TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 6403 ~ 6410
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.300
6
6403
Re
cei
v
ed
No
vem
ber 2
4
, 2013; Re
vi
sed
March 28, 20
14; Accepted
April 13, 201
4
Assembly Sequence P
l
anning for Products with
Enclosed Shell
Yan Song*, Juan Song, Zhihong Ch
en
g
Schoo
l of Mechatron
i
c Eng
i
n
eeri
ng, Chi
na
Univer
s
i
t
y
of Minin
g
an
d T
e
chnol
og
y, Xuzh
o
u
, Chin
a
Xuz
h
o
u
Co
nstruction Mac
h
in
e
r
y
Se
nior T
e
chnical Sc
hoo
l
*Corres
p
o
ndi
n
g
author, em
ail
:
song
yan
@
cu
mt.edu.cn
A
b
st
r
a
ct
Aiming
at th
e
speci
a
l str
u
cture
of
pro
duct
s
w
i
th encl
o
se
d sh
ell,
th
e l
i
m
itati
ons
of th
e us
ual
meth
ods ar
e a
naly
z
e
d
an
d conce
p
ts of axial sub
a
sse
mb
l
y
and radi
al s
ubass
e
mbly ar
e prop
osed, th
e
subass
e
mbl
i
es
are ide
n
tifie
d
base on
the ad
jace
nt
matr
ix a
nd i
n
terfere
n
ce
matrix. A new
kind
of asse
mb
ly
relation
matrix with the subasse
mb
ly i
n
for
m
ati
on
is pr
o
pose
d
to
expr
ess the
asse
mb
ly
mo
del
,
t
he
asse
mb
ly tran
sition
pro
b
a
b
il
i
t
y in th
e a
n
t c
o
lo
ny a
l
g
o
rith
m
is
mo
difie
d
base
d
o
n
th
e
asse
mb
ly re
lat
i
on
matrix a
nd ass
e
mbly prec
ed
e
n
ce relati
ons. T
he asse
mb
ly sequ
enc
e of products w
i
th en
close
d
shel
l ca
n
be pl
ann
ed ra
pidly w
i
th the
algor
ith
m
afo
r
ementi
one
d.
F
i
nally, the ef
fectiveness w
a
s verifie
d
by
an
e
x
am
pl
e
.
Ke
y
w
ords
: en
close
d
shel
l, axial sub
a
sse
mbly, radia
l
sub
a
ssem
b
ly, assembly relati
on m
a
trix, ant colony
algorithm
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
T
h
e
en
c
l
o
s
ed
s
h
e
ll is
an
in
te
gr
a
l
s
t
r
u
c
t
ur
e
indivi
sible. T
he p
a
rts i
n
the
shell
are
assembl
ed throu
gh several assembly
hole
s
and th
e assem
b
ly dire
ction of some pa
rts is a
combi
nation
of
seve
ral di
rectio
ns. The
assem
b
ly p
r
ocess
of produ
ct
s with encl
o
sed sh
ell
depe
nd
s on the experi
e
n
c
e and skills
of professio
n
a
ls. He
nce, the develop
m
ent cycle of new
prod
uct
s
i
s
l
o
ng a
nd it
is d
i
fficult for
ent
erp
r
ises to
re
act to
the
ma
rket
in tim
e
.
The
assem
b
ly
co
st ca
n be
redu
ce
d an
d
the develo
p
m
ent cy
cle
can be
de
cre
a
se
d by a
s
sembly seque
nce
planni
ng ba
sed on comput
er tech
nolo
g
y. So
the method ha
s impo
rtant signifi
can
c
e.
Plenty of re
search
wo
rks
about
assem
b
ly se
quen
ce
planni
ng
hav
e be
en
ca
rrie
d
out. (1
)
The
algo
rith
m ba
se
d o
n
asse
mbly p
r
ece
den
ce
rel
a
tions,
asse
mbly process kn
owl
edg
e
wa
s
introdu
ce
d int
o
the
algo
rith
m, a fea
s
ibl
e
asse
mbly
se
quen
ce
was
obtaine
d
with
this algo
rith
m
based
on h
u
m
an-com
pute
r
inte
ra
ction [
1
-3]. (2)
A
s
se
mbly
se
que
n
c
e planni
ng wa
s
tra
n
sfo
r
med
into disa
sse
m
bly of prod
ucts, the inv
e
rse proc
ess of disa
ssem
bly sequ
en
ce
was
used a
s
the
assembly seq
uen
ce [4]. Aiming at the combinatio
n e
x
plosio
n in assembly sequ
ence planni
n
g
for
prod
uct
s
wit
h
plenty of parts, the
co
nce
p
t
and id
entification
method of suba
ssembly were
introdu
ce
d in
to the m
e
tho
d
[5-7]. Intelligent al
gorith
m
s
we
re
ap
plied to
a
s
se
mbly sequ
en
ce
planni
ng, mai
n
ly the g
eneti
c
al
gorith
m
,
artificial
neu
ral
net
work al
gorithm, ant colo
ny
algo
rit
h
m
and im
mun
e
algorith
m
, ne
w met
hodol
o
g
ies were
de
sign
ed
by co
mbined
u
s
e
o
f
these
intelli
gent
algorith
m
s [8
-13]. The
aforem
ention
e
d
intelligent a
l
gorithm
s
we
re imp
r
oved
in som
e
n
e
w
algorith
m
s, th
e improved o
nes
had
adva
n
tage
s in
gl
o
bal optimal
search a
b
ility and
conve
r
ge
nce
rate [14-16].
The
com
m
on
method
s are
not fully a
p
p
licabl
e to
pro
duct
s
with e
n
c
lo
sed
shell,
hen
ce,
the con
c
ept
s and identification method
s of ax
ial su
bassem
b
ly and radi
al su
bassem
b
ly are
prop
osed in this pap
er, a new
kind of a
s
sembly re
lat
i
on matrix with suba
ssem
b
l
y information
is
built to expre
s
s the a
s
se
mbly model.
Combi
ned
wi
th assem
b
ly
relation
matri
x
and a
s
sem
b
ly
precedence relations, t
he assembly transition probability in t
he a
n
t colony algorithm is modified,
the
a
s
sembl
y
seq
uen
ce of
pro
d
u
c
ts with
e
n
clo
s
e
d
shell can
be
pla
nne
d rapidly with the
algorith
m
. The flow ch
art o
f
the algorith
m
is sh
own in
Figure 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 640
3 –
6410
6404
2
.
Identifica
tion of Subas
sembly
for Produc
ts
w
i
th
Enclosed Shell
Asse
mbly se
quen
ce
plan
ning for
pro
duct
s
with
e
n
clo
s
e
d
shell
is a
combi
natorial
optimizatio
n probl
em with stron
g
con
s
traints.
Fo
r the
purpose of redu
cing th
e complex de
gree
and obtaini
n
g
the optima
l
seque
nce with the ant
colony algo
rithm, the su
bassem
b
lie
s are
identified firstl
y so th
at the
algorith
m
for
prod
uc
t
s
with
en
clo
s
ed sh
ell
could be more
spe
c
ific
and
the assembly
sequ
en
ce co
uld be pla
nne
d rapidly.
Figure 1. Flow Ch
art of Algorithm
The a
s
semb
ly of comm
on p
r
od
uct
s
can
be
e
x
presse
d by
gra
ph the
o
ry, the
sub
a
ssem
blie
s are identified ba
sed o
n
the assemb
l
y
const
r
u
c
t informatio
n e
x
presse
d by the
adja
c
ent m
a
trix
C
and the interferenc
e
matrix
A
, but
the dive
rsity
and
comple
xity could
ca
use
invalidation. The
p
r
odu
ct as sho
w
n
in Figure
2
is
a
typical exam
ple of pro
d
u
c
ts with en
clo
s
ed
shell, th
e a
ssembly an
d di
sa
ssembly of
som
e
com
p
onent
s
coul
d
not be
compl
e
ted in
a
sin
g
le
dire
ction. Fo
r example, bef
ore the
gea
r
being in
st
alle
d to the app
o
i
nted po
sition
along the
sh
ell,
it should b
e
installe
d into the sh
ell throu
gh the locatio
n
of the end cover.
Aiming at this proble
m
, the followin
g
con
c
ept
s are p
r
o
posed:
Conc
ept1.
Axial suba
ssembly, rep
r
e
s
ente
d
by
S
a
: Subassem
b
lies
whi
c
h
can b
e
assembl
ed a
nd disassem
bled alo
ng th
e axia
l dire
ction of shaft pa
rts directly.
Conc
ept2.
Radial suba
ssembly, rep
r
e
s
ente
d
by
S
r
: Subassemb
lies which m
u
st be
moved al
ong
the radial
direction
of
sha
ft parts
du
rin
g
the assem
b
ly
and disassembly proce
ss
along the axi
a
l dire
ction.
Duri
ng the
i
dentificatio
n
pro
c
e
s
s of
sub
a
ssem
bly identificatio
n for p
r
od
u
c
ts
with
encl
o
sed she
ll,
S
a
is in p
r
e
f
eren
ce
of
S
r
. Du
ring th
e i
dentificatio
n
pro
c
e
s
s of
S
r
, the found
ation
part is not co
nsid
ere
d
. The
process of the sub
a
ss
em
b
l
y identificatio
n for pro
d
u
c
ts with en
clo
s
ed
shell i
s
as foll
ows.
1) Sele
ct the foundatio
n pa
rt.
2) Obtain the
adja
c
ent matrix and interferenc
e matrix b
a
se
d on the a
s
sembly rel
a
tions.
3) Let
b
be the found
ation
part,
i
p
is an alternative pa
rt of the axial suba
ssembl
y and
ap
S
is the set o
f
all the alternativ
e part
s
of the axial sub
a
ssem
bly.
rp
S
is the set
of all the
alternative p
a
rts
of the ra
dial suba
sse
m
bly whi
c
h i
s
comp
osed
of all the pa
rts exce
pt for the
alternative pa
rts of the axia
l suba
ssem
bl
y and except
for the found
ation part.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Assem
b
l
y
Sequen
ce Plan
n
i
ng for Prod
u
c
ts with En
clo
s
ed Shell
(Ya
n
Song)
6405
1-Shell, 2-Ge
ar, 3-End
cov
e
r
Figure 2. A Typical Pro
d
u
c
t with Enclosed Shell
4) Identify the axial suba
ssemblie
s with the usual met
hod [6].
5) Identify the radial suba
ssembli
e
s
wi
th
out con
s
id
eri
ng the found
a
t
ion part.
Practi
ce ha
s
sho
w
n the e
x
istence of feasi
b
le sequ
ences in
whi
c
h suba
ssem
blies a
r
e
assembl
ed di
videdly, hence, the su
ba
ssembly inform
at
ion is
con
s
i
dere
d
a
s
pri
o
rity conditio
n
but
not forcibl
e
condition.
3. Assembly
Relatio
n
Matrix of
Produ
cts
w
i
th Enclosed Shell
The a
s
sembl
y
seque
nce is expressed
by an
orde
re
d set of asse
mbly operatio
ns, the
set i
s
dete
r
mi
ned
by the a
s
sembly
relati
ons bet
w
een
parts of the
p
r
odu
ct, he
nce
,
the a
s
sembl
y
seq
uen
ce
pla
nning
is rega
rded
a
s
ope
rations an
d
calcul
ation
s
of
the
assem
b
l
y
relatio
n
s.
T
he
relevant info
rmation of a
s
sembly relatio
n
s i
s
ex
pressed by asse
m
b
ly relation m
a
trix from whi
c
h
the type
of suba
ssemblie
s, asse
m
b
ly di
rectio
n
and
compon
ent
co
de
can
be
o
b
tained: the
type
of suba
ssem
bly is
S
a
or
S
r
, it is identified by the al
gorithm
int
r
o
duced in p
r
e
v
ious pa
rt of the
pape
r; the assembly di
re
ction of
S
a
is ±
Y
and that
of
S
r
is a co
mbination of
±
Y
and ±
X
, the
comp
one
nt code is
arran
g
ed acco
rdi
ng
to the distan
ce with the a
s
sembly h
o
le, the longe
r is t
he
distan
ce b
e
tween the pa
rt and the a
s
se
mbly hole, the bigge
r is th
e node.
3.1. Assemb
l
y
Relation Matrix
The a
s
sembl
y
relation ma
trix is a matri
x
for the assembly relatio
n
shi
p
s b
e
twe
en pa
rts.
The a
s
sembl
y
relation mat
r
ix of an asse
mbly comp
osed of
n
part
s
12
,
,
..
.,
n
pp
p
is sh
own as
(1),
whe
r
e
ij
ij
i
j
i
j
ra
I
n
,
ij
a
is the inte
rference
conditi
on bet
wee
n
i
p
and
j
p
, wh
en
i
p
is
disa
ssembl
ed
along
+
Y
,
1
ij
a
if interference
with
j
p
occurs, othe
rwi
s
e
0
ij
a
,
I
ij
is the
relation
shi
p
o
f
sub
a
ssem
bl
y style betwe
en
j
p
and
i
p
, the
value of
I
ij
is
s
h
ow
n in
Ta
ble
1
,
n
ij
is
the relatio
n
sh
ip of com
pon
ent co
de b
e
twee
n
j
p
and
i
p
, if the com
pon
e
n
t cod
e
of
i
p
is smaller
than that of
j
p
,
n
ij
=-1, if bigge
r,
n
ij
=1, if the two co
de
s are equal,
n
ij
=0.
12
11
1
1
2
1
22
1
2
2
2
12
n
n
n
nn
n
n
n
PP
P
Pr
r
r
Pr
r
r
R
Pr
r
r
…
…
…
…
…
………
…
(1)
Every compo
nent factor of
ij
r
include
s se
veral value
s
. For the pu
rpo
s
e of red
u
cin
g
the
compl
e
x
d
egree
of
the se
quen
ce
pla
n
n
i
ng, assembl
y
prece
den
ce
relation
s of the pro
d
u
c
t are
introdu
ce
d int
o
the alg
o
rith
m. The a
s
se
mbly pre
c
e
d
e
n
ce
relatio
n
i
s
the relation
of all the pa
rts
according to
the assem
b
ly order, it i
s
the inte
rna
l
con
s
trai
nt relation du
rin
g
the asse
m
b
ly
pro
c
e
ss. T
h
e assem
b
ly work
can
n
o
t be comp
leted succe
s
sfully witho
u
t
the asse
mbly
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 640
3 –
6410
6406
pre
c
ed
en
ce relation
s. For example, the
radi
al suba
ssembly shoul
d be assem
b
led before the
axial su
ba
ssembly whi
c
h
has
assem
b
ly relation
with it. There are
differe
nt prio
rity leve
l
corre
s
p
ondin
g
to different values of
ij
r
.
Table 1. Valu
e of
I
ij
P
i
\
P
j
S
a
S
r
S
a
-2
-1
S
r
1 2
3.2. Feasible
Assembly
Direction
The a
s
sembl
y
directio
n of
S
a
is ±
Y
an
d
that of
S
r
is
a com
b
inatio
n of ±
Y
an
d
±
X
. The
feasibl
e
asse
mbly dire
ctio
n of each p
a
rt
is derived fro
m
assembly relation matrix
.
Let
E
be a p
a
rt to be assembled a
nd i
t
belong
s to
S
a
, let
S
c
be a temporary
assembly
comp
osed of
part
s
a
s
sem
b
led,
12
,
,
...
,
cm
Sp
pp
. In order to desc
ribe
the fea
s
ibl
e
asse
mbly
dire
ction, vari
able
{,
}
yy
Ua
a
wa
s pu
t forward, the two element
s rep
r
e
s
ent the assem
b
lin
g
ability in +
Y
dire
ction a
n
d
–
Y
dire
ction.
If the part can be a
s
sem
b
led with
out i
n
terferen
ce i
n
a
dire
ction, the
value of correspon
ding v
a
riabl
e is
0,
otherwise, the value is 1.
The cal
c
ul
ation
method of
y
a
and
y
a
is
s
h
ow
n
as
(
2
)
.
12
12
m
m
yP
E
P
E
P
E
yE
P
E
P
E
P
aa
a
a
aa
a
a
…
…
(2)
If
i
p
and
E
b
e
long
to the
sa
me
su
ba
ssembly,
11
0
PE
E
P
aa
, otherwi
se,
the
value
sho
u
ld be ext
r
acte
d from t
he assem
b
ly relation m
a
tri
x
.
The asse
mbl
y
direction of
the part to be as
sembl
ed
can b
e
cal
c
ul
ated by (2): the part
coul
d not be
assembl
ed if
0
y
a
and
0
y
a
, the se
quen
ce in
clu
d
ing the a
s
se
mbly operatio
n
afore me
ntio
ned is n
o
t fea
s
ible a
nd sho
u
ld be mo
dified; the asse
mbly dire
ctio
n is –
Y
if
0
y
a
;
the assembly
directio
n is +
Y
if
0
y
a
.
If the part belong
s to
S
r
, th
e assem
b
ly directio
n is rep
r
esented
by ±
YR
a
whi
c
h m
ean
s
a
combi
nation
of
±
Y
and
±
X
. The
asse
m
b
ly dire
ction
along
the
Y
a
x
is will
affect
the po
sition
a
n
d
postu
re of the
foundation p
a
rt and it can
be cal
c
ul
ated
by (2).
Let
E
b
e
a
p
a
rt to
be
assembled
an
d i
t
belon
gs to
S
r
, let
S
c
be
a temp
ora
r
y
assembly
comp
osed of
all the radial
sub
a
ssem
bli
e
s a
s
sembl
e
d. If
0
y
a
, the se
quen
ce i
n
cl
u
d
ing the
assembly op
eration afo
r
e
mentione
d is
not feasibl
e
a
nd sh
ould b
e
modified.
Let
S
c
be a
temporary a
s
sembly com
posed of all
the radi
al suba
ssemblie
s with a
smalle
r com
p
onent cod
e
th
an
E
. if
yy
aa
, the
assembly
direction i
s
a co
mbination
of
+
Y
an
d
±
X
and it is
repre
s
e
n
ted b
y
+
YR
a
; if
yy
aa
, the a
s
sembly
dire
ction i
s
a
combi
nation
of -
Y
and
±
X
an
d i
t
i
s
r
e
pr
es
en
te
d
b
y
-
YR
a
; if
yy
aa
, the p
a
rt can
be
a
ssembled
in
th
e two
dire
ction
s
ab
ove and the a
s
sembly direction is rep
r
e
s
ented by ±
YR
a
.
Duri
ng the
a
s
sembly
pro
c
e
ss, if the
assembly directi
on of the
part
is
chan
ged
b
e
twee
n
+
YR
a
or +
Y
a
nd
-
YR
a
or
-
Y
, the p
o
sitio
n
and
po
sture
of the fou
nda
tion pa
rt will
be
cha
nged
so
that the prod
uct ca
n be a
s
sembl
ed p
r
op
erly.
4. Assembly
Sequenc
e Planning Ba
se
d on ACA
The a
n
t
colo
ny algo
rithm
is a
ki
nd
of
simulate
d ev
olutiona
ry al
gorithm
prop
ose
d
by
Marco Dori
go
in 1991. Th
e
natural a
n
ts
are a
b
le to find the shorte
st path bet
we
en the hid
e
o
u
t
and th
e foo
d
s.
Whe
n
t
he a
n
t en
co
unters
a n
e
w
crossroad,
the n
e
xt p
a
th is sele
cted
stocha
stically
, mean
while,
pheromo
ne
related to
pat
h len
g
th i
s
se
crete
d
, the
shorte
r i
s
the
path
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Assem
b
l
y
Sequen
ce Plan
n
i
ng for Prod
u
c
ts with En
clo
s
ed Shell
(Ya
n
Song)
6407
the more i
s
the amou
nt of the pheromo
ne and the
p
a
th will be se
lected
with m
o
re po
ssibiliti
e
s.
The phe
rom
o
ne on all of the path
s
will volatile
grad
u
a
lly. The sho
r
test path will be found ba
sed
on the ph
ero
m
one. Th
e a
n
t colo
ny alg
o
rithm h
a
s a
d
vantage
s in
combi
nato
r
ial optimizatio
n
probl
em
s, an
d the algorith
m
has be
en a
pplied to rel
a
ted fields [17
-
19].
4.1. Assemb
l
y
Transition Probabilit
y
Asse
mbly tra
n
sition p
r
ob
a
b
ility
is
the sele
ction p
r
o
bability of the next part in an
assembly
se
q
uen
ce. To
an
t
k
, the
co
rre
spondi
ng p
a
rt
with big
g
e
r
p
r
obability is m
o
re li
kely to
b
e
sele
cted. Assumin
g
that the ant will not sele
ct
the part sel
e
ct
ed, tabu list is a set of p
a
rt
s
sele
cted by
ant
k
, expre
s
sed a
s
tabu
k
(
k
=1,2,…,
n
). At the moment
t
, the assembly tran
sition
prob
ability to
nod
e
j
from
nod
e
i
k
ij
Pt
i
s
s
h
ow
n as
(3)
wh
er
e
τ
ij
is
the con
c
e
n
tration of
pheromo
ne,
rc
ij
is the relati
on guid
a
n
c
e factor,
d
ij
is the assembly guidance factor.
0O
t
h
e
r
w
i
s
e
k
i
j
ij
ij
k
k
ij
i
j
ij
ij
ka
l
l
o
w
tr
c
t
d
t
j
all
o
w
Pt
tc
t
d
t
,
,
(3)
The valu
e of
rc
ij
i
s
sh
own
as
(4
). If all o
f
the re
sid
ual
part
s
can
be
assem
b
led,
d
ij
(t)
=
1,
otherwise,
d
ij
(t)
=
0.
α
,
β
an
d
μ
is respe
c
tively the wei
ght coefficie
n
t
of
τ
ij
,
c
ij
an
d
d
ij
.
allow
k
i
s
t
he
set of optiona
l parts in the
curre
n
t state.
1.0
,
2
,
0
2
,
1
0.8
,
1
,
0
1
,
1
2
,
1
0
.
6,
2,
0
0.4
,
2
,
1
1
,
1
0.
2
,
2
,
1
0,
1
,
0
1
1
1
,
1
ij
ij
ij
ij
ij
i
j
ij
ij
i
j
ij
i
j
ij
i
j
In
In
In
rc
t
In
In
In
、
、、
、
、
,
、
(4)
4.2. Upda
te
Rule of Pher
omone
The phe
rom
o
ne se
creted
by ants will influen
ce
the sele
ction be
h
a
vior of the followin
g
ants.
Du
ring
the p
r
o
c
e
ss of optimi
z
at
ion, the
phe
romo
ne
on t
he p
a
th
sho
u
ld b
e
u
pdat
ed
according
to
the local u
p
d
a
te rul
e
an
d t
he glo
bal u
p
date rule [15]
. Duri
ng the
update
proce
ss,
the evaluatio
n function o
f
the assem
b
ly seque
nce is an imp
o
rtant influe
nce fa
ctor. The
evaluation
fu
nction of
the assembly se
quen
ce
i
s
m
easure
d
by t
he a
s
sembly
redi
re
ction ti
me
s
and con
c
ent
ration of the seque
nce and
the evaluatio
n function i
s
sho
w
n a
s
(5) whe
r
e
D
i
s
t
he
times of a
s
sembly redi
re
ction,
G
is t
he times of
sep
a
ratio
n
of
a sub
a
sse
m
bly durin
g
the
a
s
s
e
mb
l
y
pr
oc
es
s
,
ω
1
,
ω
2
is re
spe
c
tively the weight coefficient of
D
and
G
.
12
+1
SD
G
(5)
5. Example Verification
A typical pro
duct
with en
close
d
shell a
s
sho
w
n in
F
i
gure
2 is taken a
s
an
exa
m
ple to
verify the algorithm in this
pape
r. The e
x
ploded vi
e
w
of the produ
ct is shown i
n
Figure 3, there
are 20 p
a
rt
s without con
s
i
derin
g the bol
ts and othe
r conne
ctors.
In ord
e
r to
verify the al
go
rithm, a Vi
su
al Basi
c
pro
g
r
am i
s
com
p
iled. The
ident
ification
result of sub
a
s
semblie
s is
as follo
ws: fo
undatio
n part
20, axial sub
a
ssembly
S
a
1
(1
,
3)
,
S
a
2
(2
,
4),
S
a
3
(16
,
18
),
S
a
4
(5
,,
6
13),
S
a
6
(17
)
,
S
a
7
(19),
S
a
8
(7), radial
suba
sse
m
bly
S
r
1
(8
,,
,
,
,
91
0
1
11
2
1
4
)
,
S
r
2
(15).
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 640
3 –
6410
6408
1-Upper end cover, 2-Bear
ing NJ2218E,3-O ring seal
175×3.55-1, 4-Gear shaft,5
- O ring seal 109×3.55,6-
Idler shaft, 7-Pressure plate, 8-B
ear
ing 22220CC/W33-1,9-Inner ring ri
b, 10-Idle gear, 11-Distance sleeve-
1, 12-Bear
in
g 222
20C
C/W
3
3
-
2,13- O ring s
eal 6
9
×
2
.65,
1
4
- Distanc
e sle
e
ve-2, 15-Ge
ar
, 16- O ring seal
175×
3.5
5
-2,1
7-
Beari
ng NJ2
2
1
5
E,18- Lo
w
e
r e
nd cover,1
9
- Di
stance sle
e
ve-
3
, 20-She
l
l
Figure 3. Partial Structure of Rocke
r
Arm
The assem
b
l
y
relation matrix sho
w
n in Figure 4 is obtained ba
se
d on the sub
a
ssembl
y
informatio
n a
nd the interfe
r
en
ce matrix.
Figure 4. Assembly Relatio
n
Matrix
Acco
rdi
ng to experie
nce, the numb
e
r of
ants s
hould
be the sa
me
to that of the
parts i
n
the assem
b
ly approximate
l
y, as
the su
bassem
b
ly in
formation
a
n
d
the asse
m
b
ly pre
c
ed
en
ce
relation
s a
r
e i
n
trodu
ce
d into the algorith
m
, the
numbe
r of ants can
be red
u
ced to
some extent.
The nu
mbe
r
of ants i
s
10
in this p
ape
r, other pa
ra
meters are shown in Fig
u
r
e 6, the
result of
10
0 iterations
is
sho
w
n
in
Figu
re
5,
durin
g the
it
erative p
r
o
c
edure, with
the
accumul
a
tion
of the exp
e
ri
ence, the
seq
uen
ce
wi
th th
e lo
west
co
m
posite
cost
was fo
und
by the
ant colo
ny.
The algo
rith
m is impleme
n
ted throu
gh
Visual Ba
sic
Programin
g. The be
st seq
uen
ce is
sho
w
n
in T
a
b
l
e 2. Th
e
re
su
lt inclu
d
e
s
the
assem
b
ly se
quen
ce
and
t
he a
s
sembly
dire
ction
s
of
all
the pa
rts.
Th
e pla
nnin
g
re
sult inte
rfa
c
e
is
sho
w
n
in
F
i
gure
6. The times of asse
mbly redirecti
o
n
is 1 and th
e
times of se
paratio
n of a
suba
ssem
bly is 0 durin
g
the assembl
y
process, the
comp
osite
co
st is 0.8. A serie
s
of un
wo
rka
b
le
seq
u
e
n
ce
s an
d seq
uen
ce
s with
high comp
osi
t
e
co
st a
r
e
aba
ndon
ed
by th
e alg
o
rithm.
The
pro
d
u
c
t
can
be
a
s
se
mbled
a
c
cording to
the
final
seq
uen
ce
with a low comp
osite cost an
d the effectivene
ss of the
algorith
m
is verified.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Assem
b
l
y
Sequen
ce Plan
n
i
ng for Prod
u
c
ts with En
clo
s
ed Shell
(Ya
n
Song)
6409
Figure 5. Con
v
ergen
ce
Cu
rve of Ant Colony Algorithm
Figure 6. Planning
Re
sult Interface
Table 2. Plan
ning Result
Orde
r
Code
Name
Direction
1 20
Shell
Basic
2 15
Gear
-
YR
a
3 10
Idle
gear
YR
a
4
9
Inner
ring rib
YR
a
5 8
Bearing
22220
C
C
/W33-1
YR
a
6 14
Distance
sleeve-2
YR
a
7 11
Distance
sleeve-1
YR
a
8 12
Bearing
22220
C
C
/W33-2
YR
a
9 6
Idler
shaft
-
Y
10
5
O ring seal 109×
3.55
-
Y
11
13
O ring seal 69×2.
65
-
Y
12 7
Pressure
plate
-
Y
13 4
Gear
shaf
t
-
Y
14 2
Bearing
NJ2218
E
-
Y
15
1
Upper en
d cover
-
Y
16
3
O ring seal 175×
3.55-1
-
Y
17 19
Distance
sleeve-3
+
Y
18 17
Bearing
NJ2215
E
+
Y
19
16
O ring seal 175×
3.55-2
+
Y
20
18
Lo
w
e
r en
d cover
+
Y
6. Conclusio
n
A new a
s
sem
b
ly sequ
en
ce
plannin
g
method suitable f
o
r produ
cts
with enclo
se
d shell i
s
prop
osed
ba
sed on
furth
e
r
study o
n
the
existing
m
e
th
ods and
the
a
s
sembly p
r
o
c
ess of p
r
o
d
u
c
ts
with e
n
cl
osed
sh
ell. Th
e ro
cker
arm of
shearer is take
n a
s
a
n
ex
a
m
ple to
prove
t
he p
r
a
c
tica
bility
of the algorith
m
. The following co
ncl
u
sio
n
s are drawn:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 640
3 –
6410
6410
(1) Be
cau
s
e
of the speci
a
l
structu
r
e of prod
uct
s
with
enclo
sed
sh
ell, the axial
sub
a
ssem
bly and
radial
suba
ssembly a
r
e id
entified
sepa
rately, and th
e axial
sub
a
ssembly i
s
i
n
prefe
r
en
ce
of
radial
sub
a
ssembly duri
ng
the identificati
on pro
c
e
s
s.
(2) T
he a
s
sembly seq
u
e
n
ce pl
annin
g
is rega
rd
ed
as an op
eration and
ca
lculatio
n of the
assembly rel
a
tionship
s
.
T
he compl
e
x degree of
th
e
sequ
en
ce planni
ng
fo
r prod
uct
s
with
encl
o
sed
she
ll can
be
red
u
ce
d with th
e
assem
b
ly rel
a
tion matrix i
n
clu
d
ing th
e
sub
a
ssem
bly
informatio
n.
(3) Th
e asse
mbly transitio
n prob
ability in ant
colon
y
algorithm wa
s modified
base
d
on th
e
assembly
rel
a
tion m
a
trix a
nd the
a
s
sem
b
ly prece
den
ce
rel
a
tion, th
e alg
o
rithm
is suita
b
le f
o
r
prod
uct
s
with
enclo
se
d sh
ell.
Ackn
o
w
l
e
dg
ements
This work i
s
su
ppo
rted
b
y
Nation
al
High-te
ch
Research
an
d
Developme
n
t
Proje
c
ts
(863
)
und
er
Grant
No.
2
0
12AA062
104;
Natio
nal
Na
tural S
c
ien
c
e
Foun
dation
of Chi
na
und
er
Grant
No.510
0523
2; the
in
dustri
a
lization
of resea
r
ch result
s p
r
o
g
ra
m of
Jian
gsu
provin
ce
und
e
r
Gran
d No.
J
HB2011
-31.
Referen
ces
[1] Borujault
A,
La
mb
en
t JL
.
De
sign
of
an
aut
omate
har
d d
i
sk un
it ass
e
mbly
. Proc
ee
din
g
s of t
he
18th
Internatio
na
l Symp
osi
u
m on Industri
a
l Ro
bot
s. Lau San
e
, Sw
itz
e
rla
nd. 19
8
8
: 19-28.
[2]
De F
a
zi
o, T
L
W
h
itne
y
.
Sim
p
l
i
fied
Gener
atio
n of A
ll M
e
cha
n
ical
Assem
b
l
y
Seq
uenc
e
. IE
EE Jour
nal
of
Robotics and Automation
. 198
7; 3 : 640-65
8,
[3]
Hua
ng YF
, Lee
CSG. Precede
nce Kn
o
w
l
e
d
g
e
in F
eat
ure M
a
ting Op
eratio
n Assemb
l
y
P
l
ann
ing.
IEEE
Internatio
na
l C
onfere
n
ce o
n
Rob
o
tic an
d Automatio
n
. 198
9; 5: 216-2
21.
[4]
Homem
de
M
e
llo,
LS S
a
n
d
e
rson
AC. A
correct
a
nd c
o
mpl
e
te a
l
g
o
ri
thm for the
g
ener
ation
of
me
ch
an
i
c
al
a
s
se
mb
ly
seq
u
ence
s
.
IEEE Transactions on Ro
botic and Autom
a
tion
. 19
91;
7: 228-2
40.
[5]
Sukha
n
Le
e. Subass
e
mbl
y
Id
entificati
on a
n
d
Evaluati
on for
Assembl
y
Pl
an
nin
g
.
IEEE Transactions on
System Ma
n a
nd Cyb
e
rnetics
. 1994; 24: 49
3
-
502.
[6]
YANG Pei-l
i
n,
Z
HU Jun,
C
H
EN
Xi
ao-n
a
n
,
Identif
icati
o
n
of Sub
a
ssem
b
lies
in
Seq
u
e
n
ce Pl
an
nin
g
.
Journ
a
l of Xi
’
a
n Jiaoto
ng U
n
i
v
ersity
. 1999; 3
3
: 40-44.
[7]
YANG Pei-l
i
n,
CHEN
Xia
o
-n
an, PANG
Xu
an-min
g
, Stud
y
on
Con
necti
ons a
nd
Sub
a
ssembli
es i
n
Assembly
.
Jou
r
nal of Xi
’
a
n Ji
aoton
g Un
ivers
i
ty.
2004; 38: 1
136-
113
9.
[8]
Bonn
evil
le F, Perrard C, He
nrio
ud JM.
A Genetic Alg
o
rit
h
m to Gen
e
ra
te and Eva
l
ua
te Assembly
Plans
. Pr
ocee
d
i
ngs
of IEEE S
y
mp
osi
u
m o
n
Engi
neer
in
g
T
e
chno
log
i
es
an
d
Factor
y
Autom
a
tion, P
a
ris.
199
5: 231-
239.
[9]
Failli F, Dini G.
Ant Colony S
ystems in Ass
e
mbly Pla
n
n
i
n
g
, A New
Approach to Seq
u
e
n
ce Detecti
on
and Opti
mi
z
a
ti
on, Ca
pri.
Proc
eed
ing
of 2n
d
CIPP Internati
ona
l
Semi
nar
on Intel
lig
ent C
o
mputati
on i
n
Manufactur
i
ng
Engi
neer
in
g. 2000: 22
7-2
32.
[10]
HONG DS, C
H
O SA. Neur
al N
e
t
w
ork B
a
sed
Comp
uta
t
iona
l Sch
e
me
for Gener
atin
g Optimize
d
Robotic Assem
b
ly
Se
qu
en
ce
.
Engi
neer
in
g Artificial Intel
lig
en
ce
. 1995; 8:1
2
9
-14
5
.
[11]
ZHANG Dan,
ZUO DUN-
w
e
n
,
JI
AO Guang-
ming,
XUE
Sh
an-li
an
g, LI
Ji
a
n
-pi
ng. Assem
b
l
y
Se
qu
ence
Plan
nin
g
for A
e
rosp
ace Pr
od
ucts Base
d on
Prarticle S
w
a
r
m Optimizatio
n
and G
enetic
A
l
gorit
hm.
Acta
Arma
mentar
ii
. 201
0; 31:12
28-
123
4.
[12] NING LI-hua,
GU
T
i
an-long,
Immune Al
gorit
hm for Assem
b
l
y
Seq
u
e
n
ce P
l
ann
ing
Prob
le
m.
Computer
Integrated M
a
n
u
facturin
g Systems
. 2
008; 1
3
: 81-87.
[13]
Z
H
OU Kai-ju
n, LI Don
g
-bo,
P
A
N Yan
g
-
y
u. C
o
mpl
e
x Prod
uc
t Assembl
y
Se
que
nce Pl
an
ni
ng Bas
ed o
n
GSAA.
Mechanical Sc
ienc
e a
nd T
e
chn
o
l
ogy
.
2006; 25: 27
7
-
280.
[14]
SHI Shi-c
a
i, LI
Ro
ng, F
U
Y
i
-
li, MA Yu-
lin.
Assembl
y
Seq
uenc
e Pl
an
nin
g
Bas
ed
on
Improve
d
Ant
Colo
n
y
Alg
o
rith
m, Computer Integrate
d
Man
u
facturin
g S
y
st
ems. 2010; 1
6
: 1189-
11
94.
[15]
PENG T
ao, LI Shi-
qi, W
A
N
G
Jun-fen
g
, F
A
NG Ji
a
n
-
x
in.
Integrate
d
Int
e
rferenc
e Matr
ix Bas
ed A
n
t
Colo
n
y
Alg
o
rith
m for Assembly Se
que
nce Pl
ann
i
ng. C
o
mpu
t
er Science. 2
0
10; 37: 17
9-18
3.
[16]
LIU W
e
i-lai, G
A
N F
ang-j
i
an,
Z
H
ANG Ping, LIU Yong-B
i
n
,
KONG
F
an-rang. Res
earc
h
on Pla
n
of
Rob
o
tic Asse
mbl
y
Se
que
nc
e Base
d o
n
Genetic A
l
g
o
rith
m.
Journa
l of
System S
i
mul
a
tion
. 20
05; 1
7
:
219
9-22
02.
[17]
DUAN Ha
i-bi
n.
Ant Colon
y
Al
gorithms, T
heor
y
an
d App
licat
ions, Bei
jin
g, Scienc
e Press. 200
5.
[18]
Hua
ngl
in Z
e
ng
, Yong S
un,
Xi
aoh
ui Z
e
ng. A
Ne
w
A
ppro
a
ch
of Error Com
p
ensati
on
on N
C
Machi
n
i
n
g
Based
on M
e
metic Com
put
ation.
T
E
LKO
M
NIKA Indon
e
s
ia Jo
urna
l of
Electrical
Eng
i
neer
ing.
201
3;
11(4): 21
48-
21
56.
[19]
Z
heng Gu
oq
ia
ng, Li
ang
Ha
o, Li Jis
hun.
Optimiza
tio
n
of an Intel
l
i
gent C
ontrol
l
e
r
for Parall
el
Autonom
ous P
a
rkin
g.
T
E
LKOMNIKA Indone
sia Journ
a
l of
Electrical En
gi
neer
ing.
20
13;
11(2):10
69-
107
5.
Evaluation Warning : The document was created with Spire.PDF for Python.