
Z
i
y
a
d M. Sal
a
meh.
Exper
i
m
e
n
ts in F
a
st C
h
argi
ng L
e
a
d
A
c
id El
ectric Ve
hicle
B
atteries
.
Vehic
u
lar T
e
chnol
og
y
.
IEEE 58th. 200
3: 5 : 3326-
333
1.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4996 – 50
02
5002
[2]
J Marcos, J
D
i
os, AM C
ao,
J Dov
a
l, CM
Pena
lver, A
N
ogu
eiras, A
L
a
go, F
Poz
a
.
F
a
stLea
d-Aci
d
Battery Charg
e
Strategy.
Applie
d Po
w
e
r El
ectronics C
onf
erenc
e and E
x
positi
on. APEC '06.
T
w
ent
y
-
F
i
rst Annual IE
EE
.
2006; 4.
[3]
Z
hang
Ya
nqi
n. T
he dev
elo
p
m
ent of
le
ad-a
c
id
batter
y
tec
hno
log
y
.
Auto Electrical
Ap
pli
ances
. 2
004;
10.
[4]
Sun Yush
en
g. Improving the
performanc
e of valve
c
ontr
o
l t
y
p
e
s
eal
ed
le
ad-ac
id
b
a
tter
y
res
earch
.
Master degr
ee
theses of master
of zhengz
ho
u univ
e
rsit
y
.
2
0
01.
[5] RH
Sparks.
Ra
pid C
harg
i
n
g
Batteries F
o
r Ele
c
tric Proplus
io
n Systems.
SA
E papar. 1
972;
(1).
[6]
Z
hou Lo
ngru
i
. Electric vehic
l
e
batter
y
char
g
ed life pro
b
l
e
m
w
i
th a
daptiv
e control tech
nol
og
y.
Jian
gs
u
bicycle.
20
01
; 1
4
.
[7]
Chih-
C
hi
an
g H
ua, Meng-Y
u
L
i
n.
A study of charg
i
ng co
ntrol of lea
d
-a
ci
d battery for elec
tric vehicles
.
Industria
l
Elect
r
onics. Proce
e
d
in
gs of the 20
00 IEEE In
tern
ation
a
lS
y
m
p
o
si
um. 2000; 1: 1
35-1
40.
[8] Daj
Ra
nd.
V
a
l
ue -
Re
gul
ated
Le
ad -
Aci
d
B
a
tteries v
a
lve
control
type
Le
ad Ac
id
batter
y
. Guo Yo
n
g
Lan
g.
Machi
n
e
r
y
in
dustr
y
pre
ss.
2
006.
[9]
Lu H
a
n
hui. B
a
tter
y
c
harg
i
n
g
mana
geme
n
t s
y
stem
k
e
y tech
nol
og
y r
e
searc
h
. Master d
egr
ee thes
es o
f
master of Shan
gha
i jia
oton
g u
n
iversit
y
. 20
07.
[10]
A Kirchev,
D P
a
vlov, B M
ona
hov. Gas-diffus
i
on A
ppr
oach
T
o
T
he Kinetic
s Of Oxyge
n
R
e
comb
inati
o
n
In Lead-
aci
d
Batteries.
Journ
a
l of Pow
e
r Sources.
200
3; 1
13(2): 24
5-2
5
4
.
[11]
Bernar
di
Da
w
n
M. Stud
y
O
f
Char
ge
Ki
n
e
t
ics In Va
lve-r
egu
lates
Le
ad
-acid
Ce
lls.
J
ourn
a
l of
th
e
Electroch
e
m
ic
al Soci
ety.
200
4; 151(1): 8
5
-1
00.
[12]
W
u
Z
hu, Qi D
i
ng, W
e
i
y
a
M
a
, Yua
n
Gui,
H
uafu
Z
han
g. Rese
arch
on
Hig
h F
r
eq
ue
nc
y Ampl
itu
d
e
Attenuatio
n of
Electric F
a
st
T
r
ansient Ge
nerator.
T
E
LK
OMNIKA Indo
nesi
an J
ourn
a
l
of Electrica
l
Engi
neer
in
g.
2013; 11(
1).
[13]
W
u
T
i
ezhou, Cao Qu
an, L
i
u Lu
na
n, Xiao
Qing, W
ang
Xi
e
y
a
ng. Re
s
e
arch o
n
the fa
st chargi
ng
o
f
VRLA.
T
E
LKOMNIKA Indone
sian Jo
urna
l of Electrical E
ngi
neer
ing
.
2
012; 10(7).
[14]
T
i
an Ming
Xin
g
,
Yan h
o
n
g
, Yu
an D
o
n
g
Sh
en
g. Re
se
arch
o
n
Co
ord
i
nate
T
r
ansformati
on
of the T
h
ree-
phas
e Circu
it.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
ng.
2013; 1
1
(8).
[15]
Cui Qin
g
’a
n, Z
han
g Yu
xu
e,
C
u
i Na
n, Liu
Hu
ihu
a
. SVR-bas
ed RPD
appr
o
a
ch for comp
le
x pr
ocesse
s
and
its ap
plic
ation
in circ
uit o
p
timizati
on.
T
E
LKOMNIKA Indon
esia
n Jo
ur
nal
of Electric
a
l
Eng
i
ne
eri
n
g
.
201
3; 11(3).
Evaluation Warning : The document was created with Spire.PDF for Python.