TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.7, July 201
4, pp
. 5163 ~ 51
7
3
DOI: 10.115
9
1
/telkomni
ka.
v
12i7.601
3
5163
Re
cei
v
ed Fe
brua
ry 3, 201
4; Revi
se
d March 23, 201
4
;
Accepte
d
April 4, 2014
Design and Simulation Low Voltage Single-Phase
Transformerless Photovoltaic Inverter
Rajendra Aparnathi*
1
, Ved Vy
as D
w
iv
edi
2
C U Shah C
o
ll
ege of T
e
chnol
og
y an
d Eng
i
n
eeri
ng, C U Sh
ah Un
iversit
y
, W
adhva
n
cit
y
Su
re
nd
ra
na
ga
r,
Gujarat, INDIA.
*Corres
p
o
ndi
n
g
author, em
ail
:
rajendr
aa
parn
a
thi@
gmai
l.co
m
1
, provcushahuniversit
y
@gmail.com
2
A
b
st
r
a
ct
T
he last Deck
ard years d
e
ve
lopi
ng Invert
er techno
lo
gy for renew
ab
le e
n
e
r
gy and h
i
g
h
efficienc
y
and
mor
e
i
m
p
r
ove
m
e
n
t solar
and w
i
nd p
o
w
er plant. T
r
ansformer less
inverter tech
no
logy is b
e
st an
d
improves
effi
ciency,
pow
er
qu
ality
and
reduc
es
sw
itchin
g l
o
ss. Sing
le-
phas
e
grid
con
nec
te
d
transformerl
es
s ph
otovo
l
taic
(PV) inv
e
rter f
o
r resi
de
nt
ial
a
pplic
atio
n is
pr
esente
d
. T
h
e
i
n
verter
is d
e
riv
e
d
from
a b
oost c
a
scad
ed w
i
th
buck c
onverter
alo
n
g
w
i
th
a
l
i
ne fre
q
u
ency
unfol
din
g
circ
ui
tIn this rese
ar
c
h
pap
er transfor
m
er
less
ph
otovolta
ic (PV) i
n
verter is
go
in
g
to
b
e
more ado
pted in ord
e
r
to
ach
i
ev
e hig
h
ben
efit. T
he s
e
lecte
d
inv
e
rte
r
s are the f
u
ll-
brid
ge i
n
vert
er
w
i
th bipo
lar
modu
latio
n
, full-
brid
ge i
n
verter
w
i
th
DC by
pass
an
d the
Hi
ghly
E
fficient a
n
d
Re
liab
l
e
Invert
er
Conc
ept (HE
R
IC). A low
vo
ltage
sin
g
l
e
-ph
a
s
e
grid-connected PV system
is ana
ly
z
e
d to ver
i
fy the discussions
.
Ke
y
w
ords
: P
V
inverter, tra
n
sformerl
ess, HERIC hi
gh
ly
efficient a
nd r
e
lia
bl
e inv
e
rter
conce
p
t, AC-AC
Baypass, DC-
DC Baypass,
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The
ren
e
wa
bl
e en
ergy so
urces,
in
pa
rtic
ula
r
th
ose
of photovolta
ic (PV
)
o
r
igin,
have
experim
ented
a great dev
elopme
n
t in rece
nt years
mainly due to the spe
c
ial
feed in tariffs.
The full
-b
rid
ge
(FB) inv
e
rter top
o
lo
gy is
wi
del
y ado
pted
also
for PV
gri
d
con
n
e
c
ted
appli
c
ation
s
,
but the n
e
ed of hi
gh
efficien
cy an
d man
u
factu
r
ing cost
red
u
c
tion h
a
s l
e
d
to
new inn
o
vative topologie
s
[1].
As pointed
out, the mai
n
method u
s
ed to
in
cre
a
se the
efficien
cy is to
eliminate
the tran
sfo
r
m
e
r. In thi
s
ca
se th
e a
b
sen
c
e
of g
a
lvan
ic i
s
olatio
n
lead
s to
le
aka
ge
curre
n
t
flowing
d
u
e
to the
ca
pa
ci
tance
coupli
n
g to
earth
p
r
ovided
by th
e PV
p
anel
s.
He
nce
the
transfo
rme
r
le
ss
stru
cture requires mo
re
compl
e
x solu
t
i
ons, typically
resulting in newto
polo
-
gi
es
in order to
ke
ep the l
e
a
k
ag
e current
an
d DC
curren
t injectio
n
u
nder
curre
n
t
control i
n
o
r
der
to com
p
ly with safety purp
o
sed. Th
e aim of thi
s
pa
pe
r is t
o
analy
z
e a
n
d
to co
mpa
r
e
the
perfo
rman
ce
s of some ne
w PV trans
former less
c
o
nverters
[2, 3].
Ideal tran
sfo
r
mer le
ss inve
rter g
ene
rate
s
con
s
tant common m
o
d
e
voltage. Ho
wever, if
the voltage varie
s
with tim
e
, then a lea
k
age current i
s
pro
d
u
c
ed.
For the sake of minimizing
this leakage
current, different topolo
g
ies were
st
udied in d
e
ta
ils. Among th
ese a
r
e the f
u
ll
bridg
e
with bi
polar PWM, t
he half
brid
ge
, HERIC,
H5,
H6
and
NP
C [1, 2]. Sectio
ns II is menti
o
n
block
diagram of projec
t s
c
heme and
explains
th
is
blocks
, Sec
t
ion III is
mention and explains
control of tra
n
sformer l
e
ss PV Inverte
r
and
me
tho
d
s. Se
ction I
V
is mentio
n
Simulation
and
Re
sults di
scu
ssi
on. In this pape
r we exp
l
ain the
Many transfo
rmerl
e
ss topologi
e
s
are de
rived
by
addin
g
extra
power d
e
vice
s into the F
u
ll
-Bridg
e (FB
)
i
n
verter. F
o
r e
x
ample, the F
B
inverter
with
DC
bypa
ss
(FB-DCBP) a
dds t
w
o p
o
wer d
e
vice
s at
the DC-sid
e
[2]; while th
e Hig
h
ly Efficient
and Reli
able
Inverter Co
n
c
ept (HERIC)
provide
s
a
n
AC
bypa
ss
leg
[3]. Co
n
s
ide
r
ing
the
fast
gro
w
th of g
r
i
d
-conn
ecte
d
PV system
s, it is
better f
o
r the n
e
xt generat
ion tra
n
sformerl
ess PV
inverters to equip
with L
o
w Voltage
cap
ability
in orde
r to fulfill the upco
m
i
ng re
quireme
nts
efficiently and
reliably [4]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5163 – 51
73
5164
2. Single-ph
ase Tran
sfo
r
mer Less pv
In
v
e
rter
The
topol
og
y called
“Highly
Effici
ent
and
Rel
i
able Inve
rter Co
ncept” (HERIC),
comm
erciali
z
ed by Sun
w
ays, de
rives dire
ctly
fro
m
the Full
-Bridge
co
nve
r
ter, in
whi
c
h
a
bypass le
g h
a
s
been
ad
de
d in the
AC
side
by m
e
a
n
s
of two
b
a
ck-to
-
ba
ck I
G
BTs
ope
rati
ng
at g
r
id
fre
q
uen
cy. Th
e
HE
RIC
circuit i
s
sh
own in
Figu
re
1
,
whe
r
e
Ci
n i
s
the
DC-lin
k
c
a
pa
c
i
tor
,
L
f
i
a
n
d
L
f
g are
th
e ou
tp
ut filt
er in
du
ctors,
re
spe
c
ti
vely on the
i
n
verter-si
de
and
grid
side, a
n
d
Cf is th
e f
ilter capa
cito
r.
The
bypa
ss
bran
ch h
a
s two imp
o
r
tant fun
c
tion
s:
decouplin
g th
e PV a
r
ray from Th
e
grid
(usi
ng
a m
e
t
hod
call
ed
“A
C d
e
coupli
n
g
”), Avoidi
ng t
h
e
pre
s
en
ce
of high-f
r
eq
uen
cy voltage Co
mpone
nts a
c
ro
ss it an
d preve
n
tin
g
the re
act
i
ve
power excha
nge between
the filter inductors an
d Ci
n durin
g the zero voltage state, thus
increa
sing eff
i
cien
cy [2].
The conve
r
t
e
r ope
rate
s as it follows (see Ta
ble
1): durin
g th
e
positive hal
f-cycle S
+
remai
n
s
con
necte
d, whe
r
eas S1 a
n
d
S4 commut
a
te at swit
ching
freque
ncy in
orde
r to gene
rate bo
th active an
d ze
ro vecto
r
s. Whe
n
an
active vecto
r
is
pre
s
ent (S
1 and S4 are ON), curre
n
t flows from th
e PV panels
to the grid, while, whe
n
a zero
vector
occu
rs, S1 and S4
a
r
e
swit
ched
OFF a
nd th
e cu
rrent flo
w
s th
ro
ugh
S+ an
d D-, th
is is
the freewheel
ing situation.
On the
other
hand, when the negative cy
cle is co
m
i
ng, S+ goes
OFF and S-
goe
s ON, wh
erea
s S3 an
d
S2 commuta
te at switchi
n
g freque
ncy.
It means that
a
n
a
c
t
i
v
e
v
e
c
t
o
r
i
s
p
r
e
s
e
n
t
w
h
e
n
S
3
a
n
d
S
2
a
r
e O
N
, therefore
the cu
rrent f
l
ows from
the
PV panel towards the load, thus
when S3 and S2
turn off, a zero voltage vector is present
in
the loa
d
, the
n
current flo
w
s throug
h S-
and
D+.
Wi
th rega
rd
to
the
cla
ssi
cal
Full
-Bridg
e [
5
-
6].
Figure 1. PV
HERIC Inve
rter Top
o
logy
The m
odul
ation
outline
d
i
n
T
able
1
[6
] doe
s
not p
r
ovide
cap
abili
ty of rea
c
tive
power
pro
c
e
ssi
ng
si
nce
the
bidirection
a
l
swit
ch
of thi
s
t
opolo
g
y mad
e
up
of S
+
and S
-
i
s
n
o
t
controlled
to
be turned
O
N
si
multane
o
u
sly, theref
ore cu
rrent
ca
n only flow i
n
a p
r
ed
efin
e
d
dire
ction, def
ined by the
curre
n
tly turn
ed O
N
sw
itch. Modifying
the switchi
n
g strategy th
is
inverter can
inject
rea
c
tive po
we
r into
the
g
r
id [7
-9]. the PV i
n
verters
are
re
spo
n
si
ble
for
conve
r
ting DC so
urce ge
n
e
rated from PV panels
to A
C
so
urce efficiently and reli
ably.
Table 1. Co
n
ductio
n
States for Inverte
r
S1 S2
S3
S4
S+
S-
D+
D-
Vout
On
Off
Off
On
Off
Off
Off
Off
V
i
n
Off
Off
Off
Off
On
Off
Off
On
0
Off
On
On
Off
Off
On
Off
Off
Vin
Off
Off
Off
Off
Off
On
On
Off
0
A widely ad
o
p
ted si
ngle
-
p
hase PV inverter i
s
the
F
B
topology a
s
sho
w
n in
F
i
gure
1,
whe
r
e it is conne
cted to the grid th
rou
gh an L
C
L-
fil
t
er in ord
e
r to ensure the
injected
current
quality. There are two
main modul
a
t
ion strategi
e
s
available f
o
r this invert
er: a) Uni
pol
a
r
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign a
nd Sim
u
lation Low Voltage Sing
le-Pha
se
T
r
a
n
sform
e
rl
ess… (Raj
end
ra
Aparn
a
thi)
5165
modulatio
n schem
e and b
)
Bipolar mo
d
u
lation sche
me. When th
e transfo
rme
r
is removed f
r
om
a g
r
id-co
nne
cted PV sy
ste
m
, safety
con
c
erns (e.g.
le
aka
ge
cu
rren
t) will
ari
s
e
si
nce
the l
a
ck
of
galvani
c isol
ations. Th
us,
transfo
rme
r
l
e
ss invert
e
r
s shoul
d elimi
nate or at le
ast re
du
ce the
leakage current, e.g. by
inclu
d
ing pa
ssive dam
pi
n
g
comp
one
nts and/ or by
modifying the
modulatio
ns [
10, 11].
In the light of this, the FB-Bipola
r
is m
o
re
fea
s
ibl
e
insin
g
le-pha
se tran
sform
e
rless PV
appli
c
ation
s
. Ho
wever, in
every swit
chi
ng peri
od,
there a
r
e re
acti
ve powe
r
exchang
es b
e
tween
the L
C
L-filte
r
and
the
ca
p
a
citor CPV
a
nd al
so
co
re
losse
s
in
the
output L
C
L
-
filter, leadi
ng t
o
a
low
effic
i
enc
y
of up to 96.5% [1], [12-13]. In or
der to furthe
r i
m
prove the
effici
ency
and
re
d
u
ce
the lea
k
ag
e
current, a tre
m
endo
us
numb
e
r of tran
sformer le
ss top
o
l
ogie
s
have
b
een d
e
velop
e
d
,
most
of which a
r
e
ba
sed
on the
FB i
n
verter
as it
i
s
sh
own i
n
Fi
gure
2.
The
first
prio
rity of
a
transfo
rme
r
l
e
ss inve
rter i
s
to
avoid
th
e ge
neration
of a va
rying i
n
stanta
neo
us Co
mmon
-
M
ode
Voltage invert
er [3, 10].
2
)
(
bo
ao
C
V
V
V
(
1
)
dt
dv
C
I
cmv
p
C
(2)
Beside
s tho
s
e solutio
n
s t
o
limit the
leakage
cu
rrent by addi
ng pa
ssive
dampin
g
comp
one
nts
and by
modif
y
ing the m
o
d
u
lation te
c
hni
que
s,
the
eli
m
ination ca
n also be achie
v
ed
either
by di
sconne
cting
the
PV pan
els from the i
n
ve
rt
er o
r
by providing
a bypa
ss le
g at th
e A
C
side. Fo
r in
stan
ce, the
FBDCBP inv
e
rter p
a
t
ente
d
by Ingete
a
m [14] sho
w
n in Fig
u
re 2
discon
ne
cts the PV panel
s from the in
verter u
s
i
ng four extra de
vices (t
wo switchi
ng devi
c
e
s
SD5, SD6 an
d two diod
es
D7,D8); while
the HERIC
i
n
verter
(Figu
r
e 2 by
Sunwa
y
s [15] provid
es
an AC bypa
ss u
s
ing
two extra
swit
chin
g d
e
vice
s
(SD5, S
D
6). Th
ere h
a
ve be
en
other
transfo
rme
r
s less topol
o
g
ies repo
rted
in the lit
erature. Some are ba
se
d on the multi-level
topologi
es [1
6, 18], and so
me are d
e
rive
d by optim
izin
g traditional transfo
rme
r
less inverte
r
s.
Figure 2. DC
Bypass FB In
verter Ba
se L
-
C-L Filter
DC B
y
pass:
Anothe
r ‘modi
fi
ed’ FB topolo
g
y is the full-bri
dge
with DC by
pass a
s
patented
(p
e
nding
) by
Ing
e
team [8]
an
d pu
blished
i
n
refere
nce [
9
, 11]. Thi
s
to
pology i
s
dep
icted
in Figure 2. 11 and i
s
acl
a
ssical H-bri
dge with
two
extra switch
es in the DC link and al
so two
extra dio
d
e
s
clampi
ng th
e
output to th
e
grou
nde
d
mi
ddle
point of t
he
DC bu
s. T
he
DC switch
es
provide the
separation of the PV
panel
s from the g
r
id durin
g the
zero voltage
states an
d the
clampi
ng dio
des e
n
sure t
hat the zero voltage is
gro
unde
d, in oppositio
n to HERIC or
H5
whe
r
e
the zero volt
age i
s
fl
o
a
tin
g
. Essentially
both
solutio
n
s
en
su
re ‘j
u
m
p-fre
e
’ VPE
, leadin
g
to
l
o
w
leakage cu
rrent
and high
ef
fi
ci
en
cy d
ue to preven
tion of
rea
c
ti
ve power ex
cha
nge
between
L1(2
)
a
n
d
C
PV1(2) du
ring
zero voltag
e. The
swit
chin
g
state
s
for
po
sitive and
ne
gative gen
era
t
ed
AC cu
rre
nts a
r
e depi
cted in
Figure 3 [13,
14].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5163 – 51
73
5166
It was the first stru
cture a
b
le to take a
d
vantage of the first avail
able force
-
co
mmuted
semi
con
d
u
c
tor
device
s
. T
he
H-brid
ge t
opolo
g
y is ve
ry versatile, b
e
ing
able
to
be u
s
e
d
fo
r b
o
th
DC–DC an
d DC–AC conv
ersi
on an
d
can also be i
m
pleme
n
ted i
n
FB form (with two swit
ching
legs) o
r
i
n
h
a
lf-bri
dge
form (with o
ne
swit
chin
g leg
)
[5, 11,
15].
The A
C
byp
a
ss p
r
ovide
s
the
same
two vit
a
l functio
n
s a
s
in th
e case
of HE
RI
C [5,
16]: Prevent
s the reactive
power
exch
a
nge
betwe
en L
a
n
d
CPV du
rin
g
the zero voltage
state,
thus in
crea
si
ng efficie
n
cy.
I
solate
s the
PV
module f
r
om
the gri
d
du
rin
g
the
zero vo
ltage stat
e, th
us eli
m
inatin
g the hig
h
fre
quen
cy conte
n
t
of VPE.
Figure 3. Basic DC Bypass Base FB Inverter
Adv
a
ntages
:
a)
Voltage a
c
ro
ss th
e filter i
s
uni
pola
r
(0
→
+
VPV
→
0
→−
VPV
→
0), yi
elding l
o
wer
core
losses.
b)
The ratin
g
of the DC byp
a
ss swit
ch
es i
s
half of the DC voltage.
c)
High
er efficie
n
cy i
s
due
to
no
rea
c
ti
ve p
o
we
r
exch
an
ge b
e
twe
en
L
1
(2
) a
n
d
CPV
1
(2
)
durin
g zero v
o
ltage an
d to
a lowe
r swit
chin
g freq
ue
ncy in the F
B
and lo
w voltage
rating ofS5 a
ndS6.
d)
VPE has only
a grid f
r
equency componen
t and no swi
t
ching frequency components,
yielding a very low leakage
current an
d EMI.
Disadv
a
ntag
es:
a)
Two extra
swi
t
che
s
and two extra diode
s.
b)
Four
switch
e
s
a
r
e
con
d
u
c
ting du
ring th
e
active vecto
r
, leading to
hi
gher co
ndu
cti
o
n
losse
s
but wit
hout affecting
the overall hi
gh efficien
cy.
AC Bypass: In 2006, Sun
w
ays p
a
tente
d
a new
top
o
l
ogy also d
e
ri
ved from the cla
ssi
cal
H-b
r
id
ge call
ed HERI
C (h
ighly efficient and reli
abl
e i
n
verter
con
c
e
p
t) by adding
a bypass leg
in
the AC sid
e
usin
g two b
a
c
k-to-ba
ck I
G
BTs (i
nsula
t
ed gate bip
o
lar tra
n
si
sto
r
s), as
sho
w
n in
Figure 2 [6, 1
8
]. The AC b
y
pass provid
es the
sa
me t
w
o vital func
tions
as
the fifth switc
h
in cas
e
of the H5 top
o
logy: Preve
n
ts the
rea
c
ti
ve
power
exchang
e bet
we
en L1
(2
), and
CPV du
ring t
he
zero volta
ge
state, thu
s
i
n
cre
a
si
ng
efficiency. Isolate
s
the
PV m
o
dule f
r
om
the
gri
d
d
u
rin
g
t
h
e
zero voltage
state, thus el
iminating the high-
frequency content
of VPE seen i
n
Figure 4 T
h
e
main feature
s
of this con
v
erter are: S
1–S4 and S
2–S3 are switched at hig
h
freque
ncy
and
S+
(S
−
) at
grid freq
uen
cy. Two
ze
ro
output
voltag
e state
s
a
r
e
possibl
e:S+=on
andS
−
=on
(providing the
bridge i
s
switche
d
off) [19, 20].
Adv
a
ntages
:
a)
Voltage
acro
ss the
f
ilter i
s
u
n
ipol
ar (0
→
+
VPV
→
0
→−
VPV
→
0),yieldi-ng
lower core
losses.
b)
High
er effici
e
n
cy of up to
97 % is
du
e to no
rea
c
t
i
ve power ex
cha
nge
between
L1(2
)
a
nd CP
V during
zero
voltage and to lowe
r freq
u
ency switchin
g in one leg.
c)
VPE has only
a grid f
r
equency componen
t and no swi
t
ching frequency components,
yielding very low lea
k
a
ge current and E
M
I
Disadv
a
ntag
e:
a) Two
extra
swi
t
che
s
.
b)
We requi
red
gating ci
rcuit.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign a
nd Sim
u
lation Low Voltage Sing
le-Pha
se
T
r
a
n
sform
e
rl
ess… (Raj
end
ra
Aparn
a
thi)
5167
Figure 4. FB Inverter
with AC Bypass To
pology
LCL
Filter:
Li
ke i
n
the
case of the
L
C
L
filter
, the in
crease in
the
si
ze
of the
ca
p
a
citan
c
e
lead
s to a red
u
ction in the
co
st and
weig
ht of the filter
[17-18], [20].
Figure 5. Circuit with LCL F
ilter
The L
C
L filte
r
Figu
re 5
bri
ngs th
e adva
n
tage of p
r
ov
iding a
better decouplin
g b
e
twee
n
the filter and
grid imp
eda
n
c
e (as it redu
ce
s the
de
pe
nden
ce of the
filter on the
grid p
a
ra
met
e
rs)
and a lo
wer
ri
pple of the cu
rre
nt stre
ss a
c
ro
ss the
gri
d
inducto
r [1, 13, 21]. In order to obtain t
he
transfe
r fu
nct
i
on of th
e L
C
L filter, the
o
ne p
h
a
s
e
el
e
c
tri
c
al di
agra
m
in Fi
gure
6 is con
s
ide
r
ed
.
The com
pon
ents of
the
filter on ea
ch p
hase
a
r
e
co
n
s
ide
r
ed
to
be
identi
c
al,
so
the ci
rcuit b
e
l
o
w
is suita
b
le for the other two
phases [1].
Figure 6. One
Phase Ele
c
trical
Ci
rcuit of an LCL Filter
The tran
sfe
r
functio
n
of the filter
is expre
s
sed by Equa
tion (3) to (7)
i i
i c
i g =
0
(3)
v i
v c
=
i i(s
L
i +
R i)
(4)
v c
v g =
i
g(sL g +
R g)
(5)
i
g
LCL
v
i
H
(6)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5163 – 51
73
5168
i
R
g
R
i
R
g
R
i
R
c
R
g
R
c
R
f
C
i
L
g
L
s
g
R
c
R
i
L
i
R
c
R
g
L
f
C
s
f
C
i
L
g
L
s
f
C
c
sR
H
))
(
(
))
(
)
(
(
2
3
1
(7)
2.1. Limits on the Filter P
a
rameters
In the techni
cal literatu
r
e th
ere
are
many
sug
g
e
s
tion
s that
may
be consi
dered de
signi
ng
an L
C
L filte
r
[13], [15-1
6
], but there i
s
n
o
d
e
sig
n
a
t
ed ste
p
-by
-
step strategy
on thi
s
matt
er.
Ho
wever,
in t
h
is
project
th
e follo
wing
li
mitations on
the filter
pa
ra
meters h
a
ve
been
taken i
n
to
acc
o
unt [15].
The value of the capa
citan
c
e is limited
by t
he decre
ase of the po
wer fa
ctor th
at has to
be le
ss th
an
5% at the rat
ed po
we
r. Th
e total val
ue
of the filter in
ducta
nce ha
s to be le
ss th
an
0.1 p.u. for l
o
w p
o
we
r filters.
Ho
weve
r, for hi
gh p
o
w
er l
e
vels, t
he main
aim
is to avoid t
h
e
saturation of
the
ind
u
cto
r
s. The re
sona
nce
freq
uen
cy
o
f
the filter
sho
u
ld be
hig
her
than 10
time
s
the gri
d
fre
q
u
ency a
nd th
e
n
half of the
swit
chin
g fre
quen
cy. In re
spe
c
t to the
modulatio
n of
a
transfo
rme
r
l
e
ss inverte
r
, it should n
o
t gene
rate a varying CMV. With a dedi
cated modul
ation
scheme
for th
ose
inverte
r
s, there i
s
n
o
reactive
po
we
r ex
chan
ge
b
e
twee
n the
L
C
L-filte
r
a
nd t
he
cap
a
cito
r
CPV at ze
ro-vol
tage state
s
,
and thu
s
hi
g
her
efficien
cy
is a
c
hi
eved.
Ho
weve
r, e
x
tra
power lo
sses, including
switchi
ng losses and
con
d
u
ction lo
sses, will appear on the requi
red
addition
al swi
t
ching d
e
vice
s in these inverters a
s
sh
o
w
n in Figu
re
7.
More
over, the power lo
sses of an indi
vidual switchi
ng device are depe
ndent
on its
comm
utation
freq
uen
cy,
whi
c
h
differs with
invert
e
r
top
o
logie
s
,
and
its ele
c
trical
stress.
For
example, the
extra device
s
, S5 and S
6
in the
FB-DCBP inve
rter are co
mm
utated at a h
i
gh
swit
chin
g fre
quen
cy (e.g., 10kHz);
whil
e those
in th
e HE
RIC inv
e
rter
co
mmut
a
te at the lin
e
fundame
n
tal
frequen
cy (e.g., 50Hz).
Since the
to
tal powe
r
losse
s
will furthe
r introd
uce
redi
strib
u
tion
s of both cu
rrent
and thermal stre
sse
s
on the device
s
amon
g the
s
e inverte
r
s, the
efficiency and the lifetim
e will be affected [15].
2.2. Calculati
on of the Filter Values
The system para
m
eters consi
dered
fo
r
the
calc
ulati
on of the
filter
comp
one
n
t
s, for a
power level o
f
100kVA, are
presented in
the table
belo
w
for this
Hig
h
voltage syst
em [1, 7, 20].
Figure 7. AC, DC Bypass
Base L
C
L Filt
er with FB Inverter
For the furth
e
r develo
p
m
ent, the base
values
are
cal
c
ulate
d
, as the filter value
s
are
repo
rted a
s
a
percentag
e o
f
these.
Table 2. Para
meters of the Con
s
id
ere
d
System [1, 21]
Grid Line to Line
voltage
En=380V
O
u
tput Po
wer of
the Inverter/
C
onv
erter
Sn=100KVA
DC-Link voltage
Vdc=650V
Freque
nc
y
of g
r
id Voltage
F=50Hz
Sw
itching freq
ue
ncy
Fsw
=
3K
Hz- 15k
Hz
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign a
nd Sim
u
lation Low Voltage Sing
le-Pha
se
T
r
a
n
sform
e
rl
ess… (Raj
end
ra
Aparn
a
thi)
5169
444
.
1
)
(
2
n
n
b
S
E
Z
(8)
mH
Z
L
n
b
b
596
.
4
(9)
f
Z
C
b
n
b
3621
.
2204
1
(10)
The first ste
p
is to desi
gn the inverte
r
si
de indu
ctan
ce, which is de
termine
d
by [15]:
i
sw
sw
i
sw
i
L
n
v
n
i
1
(11)
kHz
res
f
f
C
g
L
i
L
g
L
i
L
res
337
.
1
3
10
*
97
.
14
.
.
(12)
Whe
r
e
ɷ
res
, sw i
s
the
switching frequ
ency a
nd n
s
w is the f
r
eq
uen
cy multipl
e
of the
fundame
n
tal frequ
en
cy at the switchi
ng frequ
en
cy are
mention ab
ove Equation (8
) to (12
)
.
2.3. Contr
o
l Scheme of P
V
Transfo
r
mer In
v
e
rter
In this Secti
on, the cont
rol of the invert
er i
s
de
si
gned. In the
first part, the PLL is
descri
bed. T
hen the
cu
rrent loop i
s
desi
gne
d, fo
r the case of
PI control a
nd the
ca
se
of
P+Re
so
nant
control. The
last pa
rt dea
ls with
the
d
e
sig
n
of the
dc voltag
e lo
op. The bl
ock
diagram of the inverter
con
t
rol con
s
id
ere
d
in this proj
e
c
t is presente
d
in Figure 9.
Figure 9. Block
Diag
ram o
f
Control Sch
e
me
The current
is orie
nted a
l
ong the a
c
tive vo
ltage compon
ent (V
d), this is
why this
strategy
is ca
lled voltag
e o
r
iented
control. A
PLL
alg
o
rithm
dete
c
ts the
ph
ase
angle
of the
grid,
the grid freq
uen
cy and t
he gri
d
voltage.
The fre
q
uen
cy and t
he voltage a
r
e ne
eded f
o
r
monitori
ng the grid co
nditi
ons an
d for complying
with
the control requireme
nts. The pha
se a
ngle
of the grid i
s
required fo
r re
feren
c
e fram
e tran
sf
orm
a
tions. If a PI cu
rre
nt co
ntrol i
s
imple
m
ente
d
,
then the
cu
rrents a
r
e t
r
an
sform
ed into
the syn
c
h
r
o
nou
s refere
n
c
e frame, a
n
d the al
gorit
hm
impleme
n
ts a
l
so the
de
cou
p
ling b
e
twe
e
n
the two
axe
s
. If a P+Resonant
cont
roll
er i
s
u
s
ed, th
en
the cu
rre
nts are tra
n
sfo
r
med into th
e stati
ona
ry
refere
nce frame a
nd d
e
co
upling i
s
not
impleme
n
ted.
For the d
c
v
o
ltage
control
,
a standa
rd
PI controll
er i
s
u
s
ed al
so f
o
r the
DC vol
t
age
and it outp
u
ts the
refe
ren
c
e fo
r the
cu
rre
nt co
nt
rol
[17]. Two typ
e
s of
cu
rre
nt cont
rolle
rs
a
r
e
impleme
n
ted:
a PI co
ntrol i
n
the synchronou
s refere
nce
f
r
ame
an
d a P
+
Re
so
n
ant (PR)
cont
rol
in the station
a
ry referen
c
e
frame. The PI current
cont
rol blo
ck dia
g
r
am is given i
n
Figure.1
0
a
n
d
the PR cu
rre
nt control with harm
oni
c compen
satio
n
block dia
g
ra
m in sho
w
n in
Figure 1
1
[13].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5163 – 51
73
5170
PI Controller
:
The blo
c
k dia
g
ram of the
PI regulato
r
i
s
de
picted i
n
Figure 10 a
n
d
the tran
sfer function
is the one in (13), [1, 5, 22].
Figure 10. Block Dia
g
ra
m of PI Regulator
s
K
K
s
G
i
p
PI
)
(
(13)
The d and q
control loop
s
have the sam
e
dynam
ics, so the tuning
of
the PI parameters
for the
curren
t cont
rol i
s
do
ne o
n
ly for th
e d
axis
.F
or
th
e
q a
x
is th
e p
a
r
a
me
ters
a
r
e as
su
me
d to
be the
same.
As it
can
be
see
n
from th
e current
con
t
rol bl
ock
dia
g
ram
in
Figu
re 10,
the volt
age
feed forwa
r
d
and the
de
co
upling
betwe
en the d
and
q axes
ha
s
been
negle
c
t
ed a
s
they a
r
e
con
s
id
ere
d
as
distu
r
b
a
n
c
e
s
. Th
e bl
ock di
ag
ram
of the
P
R
reg
u
lator with
Harm
onic
Comp
en
satio
n
is depi
cted i
n
Figure 11, [1, 5, 23].
Figure 11. Block Dia
g
ra
m of PR Regul
a
t
or
The tran
sfe
r
functio
n
of the PR controller is:
2
2
)
(
S
s
K
K
s
G
i
p
PI
(14)
Whe
r
e a
w
is t
he anti-wind
u
p
function im
plemente
d
as:
max
max
max
max
,
,
y
y
y
y
y
y
y
y
a
(15)
The tran
sfe
r
functio
n
of the Harm
oni
c Co
mpen
sato
r is
[21].
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign a
nd Sim
u
lation Low Voltage Sing
le-Pha
se
T
r
a
n
sform
e
rl
ess… (Raj
end
ra
Aparn
a
thi)
5171
7
,
5
,
3
,
)
.
(
)
(
2
2
h
h
s
s
K
s
G
Ih
HC
(16)
The mo
st imp
o
rtant ha
rmo
n
ics
in the cu
rre
nt spe
c
tru
m
are
the 3
r
d
,
the 5th and the 7th.
So the harm
onic
comp
en
sator i
s
de
sig
ned to
com
p
ensate these
three
sel
e
ct
ed harmoni
cs. In
orde
r to
pe
rfo
r
m the
di
scret
e
an
alysi
s
o
n
the PR cu
rrent control, the initial
valu
es cal
c
ulate
d
with
the optimal m
odulu
s
metho
d
for the PI control a
r
e u
s
ed for the PR control to be
gin with. Usin
g
the root locu
s method, th
e prop
ortion
a
l
gain K
p
is selecte
d
so th
at the domin
ant pole
s
ha
ve
a
dampin
g
fact
or of 0.7. As i
t
can be
see
n
in the
Figu
re 12. with a
Kp value of 0
.
78, the dam
ping
of the resona
nt poles
rea
c
hes the val
u
e
of 0.7.
An integral
gain Ki
of 300 ha
s be
en ch
osen a
s
a
tradeoff between a go
od n
o
ise reje
ction
and goo
d dynamics [21].
3. Results a
nd Analy
s
is
The resea
r
ch pap
er
pre
s
ent
s the
cl
ose
d
loo
p
control
syste
m
for a
sin
g
le-p
ha
se
trans
former-less
PV s
y
s
t
em. It is
ob
serve
d
in
Fi
gure
7 that
an
effective power cal
c
ul
ation
method i
n
term
s of fa
st dynami
c
re
spo
n
se
an
d
accu
rate
computation,
together with
an
advan
ced
sy
nch
r
oni
zatio
n
unit, can
co
n
t
ribute to t
he
Low Volta
ge
PV Inveter pe
rforma
nce of
th
e
entire
system
. In this pap
er, the Seco
nd Order
Ge
nerali
z
e
d
Integrato
r
ba
se
d Phase Lo
cked
Loop h
a
s b
e
e
n
sele
cted a
s
the synch
r
on
ization u
n
it beca
u
se of its robu
stne
ss [9], [24-25].
The average
powe
r
calcu
l
ations a
r
e b
a
se
d on the
Discrete Fo
urie
r Tra
n
sfo
r
matio
n
(DF
T
). Since the DFT uses a running window to do
the calculati
on, it naturall
y
will introduce a
delay [22-23]. No
w we de
si
gn proje
c
t scheme in
MAT
L
AB Simulation see Fig
u
re 12. FB inve
rter
with
DC Byp
pas and
AC
Bypass conn
ected
in g
r
id
system
with
50h
z frequ
e
n
cy a
nd
sing
le
pha
se A
C
vol
t
age o
u
t put
Voltage a
nd
curre
n
t wave
form me
ntion
Figu
re 1
3
. In
this p
r
oj
ect
we
desi
gn co
ntro
ller and PI+
PR cont
rolle
r are de
si
gn i
n
PLL control
sch
eme are mention out
pu
t
gating si
gnal
in Figure 14
SPWM Sign
al for FB
Inverter a
nd AC, DC Bypass,
in Figure 15
is
mention FB Inverter O
u
tp
ut Voltage. Using AC
byp
a
ss and L
C
L
filter topolog
y we controll
ed
output curren
t waveform
a
nd re
moved u
n
ne
ce
ssary
harm
oni
c wa
veform is
sa
wn in Figu
re 1
6
L-
C-L Filte
r
Out
put Voltage a
nd cu
rrent Waveform.
Figure 12. MATLAB Simulation Proje
c
t Diag
ram
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5163 – 51
73
5172
Figure 13. FB Inverter with
DC Bypa
ss a
nd AC
Bypass
Con
n
e
cted G
r
id System Outp
ut
Voltage and
Curre
n
t Wav
e
Form
Figure 14. SPWM Signal fo
r FB Inverter
and
AC, DC Bypas
s
Figure 15. FB Inverter Outp
ut Voltage
Fi
gure 16. L-C-L Filte
r
Out
put Voltage a
nd
Current Wav
e
form
4. Conclusio
n
The
re
sults show that the
HERIC inve
rter
ca
n
a
c
hi
eve a
high
effici
ency, b
u
t it
cannot
be
use
d
in
the
n
e
xt gene
ratio
n
PV sy
stem
s
with L
o
w V
o
ltage
ca
pabi
lity or rea
c
tive po
we
r inj
e
ction.
For thi
s
invert
er, a p
o
ssible
way to ri
de-t
h
rou
gh voltag
e fault is to m
odify the mod
u
lation
sche
me
durin
g Lo
w V
o
ltage FB Inverter
but at the co
st
of re
du
cing
efficien
cy. The perfo
rmance of a F
u
ll-
Bridge
invert
er with DC bypass
to
pol
ogy
(FB
-
DCBP) is satisf
actory
un
der Lo
w Volta
g
e
FB
Inverter
ope
ration. It can
a
c
hieve
a
sligh
t
ly higher
efficien
cy comp
a
r
ed to
full-b
r
id
ge inve
rter
wi
th
bipola
r
mod
u
l
ation. Ho
we
ver, in Lo
w
Volt
age op
eration, a vary
ing commo
n
mode volta
g
e
appe
ars in the FB-DCBP
inverter,
the test result
s have verified
the effectiveness of the PQ
control meth
od an
d the
consta
nt pea
k cu
rre
nt stra
tegy for
rea
c
ti
ve power i
n
je
ction. Mo
reov
er,
due to the hig
h
swit
ching freque
ncy for the extra
devi
c
e
s
of the FB-DCBP,
high curre
n
t stre
sses
might app
ear and furthe
r i
n
trodu
ce fail
ure
s
to t
he
whol
e syste
m
. Never the
less, fo
r different
appli
c
ation
s
.
Referen
ces
[1]
Raje
ndr
a Ap
ar
nathi, Ve
d V
y
as D
w
iv
ed
i, L
-
C-L F
ilter for
3-Ø Inverter
- Lamb
e
rt Academ
ic Pub.
German
y
, ISB
N
-97
8
-3-6
59-2
600
1-8. 20
12
[2]
Mein
hardt M,
Cramer G, Bur
ger B, Z
a
char
i
a
s P.
Multi-Stri
ng-C
onverter
w
i
t
h
R
educ
ed Specific Costs
and En
ha
nced
F
unction
alit
y.
Solar Energy
. 200
1; 69(Su
ppl
. 6): 217–2
27.
[3]
Lop
ez O,
T
eod
orescu R, F
r
ei
j
edo F
,
Dova
lGand
o
y
J.
Leak
age C
u
rre
nt Evalu
a
tion
of a
Sing
le-Ph
a
s
e
T
r
ansformerl
es
s PV Inverter Con
necte
d to the Grid
. InApplied P
o
w
e
r Elec
tronics Confer
ence, APEC
T
w
e
n
t
y
S
e
con
d
Annu
al IEEE. 2007: 9
07–
91
2.
Evaluation Warning : The document was created with Spire.PDF for Python.