Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 1, No. 3,
March 20
16, pp. 523 ~ 5
3
3
DOI: 10.115
9
1
/ijeecs.v1.i3.pp52
3-5
3
3
523
Re
cei
v
ed
No
vem
ber 4, 20
15; Re
vised
Febr
uary 3, 2
016; Accepte
d
February 1
5
, 2016
Optimal Operation of Low Cos
t
Topology for Improving
the Power Quality in the Wind Power Conversion
System
E. Vani*
1
and N. Renga
raj
a
n
2
1
Departme
n
t of EEE, KSR Colleg
e
of E
ngi
ne
erin
g, T
i
ruchengod
e, T
a
milnadu
2
Departme
n
t of EEE, Nandh
a Engi
neer
in
g C
o
lle
ge, Ero
de, T
a
milnadu
e-mail: va
nia
l
a
gesa
n
1
35@
gm
ail.com
*1
, reng
araj
an2
41
2@g
m
ail.com
2
A
b
st
r
a
ct
In this paper, Vien
na rectifier
and Z
Source Invert
er (Z
SI) based W
i
n
d
Po
w
e
r Conversio
n
Syste
m
(WPCS) has been pr
op
osed
w
i
th less nu
mb
er of sw
itches to provi
de hi
gh
qua
lity pow
er to off grid system.
T
he three p
h
a
s
e full bri
d
g
e
converter h
a
s
six sw
itches for the conver
sion of AC-D
C and a
l
so n
e
e
d
separ
ate DC-
D
C
bo
ost conv
e
r
ter to boost th
e DC v
o
lt
ag
e.
In the pro
pos
e
d
W
P
CS, thre
e Phas
e Vi
enn
a
rectifier has
on
ly three sw
itches fo
r the conv
ersio
n
of AC-D
C and
also
it b
oosts the DC v
o
ltag
e. T
he Z
S
I
jointly w
i
th Vi
e
nna rectifi
e
r pr
ovid
es hi
gher,
booste
d
AC voltag
e an
d hi
g
h
qua
lity pow
e
r
to the off grid
system. The Z
S
I utili
z
e
s th
e
shoot-thr
o
u
g
h
states to boo
st the DC li
nk
voltag
e an
d
also, re
duces
the
Electro
m
a
gneti
c
Interferenc
e (
E
MI) nois
e
. T
h
e co
mbin
atio
n
of Vie
nna
rectif
ier a
n
d
Z
sourc
e
inv
e
rter s
how
s
the goo
d perf
o
rma
n
ce w
h
ich
improves th
e e
fficiency
an
d reduc
es T
o
tal
Har
m
on
ic Dist
o
rtion (T
HD). T
h
e
perfor
m
ance of the proposed system
is s
i
mulat
ed us
ing MATLAB/Simulink s
o
ftware. Simulation
and
exper
imenta
l
r
e
sults ex
pose t
hat, this
confi
g
uratio
n is b
ene
ficial w
i
th resp
ect to pow
er q
uality i
m
prov
e
m
e
n
t
w
i
th less nu
mb
er of sw
itches compar
ed to a
conve
n
tio
nal c
onverter.
Ke
y
w
ords
: Vi
enn
a Rectifier,
Z
Source Inverter, W
i
nd Po
wer Conv
ersio
n
System (W
PC
S), Pow
e
r Quality
and T
o
tal H
a
r
m
o
n
ic Dist
o
rtio
n (T
HD)
1. Introducti
on
The p
o
we
r d
e
mand
ha
s b
een imp
r
ove
d
app
re
ciably i
n
the worl
d which i
s
m
ode
rated by
the vario
u
s
Ren
e
wable
Energy So
urce
s (RES)
such
as win
d
, photovoltai
c
, and
hydro
p
o
we
r
plants. Be
ca
use
they a
r
e
pollutio
n
fre
e
an
d in
exh
austibl
e. The
WP
CS is o
ne of th
e m
o
st
effective po
wer ge
ne
ration
system
s that
offer a
fea
s
i
b
le solution t
o
dist
ributed
power g
ene
ration
for isolated
communitie
s
,
whe
r
e th
e util
ity grids a
r
e
n
o
t available
[
1
]. In su
ch
ca
se
s, sta
nd
al
one
WPCS play
s an importan
t
role to pro
v
ide a qualit
y output power to the ele
c
tri
c
al load
s.
In
WPCS, vario
u
s g
ene
rators have b
een
use
d
whi
c
h
are eith
er fi
xed sp
eed
wind tu
rbin
e
or
variable
sp
ee
d win
d
turbin
e [2], [3]. Among the
m
a v
a
riabl
e
spee
d
wind
turbi
ne
equip
ped
wit
h
a
PMSG is fou
nd to be ve
ry attractive a
nd suitable f
o
r ap
plicatio
n in large
wi
nd farm
s. Wi
th
gearl
e
ss
con
s
tru
c
tion, su
ch PMSG
co
nce
p
t req
u
ire
s
lo
w mainte
nan
ce, re
du
ced lo
sses a
n
d
co
sts, at the same time has hig
h
efficien
cy
and g
ood co
ntrolla
bility [4], [5].
Being a vari
able
spe
ed wi
nd turbin
e, it ena
bles o
peratio
n of the
turbi
ne at its maximum po
we
r coefficient ove
r
a
wide rang
e of wind spee
ds,
obtaini
ng ma
ximum energ
y
from wind.
The
WPCS i
s
captu
r
ing
large
r
p
o
wer f
r
om th
e wi
nd
[6] and fe
edi
ng the
po
wer to loa
d
with high
-qua
lity [7]. To
feed quality po
wer to t
he lo
ad, the AC–DC–AC conv
erter is o
ne o
f
th
e
bes
t topology
for WP
CS [3]. Us
ually, WPCS uses
fu
ll
bridg
e
conve
r
ter a
nd three
-
pha
se i
n
vert
er
for the
conve
r
sio
n
of AC-DC-A
C
. Figu
re
1 sh
ow
s
the conve
n
tional block
di
agra
m
of the WP
CS.
This
co
nfigu
r
ation in
clud
e
s
a
dio
de
re
ctifier,
boo
st DC–
D
C converter an
d th
ree
-
pha
se
inve
rter.
The full brid
ge co
nverte
r and three
-
p
hase inve
rte
r
have the followin
g
dra
w
ba
cks: 1)
an
addition
al DC-DC bo
ost
co
nverter to
obt
ain a d
e
si
red
DC
output 2
)
impo
se
s hi
g
h
stress to th
e
swit
chin
g de
vices
3) due
to additio
n
a
l
power
stag
e co
nversio
n
increa
se
s
system cost
a
nd
lowers effic
i
enc
y
. In order
to rec
t
ify this
probl
em, an i
n
tegrate
d
b
o
o
st conve
r
ter is u
s
e
d
for A
C
-
DC-AC
conv
ersi
on. An in
tegrated
boo
st conve
r
ter i
s
the combin
ation of Vien
na re
ctifier a
nd
QZSI, which i
s
more efficie
n
t for step up
applicati
ons.
Vienna rectifi
e
r is a uni
dire
ctional rectifie
r,
whi
c
h bo
ost
s
the DC volta
ge [8]. QZSI provide
s
the
highe
r, boo
st
ed voltage b
y
elimination
o
f
sho
o
t thro
ug
h fault. The
prop
osed
system simplif
ie
s t
he
co
nt
rol
com
p
lex
i
t
y
,
redu
ce
s t
h
e
co
st
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 523 – 533
524
and im
prove
s
the
po
we
r
quality an
d e
fficiency [9]
- [11]. Figu
re
2 sho
w
s the
prop
osed
blo
c
k
diagram of the WPCS.
Figure 1. Con
v
entional WP
CS with DC b
oost chop
per
Figure 2. Pro
posed WP
CS
with Vienna rectifier an
d Z
S
I
2. Vienna Re
ctifier Top
olog
y
The Vie
nna
Re
ctifier i
s
a
unidirectio
nal
three
-
p
h
a
s
e
three
-
switch t
h
ree
-
level P
u
l
s
e-width
modulatio
n (PWM) rectifi
e
r. It can be seen a
s
a three
-
p
h
a
s
e d
i
ode bri
dge
with an integ
r
ated
boo
st co
nvert
e
r [3], [10]. T
he voltage
of
the ea
ch
ph
ase i
s
determined
by ch
oosi
ng the
o
n
/off
state of
swit
ches
and th
e
dire
ction of t
he ph
as
e current. The
swi
t
che
s
togeth
e
r with
diod
e
and
input in
du
cta
n
ce
creat
e th
e bo
ost
co
nverter sy
stem
.
The
outp
u
t capa
citor is sp
lit into two
pa
rts
with eq
ual v
a
lue
s
. Two v
o
ltage
sou
r
ces
+V
0
/2
a
nd -
V
0
/2
exist across ea
ch cap
a
cito
r,
wh
ich
detect the
ou
tput voltage
of the ci
rcuit.
Therefore, three
differe
nt voltages (+V
0
/2, 0, -V
0
/2) are
available [9], [10]. Figure 3
sho
w
s the
sc
hematic di
ag
ram of Vienna
rectifier.
The mid
point
N is
co
nsi
d
ered
as
a referen
c
e
point
with zero vol
t
age. The
r
efo
r
e, the
pha
se voltag
e is de
scribe
d as,
L
di
dt
E
V
(1)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Optim
a
l operation of Low
Co
st Topolo
g
y
for Im
pr
ovi
n
g the Powe
r Quality in the
… (E. Vani)
525
Whe
n
the ph
ase
curre
n
t is positive,
V
2
0
0
1
(2)
Figure 3. Sch
e
matic dia
g
ra
m of Vienna rectifier
Whe
n
the ph
ase
curre
n
t is negative,
V
2
0
0
1
(3)
Whe
r
e L
N
in
p
u
t inducto
rs (N=1, 2, 3), i
k
is the inp
u
t phase cu
rrent,
V
KN
is the phase voltage
(K
=
A
, B, C), S
k
is a co
ntrolle
d
switch (S
k
=
0 corre
s
p
ond
s to off state and S
k
= 1 to the on state
)
.
Figure 3
sh
o
w
s th
e mo
de
s of o
peratio
n Vienn
a rect
ifier at ph
ase
A. Phase
s
B and
C
operate in the
same patte
rn
.
Mode 1
The
swit
ch
S
A
is turned
O
N
when
the li
ne
current i
s
posit
ive. Th
e
cu
rrent pa
sses th
rou
gh
t
he swit
ch S
A
and ph
ase voltage be
come
s ze
ro.
Mode 2
The line
current is po
sitive, but the switch S
A
is turned OFF. Th
e cu
rre
nt passe
s thro
ugh
diode D
11
and
D
1.
So, the phase voltage
is +V
0
/2.
Mode 3
The
switch
S
A
is turned O
N
whe
n
the line cu
rre
nt is negative. Th
e current pa
sse
s
throu
gh
t
he swit
ch S
A
and ph
ase voltage be
come
s ze
ro.
Mode 4
The line
current is n
egativ
e, but the
switch S
A
is tu
rned O
FF. Th
e cu
rrent pa
sse
s
through
diode D
12
and
D
2.
So, the phase voltage
is -V
0
/2.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 523 – 533
526
Figure 3 (a
)
Figure 3 (b
)
Figure 3 (c)
Figure 3 (d
)
Figure 3. Modes of op
erati
on of Vienna
Re
ctifier
Assu
ming th
at the cu
rrent
of pha
se A i
s
po
sitive an
d pha
se
s B, C ne
gative, the eig
h
t
different switching po
sition
s can be
con
s
i
dere
d
and th
e results a
r
e
sho
w
n in tabl
e 1.
Table 1. Eigh
t different swi
t
ching p
o
sitio
n
s of Vienna
rectifie
r
S
A
S
B
S
C
V
AN
V
BN
V
CN
0 0
0
+V
0
/2 -V
0
/2
-V
0
/2
0 0
1
+V
0
/2 -V
0
/2
0
0 1
0
+V
0
/2 0
-V
0
/2
0 1
1
+V
0
/2 0
0
1 0
0
0
-V
0
/2
-V
0
/2
1 0
1
0
-V
0
/2
0
1 1
0
0
0
-V
0
/2
1 1
1
0
0
0
3. Z Source Inv
e
rter Topolog
y
In the powe
r
conve
r
si
on from DC to AC, both
the swi
t
che
s
of any pha
se leg
ca
n never
be gated O
N
at the same ti
me or a
sho
r
t circuit
(shoot
throug
h) wo
uld occu
r in the co
nventio
nal
voltage
sou
r
ce inve
rter an
d it
will d
e
stroy the i
n
verte
r
. To
overco
me the
ab
ove
problem
s, th
e Z-
sou
r
ce inve
rter i
s
u
s
ed fo
r conve
r
si
on
of DC-A
C. T
he Z-network com
p
ri
sing
of two capa
ci
tors
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Optim
a
l operation of Low
Co
st Topolo
g
y
for Im
pr
ovi
n
g the Powe
r Quality in the
… (E. Vani)
527
and t
w
o in
du
ctors a
r
e
co
nne
cted in
x-sha
pe. Th
i
s
netwo
rk is conne
cted to
the kno
w
n th
ree
phase bridge.
The Z-
source i
n
verter ut
ilizes th
e shoot-through st
ates to
buck or boost
the DC
link voltage which is d
one
by gating ON both t
he upper and lo
we
r swit
che
s
of a phase le
g. Due
to the sh
oot-t
hrou
gh
state,
the ele
c
trom
agneti
c
in
terf
eren
ce
(EMI) noise do
es
not de
stroy t
he
circuit. The
r
ef
ore, mo
re reli
able bu
ck an
d boo
st powe
r
conve
r
sion i
s
obtain
ed [1
1-14].
This Z sou
r
ce
netwo
rk i
s
the energy storage/f
iltering e
l
ement for the
Z-so
urce inv
e
rter. It
provide
s
a se
con
d
-o
rd
er filter and i
s
more effe
ctive to sup
p
re
ss voltage an
d cu
rrent ripple
s
th
an
cap
a
cito
r o
r
i
ndu
ctor u
s
e
d
alone i
n
the
conventio
n
a
l i
n
verters [15].
Figur
e 4
sho
w
s th
e Z-so
urce
inverter.
Figure 4. Z-source inve
rter
The
conve
n
tional voltag
e
sou
r
ce inve
rters hav
e six active
state
s
and
two zero
state
s
.
Ho
wev
e
r, the
Z
-so
u
rce in
verter ha
s o
ne extra ze
ro st
ate for b
oostin
g
voltage that is ca
lled
sho
o
t-throug
h state. Th
e i
nput dio
de i
s
revers
e
bia
s
ed when
ZSI is in th
e sho
o
t-thro
ugh
st
ate;
the two ca
pa
citors disch
a
rge ene
rgy to the indu
ctors, load and the
input DC
so
urce is i
s
olat
ed
from the
load
. The in
put di
ode i
s
tu
rne
d
ON
wh
en ZSI
is i
n
the
non
sho
o
t- th
rou
g
h
state
an
d th
e
DC i
nput voltage
sou
r
ce a
s
well as th
e
indu
ctor
tran
sfers en
ergy to
the load a
nd charge th
e
cap
a
cito
rs,
a
s
a
re
sult th
e DC-li
n
k vol
t
age of the
b
r
idge
is
boo
sted [16]. Fig
u
re
5 sho
w
s
the
operation of ZSI.
As describe
d
in [13], the vo
ltage of dc lin
k ca
n be expressed a
s
V
i
= B
V
dc
(4)
whe
r
e V
dc
is the so
urce vol
t
age and B is
the boo
st factor that is dete
r
mine
d by
B
1
1
2T
o
/T
(5)
w
h
er
e T
o
i
s
t
he
sho
o
t-thro
ugh tim
e
inte
rval ove
r
a
switchi
ng
cycl
e T. T
h
e
out
put pe
ak p
h
a
s
e
voltage V
ac
is
V
ac
= MB
(V
dc
/
2
) (
6
)
whe
r
e M is th
e modulatio
n index.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 523 – 533
528
a. Non-sh
oot-throug
h state
b. Shoot-thro
ugh
state
Figure 5. Ope
r
ation of ZSI
Figure 6
sho
w
s th
e si
mpl
e
boo
st PWM co
ntro
l m
e
thod fo
r Z-source inve
rte
r
. In this
method t
w
o e
x
tra strai
ght li
nes V
SC
an
d
–V
SC
are em
ployed a
s
sh
oot-throug
h signal
s [13], [17]
.
Whe
n
V
SC
is smalle
r than
the caree
r
si
gnal or
-V
SC
is gre
a
ter tha
n
the carrie
r sign
al, a sho
o
t
throug
h vecto
r
is create
d
b
y
the inverter. The value of V
SC
is calcul
a
t
ed by
V
1
(7)
W
h
er
e
T
1
= T -T
o
(8)
Figure 6. PWM control met
hod for
Z
-s
ou
rce inv
e
rter
4. Result a
n
d Discus
s
io
n
The sim
u
latio
n
of Vienna rectifier an
d Z
source inve
rt
er ba
sed
WP
CS has b
een
carried
out usin
g MATLAB/Simulink software. Figure 7
sh
ows the sim
u
lation diag
ram of prop
o
s
ed
topology. It compri
se
s of
a win
d
turbi
n
e with
PMS
G
, Vienna
re
ctifier, ZSI a
nd loa
d
. In th
e
simulatio
n
pa
rt, WPCS is
simulate
d wit
h
the wind
speed of 12
rad/
se
c. Perm
anent Mag
net
Synchrono
us Gen
e
rato
r
(PMSG) u
s
e
d
as va
riabl
e speed win
d
tu
rbine
ge
nerator,
p
r
odu
ce
s the
AC voltage of
280V. The
o
u
tput of PMSG is fed
t
o
th
e vienna
re
ctifier whi
c
h
bo
osts th
e volta
ge
up to
380V
whi
c
h i
s
sh
o
w
n i
n
figu
re
8. In th
e p
r
opo
sed
topol
ogy, only ni
n
e
switche
s
a
r
e
employed to obtain the r
e
quir
ed output vo
ltage, w
h
ic
h ov
er
comes
the dr
aw
backs of
conve
n
tional
topology such as u
s
ag
e of a numbe
r
of swit
che
s
an
d control ci
rcuit complexity.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Optim
a
l operation of Low
Co
st Topolo
g
y
for Im
pr
ovi
n
g the Powe
r Quality in the
… (E. Vani)
529
Figure 7. Simulation diag
ra
m of propo
se
d topology
Vienna
rectifi
e
r u
s
e
s
only
three
swit
ch
es
for th
e AC-DC
co
nversion
and b
o
o
sts th
e
voltage to the requi
red leve
l. The simulat
i
on paramet
e
r
s of Vienn
a rectifier a
r
e sh
own in tabl
e 2.
Table 2. Simulation pa
ram
e
ters of Vien
na re
ctifier
Parameter Value
Input voltage (A
C)
280V
Output voltage
(
DC)
380V
L
1
= L
2
= L
3
15mH
Sw
itching Fr
equ
enc
y
20kHz
Figure 8. Output voltage of Vienna Re
cti
f
ier
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 523 – 533
530
The o
u
tput of
the Vien
na
rectifier i
s
aga
in bo
oste
d by
the Z
source
inverte
r
in
th
e ra
nge
of 500V
and
i
s
conve
r
ted t
o
AC. Fi
gure
9 an
d 1
0
sho
w
the
inverte
r
output volta
g
e
an
d
curre
n
t.
The sim
u
latio
n
para
m
eters of the Z sour
ce inverte
r
are sho
w
n in ta
ble 3.
Table 3. Simulation pa
ram
e
ters of ZSI
Parameter Value
Input voltage (D
C)
380V
Output voltage
(
A
C)
500V
L
1
=L
2
5mH
C
1
= C
2
5µF
Sw
itching Fr
equ
enc
y
20kHz
Figure 9. Output voltage of ZSI
Figure 10. Ou
tput current o
f
ZSI
Figure 11 an
d 12 sh
ow th
e FFT sp
ectrum of
conven
tional and p
r
o
posed topol
o
g
y.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Optim
a
l operation of Low
Co
st Topolo
g
y
for Im
pr
ovi
n
g the Powe
r Quality in the
… (E. Vani)
531
Figure 11. FF
T spe
c
tru
m
of conventio
nal
topology
Figure 12. FF
T spe
c
tru
m
of propo
se
d top
o
logy
To experim
e
n
tally validate the propo
se
d t
opology, hard
w
a
r
e of the Vienna re
ct
ifier and
ZSI based
WPCS has be
e
n
built. Figure
13 sho
w
s
th
e prototype o
f
the propo
se
d topology. Nine
MOSFETs a
r
e employed
here
as the
swit
chin
g dev
ice
s
. Thre
e single ph
ase tran
sform
e
rs
are
use
d
to obtai
n the AC i
n
p
u
t voltage to t
he three
p
h
a
s
e Vie
nna
re
ctifier. Boo
s
te
d output from
the
Vienna
re
ctifier i
s
fed to th
e ZSI, which
boo
sts the
vo
ltage furth
e
r t
o
high l
e
vel a
nd convert
s
it
to
AC. PIC16F8
77A micro
c
o
n
trolle
r co
ntrols the gat
e
pulses of the
MOSFET switching d
e
vice
s of
Vienna
re
ctifier
and
Z
sou
r
ce i
n
verte
r
. Control
algo
ri
th
ms fo
r the
switching
are
written in the
hi
gh
level langua
g
e
and then it is embe
dde
d in the PI
C16F
877A micro
c
o
n
trolle
r. Figure 14 sh
ows the
experim
ental output voltage of ZSI. Figure 15 sh
ows the FFT sp
ect
r
um of conve
n
tional topolo
g
y
and figure 16
sho
w
s the FF
T spe
c
tru
m
of propo
se
d top
o
logy.
Figure 1
3
. Prototype of pro
posed sy
ste
m
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 523 – 533
532
Figure 14. Inverter o
u
tput voltage waveform
Figure 15. FF
T spe
c
tru
m
of conventio
nal
topology
Figure 16. FF
T spe
c
tru
m
of propo
se
d top
o
logy
Table 4 sh
o
w
s the T
HD
analysi
s
of convent
ion
a
l and pro
p
o
s
ed
topology of si
mulation
and ha
rd
wa
re
.
Evaluation Warning : The document was created with Spire.PDF for Python.