TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 3, March 2
015,
pp. 574 ~ 58
3
DOI: 10.115
9
1
/telkomni
ka.
v
13i3.722
4
574
Re
cei
v
ed O
c
t
ober 1
5
2, 20
14; Re
vised
De
cem
ber 2
3
,
2014; Accep
t
ed Jan
uary 1
5
, 2015
Development of Fertilizer Selection using Knowledge
Management System
Yess
y
Yanit
asari
*1
, Irman Hermadi
2
, Wisnu Anan
ta Kusuma
3
Dep
a
rtment of Comp
uter Scie
nce, Bogor A
g
r
i
cultur
al Un
iver
sit
y
, Kamp
us IPB Darmag
a
,
Jl. Meranti, W
i
ng 20 L
e
ve
l 5-
6, Bogor 1
668
0,
T
e
lp./F
ax.: +
62-2
51-8
6
2
5
5
8
4
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
y
e
ss
y.
ya
nitas
a
ri@gm
a
il.com
1
, irman.herma
di@gm
a
il.c
o
m
2
,
w
.
an
an
ta
.ku
s
uma
@
g
m
ai
l
.
com
3
A
b
st
r
a
ct
F
e
rtili
z
e
r is a
che
m
ical
su
b
s
tance or org
anis
m
that
ha
s the r
o
le
i
n
supp
lyin
g th
e
nutri
ent
substanc
e to the pl
ants d
i
rec
t
ly or in
d
i
rectly
add
ed to the s
o
il i
n
ord
e
r for the pl
ant to or
di
nary grow
. Mu
ch
infor
m
ati
on
on
fertili
z
e
r
is av
ai
labl
e o
n
th
e int
e
rnet, h
o
w
e
ver
the ex
istenc
e i
s
still
w
i
de
ly sp
read. Th
erefor
e,
a forum
to
es
pecially
accomm
odate f
e
rtili
z
e
r select
ion us
ing k
nowle
dge management
system
(KMS)
is
needed. In this
research
on fertili
z
e
r
selection
us
ing k
nowledge
m
a
na
gem
e
nt system
is dev
eloped
using
the KMS Life
Cycle (KMSL
C
) meth
od, a
nd
imple
m
ente
d
u
s
ing W
e
b bas
e
d
ap
plic
atio
n. T
he know
le
dg
e
i
n
this system
is
obtained from
expert
explicit data entry
and
uploaded file
from
the
users
that has to
be
valid
ated
by a
n
exp
e
rt. The expert val
i
d
a
tio
n
proce
ss
is carried
out w
i
th appr
oval syste
m
, co
mmu
n
ica
t
i
o
n
throug
h messa
ges an
d
co
nve
r
sation.
T
h
e o
u
tcome of
the
researc
h
is
a
w
eb bas
ed
a
p
p
licati
o
n
that
w
a
s
tried out by the
users w
i
th goo
d avera
ge test
ed val
ue.
Ke
y
w
ords
:
fertili
z
e
r, fertili
z
e
r
selectio
n kno
w
ledge
ma
na
g
e
ment syste
m
(KMS), know
ledge
ma
na
ge
men
t
system
life cycle (KMSLC).
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Indone
sia
is
rich
of
wildlif
e a
s
well a
s
cult
ured
biodi
versity that i
s
stro
ngly affe
cted
by
the relatively high soil fertility level spread all over
the country. However, the soil
fertility level
will
eventually de
cre
a
se by th
e time the ve
getation
g
r
o
w
and m
u
ltiply, in this
re
gard an
addition
al
nutrient sub
s
tance is ne
ed
ed to improve
the soil fe
rtility by adding fertilize
r
e
s
pe
cially to cultured
plants.
Fertilizer i
s
a
che
m
ical su
bstan
c
e
or
o
r
gani
sm th
at function
ed a
s
nut
rient
su
bstan
c
e
supplement for plant di
rectly or
directly [11]. According to [4] fe
rtilizer is an orga
nic or inorganic,
natural
o
r
p
r
o
c
e
s
sed th
at i
s
a
dde
d to
th
e soil to
provide ce
rtain ne
ce
ssity
to
the
ordina
ry g
r
o
w
th
of plant. Ferti
lizer
add
ed a
s
soil nutri
ent
coul
d be p
r
o
v
ided thro
ugh
roots
as
well
as le
aves
wi
th
pre
c
ise
crite
r
i
a
an
d
sele
cti
on. A p
r
e
c
ise
fertilize
r
sel
e
ction strongly
affect
ed
the
yield of
ce
rtain
agri
c
ultu
re commodity; therefo
r
e the
kno
w
le
dge
o
n
fertilize
r
selectio
n nee
d to be further
sea
r
ched i
n
to and
sh
oul
d co
me fro
m
a relia
ble e
x
pert. Variou
s cond
ucte
d
re
sea
r
che
s
on
fertilize
r
sel
e
ction resultin
g in much n
e
w kno
w
led
g
e
. Referen
c
e
[12] stated that 300 kg/h
a o
f
urea
given to
low
N n
u
trie
nt statu
s
soil, distin
ctly affected th
e in
crea
se
gro
w
th
com
pon
ent
of
ginge
r pla
n
t (temula
w
a
k
), bioma
s
s,
fresh
tube
r
and d
r
y me
dicin
a
l pla
n
ts. Varie
d
NPK
combi
nation
also di
stinctly
affected the weig
ht
of husk co
b, husk less cob p
e
r
plant and hu
sk
less pe
r he
ctare [6]. Besides i
norgani
c fertili
zer, o
r
gani
c fe
rtilizer if u
s
e
with an a
c
curate
measurement
co
uld
affect t
he in
crea
se
o
f
comm
odi
ty
yield, e.g. ma
nure
fertili
zer obtain
ed fro
m
chi
c
ken
coo
p
with different
dosage
di
sti
n
ctly affected
the growth
a
nd yield of g
r
een o
n
ion [8].
A
good
fertilizi
ng te
chni
que
usi
ng
ce
rtai
n nut
rient m
easure
m
ent
and m
e
thod
is
a valu
a
b
le
kno
w
le
dge
re
sou
r
ce to be
pursue
d
an
d studie
d
by
the com
m
unity and not o
n
ly by farmers. T
h
e
kno
w
le
dge source could
be in the form of data th
at consi
s
ts of
facts, obse
r
vation, perce
ption
and info
rmati
on that i
s
pa
rt of data com
p
ilati
on in
clu
d
i
ng data th
at
have context, releva
ncy a
n
d
objec
tive [5].
Much i
n
form
ation on fertili
zer and fertilizi
ng is
avail
abl
e offline as
well as online,
but its
existen
c
e is
still widely sprea
d
, theref
ore a me
dia
to acco
mm
odate the Fe
rtilize
r
Select
ion
Knowle
dge M
anag
ement S
y
stem is nee
ded. This
re
sear
ch is tryin
g
to develop fertilize
r
select
ion
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
velo
pm
ent of Fertilize
r
Selection u
s
i
ng K
nowl
edg
e Manag
em
ent System
(Yessy Yanita
sari)
575
kno
w
le
dge m
anag
ement u
s
ing Kno
w
le
d
ge Mana
gem
ent
System Life Cycle (KM
S
LC) p
r
e
s
ent
ed
by Awad a
n
d
Gha
z
in
(201
0), the KMSL
C metho
d
co
uld bri
ng in
knowl
edge
de
velopment a
n
d
repo
sito
ry manag
eme
n
t, kno
w
ledg
e
access in
cre
a
si
ng, kn
owle
dge scope enh
an
cing,
kno
w
le
dge a
pprai
sin
g
[1] and kno
w
le
dge sha
r
ing.
The KMS appli
c
ation h
a
s al
rea
d
y KMS
stand
ard
cla
ssifi
cation fe
ature i.e. kn
owle
dge cap
t
ure and
kn
owle
dge sha
r
ing exce
pt for
kno
w
le
dge a
pplication sy
stem and
kno
w
led
ge di
sco
v
ery that have not bee
n in
clud
ed be
ca
u
s
e
of the explici
t
data needed is
still limited and difficult to obtain.
The develop KMS will have
notification fe
ature to all
m
e
mbe
r
s
sh
oul
d there
be a
n
y
new
kno
w
le
dge a
nd it wil
l
remin
d
u
s
o
n
somethi
ng th
at should b
e
carrie
d out in the coming
perio
d acco
rding to the sche
dule [2]. The
obje
c
tive of this re
se
arch i
s
to develop
a sy
stem b
a
sed on Fe
rtilizer selectio
n knowl
edge
whi
c
h
is
KMS.
2. Rese
arch
Metho
d
2.1. KMSLC
T
h
e
r
e
s
e
arc
h
is us
in
g Aw
ad
a
n
d
G
h
az
ir
i (
2
0
1
0
) KMS
L
C
method that c
o
ns
is
ts
s
y
s
t
em, of
Evaluate Existing Infrastructure, form
the KM
team
, kno
w
led
ge
captu
r
e, de
si
gn KM blu
e
p
r
int,
verify and val
i
date the KM
system, impl
ement
the K
M
system. K
M
SLC fro
m
Awad
and G
h
a
z
iri
(201
0), is
sho
w
n in Figu
re
1.
2.2. Ev
aluate Existing Infr
astru
ctu
r
e
This i
s
a p
r
oce
s
s to ev
aluate the
e
x
isting an
d
need
ed inf
r
a
s
tru
c
ture for system
developm
ent; this
covers f
i
nan
cial, hum
an resource,
ope
rational
stand
ard
[3] and the
u
s
e
of
techn
o
logy [7
]. In gene
ral
the infra
s
tructure ev
al
uati
on
covers
ha
rdware, software, n
e
t ware,
brain
wa
re, d
a
ta ware, and
process.
The existing i
n
frast
r
u
c
ture i
s
clo
s
ely relat
ed to the use
of technolog
y of to
be develope
d
KM, therefore diagno
se
on the use
of technolo
g
y for knowl
edge sea
r
ch, new kn
owl
e
dge
formation,
kn
owle
dge
com
p
ilation an
d a
s
semblin
g, knowl
edge
ren
e
w o
r
revali
d
a
tion sh
ould
be
carrie
d out [17].
Figure 1. KMSLC
2.3. Form the KM Team
Resources identification on KMS fertilizer
se
l
e
ction development i
s
carried out
through
stakehol
ders identifying whe
r
e t
hey are furth
e
r i
n
volved in
the pre
paration of kno
w
l
edge
manag
eme
n
t system.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 574 – 5
8
3
576
2.4. Kno
w
l
e
d
g
e Cap
t
ur
e
The kno
w
led
ge capture i
s
carried o
u
t thr
oug
h inte
rviewin
g
an
d
on-site ob
servation
identificatio
n and ap
pre
h
e
nded of tacit
as well as
ex
plicit kn
owl
e
d
ge re
sou
r
ce
posse
ssed b
y
a
fertilize
r
exp
e
r
t. The
tacit
knowl
edge
i
s
obtaine
d
fro
m
the
expert
idea
and
exp
e
rien
ce
which is
later do
cum
e
nted whil
e e
x
plicit kno
w
l
edge i
s
obta
i
ned from b
ooks, proce
e
d
ing
s
, resea
r
ch
results an
d jo
urnal
s.
2.5 Design
KM Blue Print
2.5.1. Kno
w
l
e
dge Codific
a
tion Design
In this re
se
arch Kno
w
le
dg
e Map a
nd P
r
odu
ction
Rul
e
s i
s
u
s
e to set up the Kn
owle
dge
c
odific
a
tion [3].
1.
Knowle
dge
map is a visual re
pre
s
e
n
tation of relat
ed kn
owl
edg
e in a se
rie
s
of
kno
w
le
dge re
pre
s
entatio
ns and not kn
o
w
led
ge re
po
sitory.
2.
Produ
ction
Rules is a
re
p
r
esentation
o
f
a ta
cit an
d
pop
ula
r
kno
w
led
ge. T
he
rule
being im
plem
ented i
s
a
statement that
defined
an
action th
at will be carried
out in a
ce
rtain
ca
se.
The
sy
nt
ax
is:
I
F
(pr
e
mise
) THE
N
(act
ion
)
.
2.5.2. Kno
w
l
e
dge Man
a
g
e
ment Sy
stem Archite
c
tu
ral Design
The de
sig
n
e
d
archite
c
tural mana
gem
ent sy
stem
knowl
edge
ref
e
rred to a
r
chitectural
manag
eme
n
t system
kno
w
led
ge Awad
and G
h
a
z
in
(
201
0) th
at consi
s
ted
of seven layers i
.
e.
User Inte
rface Layer, Aut
hori
z
ed A
c
cess Co
ntro
l,
Collab
o
rative Intelligen
ce and Filte
r
i
ng,
Knowle
dge E
nablin
g Appli
c
ation
s
, Tra
n
s
po
rt Layer,
Middle
w
a
r
e, and the Physi
c
al Laye
r
.
2.5.3. Model Sy
stem Desi
gn
The re
pre
s
e
n
t
ed desi
gn was a
s
followe
d [13] :
1.
Use Ca
se
Diagra
m
is a
model to d
e
sc
rib
e
the
system b
eha
vior that will be
prep
ared. T
h
e u
s
e
ca
se
di
agra
m
d
e
scribed th
e inte
raction
bet
we
en o
ne
or mo
re
acto
r
with
the
plann
ed sy
stem.
2.
Domai
n
Mod
e
l Class Di
ag
ram is an int
e
r-relate
d bet
wee
n
the Cla
ss dat
a has an
attribute as
substitute of e
n
tity conne
ction like ERD i
n
the tradition
al approa
ch.
3.
Cla
ss
Dia
g
ra
m de
sc
ribe t
he sy
st
em
st
ruct
u
r
e
of th
e cla
s
se
s def
inition that wi
ll be
desi
gne
d to create the
syst
em.
4.
Sequen
ce
Di
agra
m
is u
s
e
d
to describ
e
the events seque
nce and
the time of inter
obje
c
t messa
ge.
5.
User Inte
rface De
sig
n
is t
he interfa
c
e
d
e
sig
n
of an
a
pplication
system that co
n
nect
the use
r
with
the system.
2.6. Verif
y
and
v
a
lidate the KM Sy
stem
The ve
rificati
on a
n
d
valid
ation
wa
s
ca
rried
out th
ro
u
gh
kno
w
le
dg
e testin
g. Th
ere
were
two types of Knowle
dge te
sting i.e. logical
testing an
d
user a
c
cepta
n
ce te
sting [3
].
Logi
cal te
stin
g covers KM
S pro
g
ra
m
syntaxes te
stin
g an
d ta
cit a
nd expli
c
it kn
owle
dge
codifi
cation a
nalysi
s
. The appli
c
ation te
st wa
s ca
rri
e
d
out by doin
g
logical appl
ication attrib
u
t
e
verific
a
tion.
User a
c
cepta
n
ce te
sting i
s
the KMS applicati
on test by the way of black b
o
x that is
carrie
d out b
y
the admin,
KMS develop
er, fertilizer e
x
pert, and u
s
ers. Bla
c
k bo
x testing is
u
s
ed
to test
spe
c
ia
l functio
n
s of
the de
sig
ned
softwa
r
e. T
h
e
test te
chni
qu
e carried
out
based
only o
n
the output d
a
t
a or the i
npu
t conditio
n
of
the existi
ng f
unctio
n
re
ga
rdless of the
p
r
ocess to
obt
ain
the output.
2.6. Implement the
KM Sy
stem
The devel
op
ed KMS is a
web ba
se
d
comp
uter
a
p
p
licatio
n with
client-se
r
ver system.
This ap
plication wa
s de
sig
n
to enable v
a
riou
s u
s
e
r
s
with acce
ss in line with ea
ch group.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
velo
pm
ent of Fertilize
r
Selection u
s
i
ng K
nowl
edg
e Manag
em
ent System
(Yessy Yanita
sari)
577
3. Results a
nd Analy
s
is
3.1. Ev
aluate Existing Infr
astru
ctu
r
e
Clarify the e
x
isting infra
s
tructu
re eval
uat
ion p
r
o
c
e
ss a
nd the
system d
e
ve
lopment
requi
rem
ent.
The foll
owin
g
is th
e
output
of the
infra
s
t
r
uctu
re
evalu
a
tion at PT
P
upu
k Kuja
ng
as
the resea
r
ch site for the KMS developm
ent referen
c
e
(Table 1
)
.
Table 1. Infra
s
tru
c
ture existence Evaluat
ion Re
sult
No
Infrastr
u
ct
ure
Infrastr
u
ct
ure e
x
istenc
e E
v
alu
a
tion
Resul
t
1
Hard
w
a
re
Computer
s
y
ste
m
complemente
d
b
y
sufficient input and o
u
tput
wares and
chemical
fertilizer laborato
r
y
.
2
Software
The computers are installed w
i
th l
egal operational sy
stem and some used Open Source
application such
as Web Server A
pache, PHP and
M
y
Sql to perf
o
rm
the Fertilizer KM
S.of
3
Net
w
are
Comprise of int
r
a
net net
w
o
rk
w
i
th
RG-
45 cable co
mmunication and
w
i
reless access point.
While the internet capacity
is exce
eding 100Mbps.
4
Brain
w
are
Having compute
r
e
x
perts
who
comprehen
d the
computer n
e
t
w
or
k and data
base
e, and
ex
pe
rt
w
ho u
nde
rstand about fe
rti
lizer and fertilizin
g.
5
Data
w
a
r
e
Data originall
y
o
b
tained from e
x
p
e
rts and scientific literature (book
s)
6
Process
Database documentation on fertili
zer and fert
ilizing
of the ex
perts and researchers carried
out b
y
th
e compu
t
er experts.
The presen
ce
of the infrast
r
ucture is
clo
s
ely
related to
the use
of technolo
g
y available in
KM that is to
be d
e
velope
d, therefo
r
e t
e
ch
nolo
g
y usage di
agn
osi
s
ne
ed to
be
carrie
d out. T
h
e
Tech
nolo
g
y Usage di
agn
osi
s
outcome
is as the follo
wing (Tabl
e 2
)
.
Table 2. Te
ch
nology Usa
g
e
diagno
si
s ou
tcome
No
Kno
w
ledge Obj
ect
Tech
nol
og
y
U
s
age
In S
y
ste
m
Exis
t
e
nce
1
Kno
w
ledge searc
h
Search tools and
Retrieval tools
Using Structure
d
Que
r
y
L
angu
age
(SQL
) and Asycronous Javascript
and XML (AJAX)
2
Ne
w
Kno
w
ledg
e
forming
Decision taking t
e
chnique and
Database rep
o
sitories
Expert S
y
stem,
Kno
w
ledge
map
Implementation
and Relational
DBMS
3
Kno
w
ledge collection and
assembling
Discussion group
coordination
and
information updating
Chatting bet
wee
n
users,
Message
sending and know
ledg
e validation b
y
an expe
rt
4 Kno
w
ledge
ref
o
r
m
ation
Database consultation and
related resea
r
ch notation
Data chatting recor
d
ing, fer
t
ilizing
and fertilizer journal data.
3.2.
Form the KM Team
Re
sou
r
ces id
entification result for KM
S fe
rtilizer
selectio
n is carri
ed out through KM
team formati
on con
s
i
s
ting
of Fertilizer exper
t, KMS Develope
r, Administrati
on, Membe
r
and
Vis
i
tor.
Table 3. Re
source Identifi
c
ation
Re
sult
No
KM
T
e
a
m
Resour
ce
Notes
1
Fertilizer Ex
pert
PT Pupuk Kujan
g
Fertilizer
Ex
pe
rt
O
ne
who has kn
ow
led
ge on fe
rtilizer
2
KMS Developer
Anal
y
s
t and Prog
rammer
O
ne
w
h
o develo
ped KMS Fertilizer Selection
3
Administration
IT
Staff/IT
Pe
rso
nnel
O
ne
w
h
o has full access to the KMS Fertilizer
Selection sy
stem
.
4
Member
F
a
r
m
er
, F
e
r
t
ilizer
Distr
i
butor
, F
e
rtilizer
Agenc
y
.
etc
One
w
ho seeks and shar
es various
know
ledge
on fertilizer registered as member.
5
G
uests
F
a
r
m
er
, F
e
r
t
ilizer
Distr
i
butor
, F
e
rtilizer
Agenc
y
etc.
One
w
ho seeks and shar
es various
know
ledge
on fe
rtilizer but not registered as
member.
3.3.
Kno
w
l
e
d
g
e Cap
t
ur
e
The re
sult Identification o
n
resou
r
ce from boo
ks, scientific wo
rk,
tacit as well
as explicit
fertilize
r
expe
rt [10] was o
b
t
ained thro
ug
h interview a
nd on-site ob
servatio
n.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 574 – 5
8
3
578
Table 4. KMS Fertilize
r
Sel
e
ction Kno
w
l
edge T
r
an
sfo
r
mation
Re
su
lt
T
o
From
Result
T
acit
Explicit
T
acit
1.
Carr
y out discussion and interview
w
i
th
fer
t
ilizer
ex
per
t
2.
Have a presentat
ion and discussio
n
w
i
th
fer
t
ilizer
ex
per
t
3.
Carr
y out kno
w
le
dge data ent
r
y
a
nd ne
w
document upload
ing
1.
Print the docume
n
t
2.
Kno
w
ledge data
stored in Fert
ilizer KMS
database using DBMS M
Y
S
Q
L
Explicit
1.
Document Check
i
ng b
y
the e
x
pe
rt
2.
The r
e
sult discussion is stored in repositor
y
or message histor
y
an
d chatting
3.
Ne
w
kno
w
ledge
discovered in the field is
stored in databas
e.
1.
Paper document
become digital document.
2.
Report o
r
digital data into pape
r
3.4.
Design
KM Blue Pri
n
t
3.4.1. Kno
w
l
e
dge Codific
a
tion Design
The
re
sult o
f
kno
w
le
dge
co
dificatio
n
de
sign
ed i
n
this
re
se
arch i
s
obtain
ed u
s
in
g
Knowle
dge M
ap and Produ
ction Rule
s [3].
1.
The kno
w
led
ge map visu
al rep
r
e
s
enta
t
ion is ba
se
d on kno
w
le
dge ma
pping
in
fertilizer
classification, fertili
zer compound, fert
ilizer name, plant
s
species,
fertili
zer dosage, and
appli
c
ation ti
me. [18] Fe
rtilizer
data t
hat wa
s
obt
ained ta
citly
and expli
c
itly from b
o
o
k
and
fertilize
r
expe
rt from Kuja
n
g
and fe
rtilizer bo
ok
and
fertilizing. Sut
edjo (201
0),
Lingg
a, (20
1
1
),
Setyaningru
m
and Sapa
ri
nto (201
1). Suwa
rto and O
c
ta
vianty (20
12) is p
r
e
s
e
n
ted in Figu
re 2
.
2.
Knowle
dge P
r
odu
ction
Rul
e
s re
prese
n
tation
is a po
pular fo
rm of tacit knowl
e
dge.
The rul
e
bei
ng used is a statement that will dec
i
d
e an action taken for
a certain case. The
s
y
ntax is
: IF (premis
e
), THEN (a
ction) i
s
presented in
Table 5.
3.4.2. Kno
w
l
e
dge Man
a
g
e
ment Sy
stem Archite
c
tu
ral Design
The
re
sult o
n
Kno
w
led
g
e
Mana
geme
n
t
System Architectural
De
sign i
s
pre
s
e
n
ted in
seven
layers de
sign
ed i
n
the d
e
velo
pment
of fertilizer sel
e
cti
on
kno
w
le
dg
e ma
nage
m
ent
system. Kno
w
led
ge man
ageme
n
t system architecture refe
rs t
o
Knowle
dg
e Manag
em
ent
System Archi
t
ectural
De
si
gn Awa
d
and
Ghazi
r
i (201
0) that co
nsi
s
ts of se
ven
layers i.e. User
Interface L
a
yer, Autho
r
i
z
e
d
Acce
ss
Co
ntrol,
Collab
o
r
ative Intellig
ence a
nd
Filtering,
Kno
w
le
dge
Enabling Ap
plicatio
ns, Transport Lay
er, Middle
w
a
r
e, The Phy
s
ical Layer i
s
presented
in
Figure 3.
Figure 2. Knowledge Map
Fe
rtilizer Selection Result
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
velo
pm
ent of Fertilize
r
Selection u
s
i
ng K
nowl
edg
e Manag
em
ent System
(Yessy Yanita
sari)
579
Table 5. Production Fertilizer
Selection Rule Result
No
Premise IF
A
c
t
i
o
n
T
H
EN
A
ttrib
ute
Objec
t
V
a
lue
A
ttrib
ute
Objec
t
V
a
lue
1 Classification
Chemical
Inor
ganic
Name
Plant
Name of plant
T
y
pe
Compound
Single
Measurement
Dosage
Dosage
quantit
y
Name
F
e
r
t
ilizer
Name of fer
t
ilizer
Level
Age
Application time
2 Classification
Chemical
Inor
ganic
Name
Plant
Name of plant
T
y
pe
Compound
Composite
Measurement
Dosage
Dosage
quantit
y
Name
F
e
r
t
ilizer
Name of fer
t
ilizer
Level
Age
Application time
3
Classification
Chemical
organic
Name
Plant
Name of plant
T
y
pe
Compound
organic
Measurement
Dosage
Dosage
quantit
y
Name
F
e
r
t
ilizer
Name of fer
t
ilizer
Level
Age
Application time
Figure 3. Knowled
ge Man
a
gement Syst
e
m
A
r
chit
e
c
t
u
r
a
l De
sign
Re
sult
3.4.3. Modeling Sy
stem Design
The re
pre
s
e
n
t
ed desi
gn re
sult:
1. Usecase
Dia
g
ram
Con
s
i
s
ts of o
ne or mo
re a
c
tor an
d uses ca
se i.e. four actors and ni
ne use ca
se
and ha
s
use
ca
se inte
ractio
n i.e extend an
d incl
u
de is present
ed in Figu
re 4
.
Figure 4. Use
Case Fertili
zer Sele
ction
A
n
ggot
a
C
a
r
i
_
D
at
a
_
P
e
n
g
e
t
ah
u
a
n
Re
g
i
st
r
a
si
U
n
g
g
ah
_
P
e
n
g
e
t
a
h
u
an
P
e
r
b
ah
ar
u
i
_
P
en
g
e
t
a
h
u
an
Va
l
i
da
si
_
P
e
n
g
e
t
a
h
u
a
n
No
t
i
f
i
k
a
s
i
Pr
a
t
i
n
j
a
u
_
Pe
n
g
e
t
a
h
u
a
n
U
n
d
u
h_
P
e
ng
et
a
h
u
a
n
Ad
m
i
n
Pa
k
a
r
Ko
mu
n
i
k
a
s
i
Ta
m
u
<<i
n
c
l
u
d
e
>>
<<i
n
c
l
u
d
e
>>
<<
e
x
t
e
n
d
>>
<<e
x
t
e
n
d
>
>
<<e
x
t
e
n
d
>
>
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 574 – 5
8
3
580
2.
Domai
n
Mod
e
l Cla
ss
Diag
ram
De
scribe
co
n
nectio
n
diag
ram between
cla
ss
d
a
te that ha
s attri
bute is p
r
e
s
ented in
Figure 5.
Figure 5. Domain Model Class
Diagram Fertilizer S
e
lection
3. Cla
ss
Diag
ra
m
De
sc
ribe t
he
sy
st
em
st
ru
ct
ure cl
as
se
s d
e
f
i
nit
i
on view that is going
to be establi
s
he
d is
pre
s
ente
d
if Figure 6.
Figure 6. Class
Diagra
m F
e
rtilizer Selection
be
r
k
a
s
+i
d (
K
e
y
)
+n
a
m
a
+t
i
p
e
+u
k
u
ra
n
+i
s
i
+p
e
n
g
i
ri
m
+t
a
n
gg
a
l
+
s
tatu
s
is
i_
f
i
l
e
+i
d (
K
e
y
)
+j
udu
l
+p
e
n
ul
i
s
1
+p
e
n
ul
i
s
2
+p
e
n
ul
i
s
3
+
p
e
n
u
l
lis
4
+p
e
n
ul
i
s
5
+e
m
a
i
l
1
+e
m
a
i
l
2
+e
m
a
i
l
3
+e
m
a
i
l
4
+e
m
a
i
l
5
+a
l
a
m
a
t
+a
bs
t
r
a
k
+k
a
t
a
_
k
u
n
c
i
+t
a
h
u
n
_
t
e
r
bi
t
+
p
en
er
b
i
t
+k
e
t
e
r
a
n
ga
n
no
t
i
f
i
k
a
s
i
+i
d
+p
e
n
gi
ri
m
+i
s
i
+t
g
l
+p
e
m
b
a
c
a
+s
t
a
t
pe
m
u
p
u
k
a
n
+i
d
(
K
e
y
)
+k
l
a
s
+j1
+j2
+
t
an
a
m
an
+do
s
i
s
+w
a
k
t
u
pe
n
ggu
n
a
+i
d (
K
e
y
)
+n
a
m
a
+s
a
n
di
+t
e
m
p
a
t
+t
a
n
gg
a
l
+a
l
a
m
a
t
+p
ro
f
e
s
i
+h
p
+k
e
l
o
m
pok
+k
e
t
p
e
r
c
aka
p
an
+
i
d
_
p
e
r
c
ak
ap
an
(
K
e
y
)
+
i
d_
pe
n
g
i
r
i
m
+
i
d_
pe
n
e
r
i
m
a
+pe
s
a
n
+t
a
n
gga
l
_
pe
s
a
n
+s
t
a
t
u
s
pe
s
a
n
+
i
d_
pe
s
a
n (K
e
y
)
+pe
n
g
i
ri
m
+
p
en
er
i
m
a
+
t
an
g
g
al
_
k
i
r
i
m
+i
s
i
_
p
e
s
a
n
+
s
tatu
s
+s
ub
y
e
k
p
u
pu
k
_
a
n
o
r
ga
n
i
k
+i
d_
pu
puk
(
K
e
y
)
+n
+p
+k
+u
ns
ur
_l
a
i
n
1
+u
ns
ur
_l
a
i
n
2
+u
ns
ur
_l
a
i
n
3
+k
e
t
e
r
a
n
ga
n
pu
pu
k
_
o
r
ga
n
i
k
+
i
d_
pu
p
u
k
(K
e
y
)
+
n
a
m
a
_
pu
pu
k
ra
t
i
n
g
_
b
e
r
k
a
s
+
i
d_
be
r
k
a
s
+
i
d_
pe
n
g
g
u
n
a
+s
t
a
t
u
s
+t
gl
re
k
a
m
_
l
o
g
m
a
s
u
k
+no
+i
d
+t
gl
st
a
t
u
s
_
l
o
g
i
n
+i
d (
K
e
y
)
+s
t
a
t
v
a
lid
a
s
i
+i
d
_
v
a
l
i
da
s
i
+i
d
_
pa
k
a
r
+i
s
i
_
v
a
l
i
d
a
s
i
+t
a
n
g
g
a
l
+k
e
t
e
r
a
n
ga
n
0
..1
1
0.
.
1
1
1
0
..*
0
..*
1
0
..1
1
1
0
..1
0
..1
1
0
..*
1
1
0
..*
1
1
1
1
0
..*
0
..*
1
1
1
1
1
1
1
1
1
1
1
1
0
..*
1
0
..*
1
be
r
k
a
s
+i
d
+n
a
m
a
+t
i
p
e
+u
k
u
r
a
n
+i
s
i
+p
e
n
g
i
r
i
m
+t
a
n
gga
l
+s
t
a
t
u
s
+
u
ngg
a
h()
+u
n
d
u
h
(
)
+p
r
a
t
i
n
j
a
u
(
)
+h
a
p
u
s
(
)
+
v
al
i
d
as
i
(
)
is
i_
f
i
l
e
+i
d
+
j
udul
+
p
e
nul
i
s
1
+
p
e
nul
i
s
2
+
p
e
nul
i
s
3
+
p
e
nul
l
i
s
4
+
p
e
nul
i
s
5
+e
m
a
i
l
1
+e
m
a
i
l
2
+e
m
a
i
l
3
+e
m
a
i
l
4
+e
m
a
i
l
5
+a
l
a
m
a
t
+a
bst
r
a
k
+
k
at
a_
k
u
n
c
i
+t
a
h
u
n
_
t
e
r
b
i
t
+p
e
n
e
r
b
i
t
+
k
et
er
a
n
g
a
n
+si
m
p
a
n
(
)
+
m
ut
a
k
hi
r
(
)
no
t
i
f
i
k
a
s
i
+i
d
+p
e
n
g
i
r
i
m
+i
s
i
+t
g
l
+p
e
m
ba
c
a
+st
a
t
+se
t
B
D
(
)
+si
m
p
a
n
(
)
pe
m
u
puk
a
n
+i
d
+k
l
a
s
+j
1
+j
2
+
t
a
n
am
an
+d
o
s
i
s
+w
a
k
t
u
+se
t
B
D
(
)
+g
e
t
I
d
(
)
pe
n
g
gu
n
a
+i
d
+n
a
m
a
+s
a
n
di
+t
e
m
pa
t
+t
a
n
gga
l
+a
l
a
m
a
t
+p
ro
f
e
s
i
+h
p
+k
e
l
o
m
po
k
+k
e
t
+p
e
n
da
f
t
a
r
a
n
(
)
+s
e
t
I
d
(
)
p
e
r
c
ak
ap
a
n
+
i
d_
pe
r
c
a
k
a
p
a
n
+
i
d_
pe
ngi
r
i
m
+
i
d_
pe
ne
r
i
m
a
+p
e
s
a
n
+
t
a
n
gga
l
_
pe
s
a
n
+
s
ta
tu
s
+b
a
l
a
s
(
)
+se
t
B
D
(
)
pe
s
a
n
+
i
d_
pe
s
a
n
+p
e
n
g
i
ri
m
+
p
en
er
i
m
a
+
t
an
g
g
al
_
k
i
r
i
m
+i
si
_
p
e
s
a
n
+
s
ta
tu
s
+su
b
y
e
k
+se
t
B
D
(
)
pu
pu
k
_
a
n
o
r
g
a
n
i
k
+
i
d
_
pu
puk
+n
+p
+k
+
u
n
s
ur
_
l
a
i
n1
+
u
n
s
ur
_
l
a
i
n2
+
u
n
s
ur
_
l
a
i
n3
+
k
et
er
a
n
g
a
n
+se
t
B
D
(
)
pupuk
_
o
r
g
a
n
i
k
+i
d_
p
u
puk
+
n
am
a_
p
u
p
u
k
+s
e
t
B
D
(
)
ra
t
i
n
g
_
b
e
r
k
a
s
+
i
d_
be
r
k
a
s
+
i
d_
pe
ng
guna
+st
a
t
u
s
+t
gl
re
k
a
m
_
l
o
g
m
a
s
u
k
+n
o
+i
d
+t
g
l
st
a
t
u
s
_
l
o
g
i
n
+i
d
+st
a
t
va
l
i
d
a
s
i
+i
d_
v
a
l
i
da
s
i
+i
d_
p
a
k
a
r
+
i
s
i
_
v
al
i
d
as
i
+t
a
n
gga
l
+
k
et
er
a
n
g
a
n
+s
e
t
B
D
(
)
ha
l
a
m
a
n_
ut
a
m
a
+se
t
C
S
S
(
)
+se
t
J
u
d
u
l
(
)
+a
w
a
l
B
o
d
y
(
)
+a
k
h
i
r
B
o
d
y
(
)
+
a
kt
i
f
ka
n
(
)
+
g
et
_
b
er
k
a
s
(
)
+l
o
g
_
m
a
s
u
k
(
)
+d
a
f
t
a
r(
)
ba
s
i
s
_
d
a
t
a
+
k
one
k
s
i
(
)
+t
a
m
b
a
h
(
)
+m
u
t
a
k
h
i
r(
)
+h
a
p
u
s
(
)
+
s
el
ec
t
(
)
pu
p
u
k
+o
rg
a
n
i
k
(
)
+a
n
o
r
g
a
n
i
k
(
)
+
o
l
a
hP
e
m
u
p
uk
a
n
(
)
+
v
al
i
d
as
i
(
)
lo
g
_
m
a
s
u
k
+se
t
I
d
(
)
+g
e
t
I
d
(
)
kom
u
n
i
ka
si
+p
e
s
a
n
(
)
+d
i
a
l
o
g(
)
b
a
si
s_
d
a
t
a
+k
o
n
e
k
si
(
)
+t
a
m
ba
h
(
)
+m
u
t
a
k
h
i
r
(
)
+h
a
p
u
s
(
)
+se
l
e
c
t
(
)
b
a
si
s_
d
a
t
a
+k
o
n
e
k
s
i
(
)
+t
a
m
b
a
h
(
)
+
m
ut
a
k
hi
r
(
)
+h
a
p
u
s
(
)
+s
e
l
e
c
t
(
)
b
a
si
s_
d
a
t
a
+k
o
n
e
k
s
i
(
)
+t
a
m
ba
h
(
)
+m
u
t
a
k
h
i
r(
)
+h
a
p
u
s
(
)
+se
l
e
c
t
(
)
b
a
si
s_
d
a
t
a
+
k
one
k
s
i
(
)
+t
a
m
b
a
h
(
)
+
m
ut
a
k
hi
r
(
)
+h
a
p
u
s
(
)
+
s
el
ec
t
(
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
velo
pm
ent of Fertilize
r
Selection u
s
i
ng K
nowl
edg
e Manag
em
ent System
(Yessy Yanita
sari)
581
4. Sequen
ce
Di
agra
m
De
scribe
the
event a
nd t
i
me sequ
en
ce of a
n
inte
r obje
c
t me
ssage i
s
pre
s
e
n
ted in
Figure 7 (Th
e
sequ
en
ce di
agra
m
is
not
compl
e
tely prese
n
ted)
Figure 7. Dia
g
ram Seq
uen
ce Sea
r
ch Knowle
dge Fe
rti
lizer Sel
e
ctio
n (Memb
e
r, A
d
minist
ration,
Fertilizer Expert, Guests)
5.
User Interfa
c
e De
sign
The
re
sult of
Use
r
Interfa
c
e
De
sig
n
i
s
an i
n
terfa
c
e
de
sign
of a
pplication
sy
stem th
at
con
n
e
c
t user and th
e sy
stem. The
perf
o
rma
n
ce of
t
he inte
rface i
s
differentiate
based
on u
s
er
grou
p, this
cover the
men
u
structu
r
al
d
i
fferenc
e a
n
d
available
sy
stem fun
c
tion
is p
r
e
s
ente
d
in
Figure 8 and
9.
Figure 8. Use
r
Interface De
sign Appl
i
c
ati
on KMS Fertil
izer Sel
e
ctio
n
:
ha
l
a
m
a
n
_
ut
a
m
a
:
b
a
si
s_
d
a
t
a
:
pu
puk
:
pu
puk
_
a
n
o
r
ga
ni
k
:
pu
puk
_
o
r
g
a
ni
k
:
b
e
r
k
a
s
:
pe
m
u
pu
k
a
n
: U
s
e
r
: r
a
t
i
n
g
_
b
e
r
k
a
s
1 :
ak
t
i
f
k
an
(
)
2
:
ge
t
_
be
r
k
a
s
(
)
3 :
k
o
n
e
k
s
i
(
)
4 :
s
e
l
e
ct
(
)
5
:
und
uh(
)
6
:
ha
s
i
l
_
u
n
du
h(
)
7 :
t
a
m
b
ah
(
)
8 :
p
r
a
t
i
n
ja
u
(
)
9
:
h
a
s
il_
p
r
a
t
in
j
a
u
(
)
10 :
t
a
m
b
a
h
(
)
11
:
a
n
o
r
g
a
n
i
k
(
)
12
:
set
B
D
(
)
13 :
se
l
e
ct
(
)
1
4
:
h
a
s
il_
c
a
r
i
_
a
n
o
r
g
a
n
ik
(
)
15 :
or
g
a
n
i
k
(
)
16
:
s
e
t
B
D
(
)
17
:
s
e
l
e
ct
(
)
18 :
h
a
s
i
l
_
ca
r
i
_or
g
a
n
i
k
(
)
19 :
ol
a
h
P
e
m
u
p
u
k
a
n(
)
20
:
s
e
t
B
D
(
)
2
1
:
ge
t
I
d(
)
22
:
s
e
l
e
ct
(
)
2
3
:
ha
s
i
l
_
ca
ri
_pe
m
up
u
k
a
n
(
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 574 – 5
8
3
582
Figure 9. Site Map KMS Fertilizer Selecti
o
n
3.5. Verif
y
and Validate the KM Sy
stem
The re
sult of KMS verification and Valid
ation toward
s the syste
m
with two test
s
1.
Logi
cal testin
g covers KM
S program synta
xes test as well as e
x
plicit and tacit
kno
w
le
dge
codificatio
n
a
nalyst. The
test is
ca
rri
ed out by h
a
ving verification on l
o
g
i
cal
appli
c
ation a
ttribute that con
s
i
s
ts of seven l
ogi
cal
attribute i.e. circul
ar rul
e
, redun
dan
cy,
compl
e
tion, consi
s
ten
c
y, truth, confiden
ce, and
de
p
enda
ble from
the seven logical attribut
e
tested, re
sulti
ng in the entire
logical attribute is teste
d
.
2.
User
accepta
n
ce te
sting i
s
test given
to
KMS appli
c
a
t
ion throu
gh
black b
o
x ca
rried
out by the KM Team that con
s
i
s
ts of a
ccu
ra
cy, adaption capability, suf
f
icien
c
y, app
eal,
availability, user
conveni
ence,
face vali
dity, performance,
depen
dable, robustness,
operationall
y
tested, of the criteria that
has be
en test
ed, one crite
r
i
a
that has no
t been tested
i.e. dependa
ble
crite
r
ia be
ca
u
s
e it need
ed l
onge
r testing
time.
3.6. Implement the
KM Sy
stem
The KMS im
plementatio
n
is carried
out
in two
side
s i.
e. the cli
ent
and
se
rver, b
e
ca
use
the develop
e
d
appli
c
ation
take the cli
e
n
t
-se
r
ver
syste
m
.
1.
Main install
a
tion on serve
r
side
From
the
se
rver
side
som
e
ap
plication
s
n
eed
ed to
be d
one
that
is differe
ntia
te into
three
majo
r
g
r
oup
i.e.
We
b Serve
r
u
s
i
ng Ap
ache
2.2. whil
e
DBM
S
Server u
s
i
ng MySQL
a
nd
Sc
ript Server
us
ing PHP
Hyper
text Pr
epr
o
cess
or
.
2.
Installation o
n
client si
de
Carrie
d out
Web B
r
o
w
ser installatio
n
a
s
an i
n
terfa
c
e
whe
n
a
c
cessing data
at the se
rver.
To get optimal result from
the sy
stem perform
a
nce
si
de it is
advised to use m
o
zilla Fi
refox
web
bro
w
ser, whil
e
for
a
nothe
r web browse
r it
is
also
allo
wed
be
cau
s
e
it doe
s not
affect the
system
function.
4. Conclusio
n
The research has succeeded
in developing the fertilizer
knowledge based
system usi
ng
KMSLC m
e
th
od, whi
c
h
is
client-se
r
ver
web
ba
sed
a
pplication. T
h
is a
ppli
c
atio
n could
give
a
recomme
ndat
ion on effecti
v
e fertilizer selectio
n bas
e
d
on fertilize
r
kno
w
ledg
e that is obtain
ed
from the exp
e
rt a
s
tacit
knowl
edge
an
d explic
it av
ailable
kno
w
l
edge. Fo
r o
p
t
imal re
sult the
bro
w
ser
sho
u
ld be o
perated at pe
rsonal comp
uter, wh
ere
a
s at bro
w
ser sma
r
tphon
e
the
perfo
rman
ce
result is not yet optimal.
Fertilizer
sel
e
ction
kno
w
le
dge m
ana
ge
ment sy
stem
develop
men
t
is recomme
nded to
enha
nce the kno
w
le
dge o
n
the existin
g
fertilize
r
an
d knowl
edg
e sha
r
ing b
e
develop
ed
into
kno
w
le
dge
discovery. Inte
rface
Appli
c
a
t
ion co
uld b
e
more deve
l
oped fo
r mo
bile ware
wit
h
relatively sma
ll screen
re
so
lution.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
velo
pm
ent of Fertilize
r
Selection u
s
i
ng K
nowl
edg
e Manag
em
ent System
(Yessy Yanita
sari)
583
Ackn
o
w
l
e
dg
ements
The autho
rs expre
ss g
r
atit
ude to :
1.
DIKTI (Dire
c
t
o
rate
Gen
e
ral of
Highe
r
Education
)
for research
gra
n
ts th
ro
ugh
a
BPPS (Postgraduate Scholar
ship) Year
2012 budget.
2.
PT
Fertili
ze
r Kujang whi
c
h
have provide
d
dat
a
fertili
zers a
nd fe
rtilization,
espe
cially
the Burea
u
of Information
Tech
nolo
g
y and Re
se
arch
and Develop
m
ent Burea
u
.
Referen
ces
[1]
Abdu
lla
h,
R
u
sl
i.
et a
l
T
h
e
Devel
o
p
m
ent
of Bio
i
nfor
mati
cs Know
le
dg
e
Man
a
g
e
ment
Syste
m
w
i
t
h
Coll
ab
orative E
n
viro
nment
.
IJCSNS Internati
ona
l Journ
a
l of
Co
mputer Sci
ence a
nd Netw
ork Security
.
200
8; 8(2).
[2]
Abdu
lla
h, R
u
sl
i, et a
l
.
A N
o
tificatio
n
Syst
em Mo
del
for
Bioi
nfor
matic
s
Co
mmu
n
ity
of Practic
e
.
Comp
uter and
Information Sci
ence. 20
10; 3(
2).
[3]
Aw
ad EM, Ghaziri H.
Kn
o
w
l
e
dg
e
Ma
na
gem
en
t
. Prentice Ha
ll. 201
0.
[4]
Buckman, Harry
O, Brady
,
Nyle C.
T
he
Natu
re an
d Pro
pert
y
of Soils - A
Coll
eg
e T
e
xt o
f
Edaph
ol
og
y
(6th ed.). Ne
w
York:
T
he MacMilla
n Com
pan
y. 19
60.
[5]
Irma Becerra-
F
ernan
dez a
n
d
Rajiv Sa
bh
e
r
w
a
l.
Know
le
d
ge Man
age
me
nt Systems and Process
e
s.
Armonk, Ne
w
York 105
04, Lo
ndo
n, Engl
and.
2010
.
[6]
Jumini,
Nur
h
a
y
ati, M
u
rza
n
i.
Efek kom
b
in
asi d
o
sis
pu
p
u
k NPK
da
n
cara
pemu
puk
an ter
had
a
p
pertumb
uh
an d
an has
il ja
gu
ng
mannis. J. F
l
oratek. 2011.
[7]
Kucza,
T
i
mo.
Know
led
ge Ma
n
age
ment Proce
ss Model
. T
e
chnical
Rese
arch
Centre of F
i
nl
and, Valti
o
n
T
e
knillin
en T
u
tkimuskesk
us(V
TT) Publicatio
ns 455. 1
01 p. +
app. 3 p, Espoo. 200
1.
[8]
Lau
de, S
y
ams
udi
n da
n T
a
mbing, Yoh
a
n
e
s. Pertumbu
ha
n dan H
a
sil b
a
w
ang
dau
n
(All
iu
m Fi
stuliu
m
L.)
pad
a ber
bag
ai
dosis p
u
p
u
k ka
nda
ng a
y
a
m
. J Agrola
nd ISS
N
: 0854-
64
1
X
201
0.
[9]
Lin
gga Pi
nus.
Petunj
uk Pen
g
gun
aa
n
Pupuk.
Peneb
ar S
w
a
d
a
y
a, Jakarta.
201
1.
[10]
Non
a
ka I, T
a
keuch
i
H.
T
h
e
Know
led
g
e
- C
r
eatin
g C
o
mp
a
n
y: How
Ja
pa
nese
Co
mpa
n
i
e
s Cre
a
te th
e
Dyna
mics of
Innovati
o
n
. Ne
w
York: Oxford U
n
iversit
y
Press.
1995.
[11]
[Preside
n RI]
Presid
an R
e
p
u
b
lik In
do
nesi
a
(ID)
. Peraturan
Pemeri
ntah
R
epu
blik I
ndo
ne
sia N
o
mor
8
T
ahun 200
1 T
e
ntang Pu
puk B
udi
da
ya T
ana
man
Presi
den
Rep
ubl
ik Indo
n
e
sia. 20
01.
[12]
Rah
a
rdj
o
, Mo
no d
an Pri
b
a
d
i, Eka
w
a
s
ita
Rini. Pe
ng
aru
h
Pup
u
k Ure
a
SP36 d
an K
C
L T
e
rhada
p
Pertumbu
ha
n dan Pro
duks
i
T
e
mul
a
w
a
k.
Jur
nal LIT
R
I
. ISSN: 0853-
82
12. 201
0.
[13]
Satzinger
JW,
Jackson RB, B
u
red SD.
Syste
m
A
nalys
is
and
Desi
gn.
Cours
e
T
e
ch
nol
ogy
25 T
h
o
m
so
n
Place Bosto
n
, USA. 2010.
[14]
Set
y
ani
ngr
um,
Hesti
D, Sap
a
rinto, Ca
h
y
o.
Panen S
a
yur
Secara Ruti
n
di Lah
an S
e
mp
it.
Pene
bar
S
w
aday
a, Jakarta. 2011.
[15]
Sutedj
o, Mul M.
Pupuk da
n C
a
ra Pe
mu
puk
a
n
.
Rinek
a Cipt
a
, Jakarta. 201
1.
[16]
Su
w
a
rto, Octaviant
y, Yuke.
Budi
daya T
a
n
a
man Perk
eb
u
nan 1
2
T
a
n
a
m
a
n
Perke
b
u
n
an Un
gg
ula
n
.
Penebar S
w
aday
a, Jakarta. 2012.
[17]
T
i
w
a
n
a
, Amrit.
T
he Kno
w
le
d
ge Man
agem
e
n
t
T
oolkit, Second Ed
ition, P
r
entice Ha
ll, U
pper Sa
ddl
e
River, NJ. 200
2.
[18]
Yanitas
a
ri, Ye
ss
y
,
Herm
adi,
Irman da
n Kus
u
ma, W
i
snu A
nanta.
P
eng
e
m
b
a
n
gan Peta
Peng
etah
ua
n
Pemili
ha
n Pup
u
k
, Prosiding S
e
minar Ilmiah Ilmu Kom
puter:
Institut Pertani
an Bog
o
r. 201
4.
Evaluation Warning : The document was created with Spire.PDF for Python.