TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 10, Octobe
r 20
14, pp. 7076
~ 708
1
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.643
8
7076
Re
cei
v
ed Ma
y 28, 201
4; Revi
sed
Jun
e
28, 2014; Accepted July 1
5
,
2014
Theoretical Modeling of a Magnetic Loop Ante
nna for
Ultra Wide Band Application
Moses Emetere
Ph
y
s
ics De
part
m
ent, P.M.B. 1
023, Cov
e
n
ant Univers
i
t
y
, Ota
, Nigeri
a
E-mail: emeter
e@
ya
hoo.com
A
b
st
r
a
ct
T
he functi
ona
lit
y of an
i
m
prov
ed
ma
gn
etic lo
op a
n
te
n
na (M
LA) is a
pro
m
in
ent rese
arch w
h
ich
ha
s
span a
l
most three dec
ad
es. Its shape an
d si
z
e
ha
d me
ta
phors
i
z
e
fro
m
the usua
l an
al
ogu
e to a dig
i
t
a
l
devic
e-w
h
ich
i
s
now
us
ed fo
r exp
e
ri
me
nts i
n
sp
ace. In
th
i
s
pa
per, the
a
pplic
atio
n of M
L
A for
ultra w
i
d
e
ban
d (UW
B
) desig
n w
a
s propose
d
. A new
conce
p
t w
a
s i
n
troduc
ed -an
gul
ar disp
lace
me
nt theory w
h
i
c
h
w
a
s used to mi
tigate fadi
ng i
n
mu
ltip
ath prop
agati
on.
Keywo
r
d
: ma
g
netic lo
op a
n
te
nna, functi
ona
li
ty, ground
pl
an
e, ultra w
i
de ba
nd, radi
atio
n p
a
ttern
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. INTRODUCT
I
ON
The typical m
agneti
c
loop
antenn
a (ML
A
) is
a high-Q tuned ante
nna with a ve
ry narrow
pass ba
nd (a
s sh
own in Fi
gure 1
belo
w
). It is made
up of two loo
p
s of varying
sizes i.e. a la
rge
loop and
sma
ll loop, supp
o
r
t stru
cture
s
of either
unp
ainted wo
od, plasti
c or fibe
rgla
ss, reso
n
ant
circuit, tran
sceiver. The la
rge loop o
perates on
a lo
w freq
uen
cy (i.e. 10-2
5
KHz whi
c
h m
a
kes it
suitabl
e a
s
ra
diator) a
nd th
e small l
oop
on hi
gh f
r
equ
ency [1]. M
L
As
were n
o
t reco
n
with d
u
e
to:
necessity to retune
as the
op
erato
r
signifi
cantly cha
nge
s
fre
q
uen
cy,
malfunctioni
ng wh
en
brou
ght nea
r
metal, slight de-tuni
ng of the ant
en
na when broug
ht close to any bi
ologi
cal body.
Figure 1. Typical Di
agram
of Magnetic L
oop Antenn
a
Thereafter, several
i
m
pro
v
ements hav
e
be
en
m
a
d
e
on
the fu
n
c
tionality of t
he MLA
s
.
The u
s
ea
ble
freque
ncy
wa
s imp
r
oved u
pon from
20
KHz to 5
5
M
H
z
by the introdu
ction
of an
amplifier to
separate the
magneti
c
lo
o
p
s [2]
and
th
e
intro
d
u
c
tion
of an
ele
c
tri
c
ally small
mat
e
rial
to the nea
r-fi
e
ld of the ele
c
tri
c
ally small
radiato
r
[3, 4
]. That type of MLA was
re
ferre
d to as t
he
magneti
c
EZ antenna whi
c
h ha
s bee
n
proven to
operate at 10
0MHz [5]. Rece
ntly, the
MLA
appli
c
ation can be found i
n
plasm
a
ph
ysics i.e.
heating and ioni
zation for pro
c
essing pla
s
m
a
s
[6, 7], lase
r-pl
a
sma
inte
ra
ctions, pla
s
m
a
openi
ng
switche
s
, a
nd a
c
t
i
ve experim
e
n
ts in
sp
ace [
8
],
excitation of large a
m
plitud
e whi
s
tler mo
des in ma
gne
tized pla
s
ma
s [9, 10]. Certainly there a
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Theo
retical Modelin
g of a Magneti
c
Loo
p Antenna for Ultra Wi
de Band… (Mo
s
e
s
Em
etere)
7077
more to it
s fu
nction
ality than alre
ady kno
w
n. In this
pa
per, we p
r
op
ose
a mag
net
ic loo
p
anten
na
(MLA) –
sui
t
able for mit
i
gating fadin
g
in
multipa
t
h prop
agati
on by applyi
ng the an
gu
lar
displ
a
cement
theory on the
slots of a gro
und pla
ne.
2. Theore
t
ical
Bac
k
grou
nd
The time
- i
n
depe
ndent
S
c
hrödin
g
e
r
e
quation
was
modele
d
to
open
up
the
ele
c
tro
n
dynamics. Th
e time- inde
p
ende
nt Sc
hrö
d
inge
r equ
ation is given a
s
:
0
(1)
The lang
ra
ngi
an den
sity rel
a
ted to Equat
ion (1
) is give
n as:
|
|
|
|
(2)
Applying the minimum couplin
g rule
to
describ
e
the interaction of
with the
electroma
gne
tic field i.e.
⟼
,
⟼
where
,
W
h
er
e V
o
is
a
co
ns
ta
n
t
on
th
e su
r
f
ac
e o
f
th
e fa
ra
da
y lo
o
p
o
f
the
ML
A, E
o
i
s
the fiel
d, r is the
radiu
s
of the circula
r
loo
p
.
Equation (2) tran
sform
s
int
o
:
|
|
|
|
(3)
The ci
rcular
condu
ctor i
s
a
c
counte
d
for whe
r
e
.
cos
|
|
|
|
(4)
Applying the solutio
n
of the standi
ng wave
,
,
,
in Equation (4
)
Where E, B :
→
, the lagrangi
an den
sity take
s the form:
|
E
|
|
B
|
|
|
|
|
222
(5)
Con
s
id
erin
g the lag
r
angi
an
density of the parti
cle el
e
c
trom
agn
etic
field E-H field
of the circul
ar
monop
ole pla
s
ma ante
nna.
|
|
|
|
|
|
|
|
Whe
r
e the va
lues of ele
c
tri
c
and m
agn
e
t
ic wa
s ada
pted from Gl
en
n [11] and re
stru
ctured int
o
the circula
r
m
agneti
c
loop
antenn
a [12].
,
,
,
(6)
,
,
,
(7)
,
,
,
(8)
,
,
,
(9)
Whe
r
e
and
;
and
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 707
6
– 7081
7078
The bou
nda
ry condition
s for Equatio
n (6) are:
,
0
∞
,
0
,
.
,
∞
0
(10)
The bou
nda
ry condition
s for Equatio
n (7) are:
,
0
∞
,
0
,
.
,
∞
0
(11)
The bou
nda
ry condition
s for Equatio
n (8) are:
,
0
∞
,
0
,
.
,
∞
0
(12)
The bou
nda
ry condition
s for Equatio
n (9) are:
,
0
∞
,
0
,
.
,
∞
0
(13)
Whe
r
e
and
are the attenuation factors of
the electri
c
al fields;
and
are the attenuation
factors of the
magneti
c
fiel
ds;
and
are the mag
net
ic field
s
at the bou
nda
ry o
f
the
plasm
a
anten
na;
and
are the electric
fields at the bound
ary of th
e plasma ant
enna;
is the l
ength
of pla
s
ma a
n
tenna;
is th
e freq
uen
cy
of excited
po
wer;
is the
radio freque
ncy
c
u
rrent;
rep
r
ese
n
ts the radiu
s
or hor
i
z
ontal co
mp
onent of the antenna;
re
pre
s
ent
s the
vertical com
p
onent of the
antenn
a;
rep
r
esents the q
uality of the
electron
s;
repre
s
ent
s th
e
electri
c
al permeability;
repre
s
ent
s the
magnetic p
e
rme
ability;
is the spi
n
factor
whi
c
h
determi
ne
s the elect
r
on
spi
n
along the
h
o
rizontal
com
pone
nt of the plasm
a
;
is t
he spi
n
f
a
ct
o
r
whi
c
h dete
r
m
i
nes the el
ect
r
on
spin al
on
g
the vertical
comp
onent
of the plasm
a
;
is the spi
n
factor
whi
c
h
determi
ne
s th
e ele
c
tron
spi
n
along th
e
h
o
rizontal
com
pone
nt within
the ele
c
tric fi
eld
of the sheat
h;
is the
sp
in facto
r
whi
c
h d
e
termi
n
e
s
the
ele
c
tro
n
spi
n
alo
n
g
the vertical
comp
one
nt within the electric field of the she
a
th;
is the spin factor whi
c
h d
e
termin
es th
e
electron spin along
th
e
ho
rizontal com
p
onent within
t
he mag
netic
field of the pl
asma
anten
n
a
;
is the spin factor
whi
c
h d
e
termin
es the
elec
tro
n
spi
n
along the ho
rizo
ntal co
mp
onent within
the magn
etic field of the sheath;
is the
spin fa
ctor
which d
e
termi
n
es the el
ectron spi
n
along
the vertical compon
ent wit
h
in the
magn
etic field of the plasma;
is the spin factor
whi
c
h
determi
ne
s the ele
c
tro
n
spin
alon
g the verti
c
al
compon
ent wi
thin the ma
g
netic field
of the
s
h
eath.
Therefore the
total action o
f
lagrangi
an d
ensity is give
n by:
∬
(14)
Then the Eul
e
r-Lag
ran
ge
equatio
n associate
d
to the function
,
,B
,
,
,
,
gives ri
se to the followi
ng systems of eq
uation:
|
B
|
|
|
|
|
2
(15)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Theo
retical Modelin
g of a Magneti
c
Loo
p Antenna for Ultra Wi
de Band… (Mo
s
e
s
Em
etere)
7079
0
(
1
6
)
B
(17)
(18)
2
1
(19)
,
,
,
,
0
(20)
1
8
2
,
,
,
,
0
(21)
3. Experimenta
l
Arrangeme
nt
For the pu
rp
ose of this
study, we sha
ll be co
ncentrating o
n
Equation (1
8) whi
c
h
expre
s
ses th
e functionalit
y of
the antenna. We pro
pose an intro
ductio
n
of a
varacto
r
diod
e of
cap
a
cita
nce range
betwee
n
25 to
0.5pF
to be in
stalle
d at eithe
r
th
e front o
pen
port o
r
alo
n
g
s
ide
the varia
b
le
capa
citor. Th
e
vara
ctor i
s
u
s
ed to
limit th
e ab
so
rption
at the re
so
na
nce
by the h
e
l
p
of a hi
gh
se
ri
es
re
sista
n
ce
. A se
rie
s
in
d
u
ctor (L)
and
prote
c
tion
re
sistor (R) of re
spe
c
tive rating
1
Ω
a
nd
5.5
μ
H a
r
e
expe
ct
ed to
allo
w o
n
ly dire
ct
cu
rrent
(dc) a
nd t
r
un
cate t
he
alternative
cu
rrent
flow. Th
e typ
e
of
coil
u
s
ed
for thi
s
mod
e
l is not
spe
c
ified la
rgely
d
ue to
con
s
trai
nts of
a
c
cess to
material
s a
n
d
the flexibility to inco
rpo
r
ate re
ce
nt
di
scoverie
s in
material
scie
nce, tho
ugh;
we
ackno
w
le
dge
that
coil m
a
terial
is the
source
of di
screpa
ncy
bet
ween
mea
s
u
r
e
d
an
d
simul
a
ted
radiatio
n pattern
s.
4. Resul
t
s
and
Discus
s
ion
The ra
diation
a
l angul
ar di
spla
cem
ent theory
is
all a
bout su
bstitut
i
ng the slot
s on the
ground
plane with the
radiation
angle whic
h had been properly ac
c
o
unted for in s
e
c
t
ion II. From
Equation (1
8), slot with higher wi
dth is repre
s
e
n
ted b
y
the sine of
the radiatio
n angle; slot wi
th
lowe
r width i
s
represented
by t
he cosin
e
of the radiation angle.
Th
e
sum of both co
sine an
d si
ne
of radi
ation a
ngle
rep
r
e
s
e
n
ts the M
L
As without
slot.
We
simul
a
ted
the rel
a
tion
ship bet
wee
n
the
radiatio
n a
ngl
e an
d its effe
ct on
the
fun
c
tionality of t
he a
n
tenn
a a
s
sho
w
n
in
Fi
gure
2. T
hou
gh
the radiation
pattern
s
of th
e MLA
with
a
nd
without
sl
ots o
n
the
g
r
ound
pla
ne
a
r
e ve
ry si
mila
r b
u
t
the pe
rform
a
nce
of the M
L
A differs at
variou
s
condi
tions. First, the sl
ot with
highe
r wi
dth
wa
s
more
effective on the
gro
und pl
ane to
minimize th
e gro
und
pla
ne effect
s o
n
plan
ar
UWB
magneti
c
lo
o
p
ante
nna.
The
slot
wit
h
lo
wer wi
dt
h was le
ss
effective. Thi
s
con
c
e
p
t is in
agre
e
me
nt wi
th the
experi
m
ental
disco
v
eries ma
de
i
n
the
pa
st [1
3]. The
ne
w
discovery
is that
the MLA
is functio
nally a
c
tive when
a
slot
-le
s
s g
r
o
und
plan
e i
s
angul
arly di
splaced. T
h
is i
dea
wa
s applie
d to slot of higher widt
h (sin
(x)-cos(x)) a
n
d
the slot of
lowe
r width (cos(x
)-sin
(
x))
as
sho
w
n in Fi
g
u
re 3, It improved the fun
c
tionality as t
he tran
smi
ssi
on incre
a
sed
con
s
ide
r
a
b
ly to
the mag
n
itud
e of the M
L
A without
slo
t. Another
di
scovery
wa
s the reve
rsal
of functio
nal
ity
betwwen
slot
s of varying width
s
i.
e. slot with lower
width was m
o
re a
c
tive than slot with hi
gher
width.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 707
6
– 7081
7080
Figure 3. Veri
fication of the
Angular
Displa
ceme
nt Theory on the Fun
c
tional
ity of
the MLA
Figure 2. The
Function
ality of the MLA with or
without Slot
The freq
uen
cy variation of the MLA as shown
in Figure 4, sugg
est
that MLA can
cover
the entire ultra wid
e
b
and
(UWB) with a
refle
c
tion co
efficient
of a
b
out -2
dB. Th
e integ
r
ation
of
the vara
ctor
diode into th
e mechani
sm
of t
he MLA enabl
es the i
m
peda
nce m
a
tchin
g
whi
c
h is
depe
ndent
o
n
the
sl
ot of
antenn
a at
lo
wer fre
que
nci
e
s. Ag
ain, th
e MLA
with
and
witho
u
t
slot
wa
s
te
sted,
t
he reflectio
n
coeffici
ent wa
s
b
e
tter
th
an -2dB over
th
e
enti
r
e UWB
with sig
n
ifica
n
t
differen
c
e be
tween MLA
with and with
out slot. In F
i
gure 5, the MLA without slot – unde
r the
angul
ar di
spl
a
cem
ent the
o
ry wa
s test
ed und
er di
ff
erent lo
w fre
quen
cie
s
i.e. 1.3MHz, 2M
Hz,
2.5MHz, 5MHz. The lo
wer t
he frequ
en
cy wa
s co
nfirme
d to favor impedan
ce mat
c
hing.
Figure 4. Fre
quen
cy Testi
ng of MLA with and
without Slot
Figure 5. Fre
quen
cy Tunin
g
of MLA without
Slot
5. Conclu
sion
The MLA h
a
s sho
w
n
additi
onal fun
c
tion
ality i.e. UWB by inco
rpo
r
a
t
ing a vara
cto
r
diod
e
to the fro
n
t o
pen
port. T
h
e ra
diation
a
l
angul
ar
displ
a
cem
ent the
o
ry supp
ort
s
the MLA
with
out
slot. The ML
A covers the entire ultra wide ba
nd (U
WB) with a reflection coef
ficient of abo
ut -
2dB. The
r
efore MLA
can
b
e
of g
r
eate
r
i
n
tere
st for
co
mmercial
and
military wi
rel
e
ss te
chnol
o
g
ies
if improved-u
pon.
-
100
-8
0
-6
0
-4
0
-2
0
0
20
40
60
80
100
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
ra
di
ati
v
e an
gl
e
t
r
an
sm
is
si
o
n
f
u
nc
ti
o
n
al
i
t
y
of
an
te
n
n
a
cos
(
x
)
sin
(
x
)
sin
(
x
)
+
c
o
s
(
x
)
s
i
n
(
x
)
-co
s
(x
)
cos
(
x
)
-
s
i
n
(x
)
-8
0
-6
0
-40
-20
0
20
40
60
80
10
0
-1
.
5
-1
-0
.
5
0
0.
5
1
ra
di
a
t
i
v
e an
g
l
e
t
r
an
s
m
issio
n
f
u
nc
t
i
o
n
al
i
t
y
o
f
ant
e
nna
si
n
e
co
s
i
ne
si
n
e
+c
osi
n
e
-100
-80
-6
0
-40
-2
0
0
20
40
60
80
100
-2.
5
-2
-1.
5
-1
-0.
5
0
x 1
0
-6
ra
di
a
t
i
v
e
ang
l
e
h
o
r
i
z
o
n
t
a
l
c
o
m
p
o
n
e
n
t o
f
th
e
a
n
te
n
n
a
f
r
e
q
ue
ncy
v
a
r
i
a
t
i
o
n o
f
an
te
n
n
a
5M
H
z
2.
5M
H
z
2M
H
z
1.
3M
H
z
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Theo
retical Modelin
g of a Magneti
c
Loo
p Antenna for Ultra Wi
de Band… (Mo
s
e
s
Em
etere)
7081
Referen
ces
[1]
Unkn
o
w
n, Am
plifier
for Sma
ll Ma
gnetic
an
d El
ectric Wi
d
eba
nd
Rece
ivi
ng Ant
enn
as
Mode
l AAA-
1
Rev.1.1-1.9., w
w
w
.
a
c
tive-
ante
nna.e
u
.
201
0.
[2]
Unkn
o
w
n, W
i
d
eba
nd Activ
e
S
m
all Ma
gn
etic
Loo
p
Ante
nna. http://
w
w
w
.
lz
1a
q.sign
acor.com
/docs/
w
s
m
l
/
w
i
de
ba
nd
activ
e
-sm-loo
p-a
n
te
nna.htm
[3]
P Guittienn
e, E
Chev
ali
e
r, C
Holl
enste
in. T
o
w
a
rds
an
opti
m
al a
n
ten
na fo
r hel
icon
w
a
v
e
s exc
i
tatio
n
.
J.
Appl. Phys.
20
05
;
98: 08
330
4
.
[4]
RL Ste
n
ze
l, J
M
Urrutia,
KD
Strohma
i
er.
Nonl
in
ear el
ec
tron
ma
gn
eto h
y
dro
d
y
nam
ic ph
ysics.
VII.
Magn
etic loo
p
anten
na i
n
a field-fre
e
plasm
a
.
Physics of Plas
m
a
s.
20
09; 16; 022
10
3.
[5]
Richar
d W
Z
i
o
l
ko
w
ski
,
C
h
ia-
C
hin
g
L
i
n, ea
n
A Niels
en, Mi
nas H T
aniel
ia
n, Christop
her
L Hol
l
o
w
a
y
.
Desig
n
an
d E
x
perime
n
tal
Ver
i
fication
of
a
3
D
Ma
gnetic
EZ
Anten
n
a
at
30
0 MHz.
IEEE
Antenn
as an
d
W
i
reless Pro
p
a
gatio
n Letters
. 200
9; 8: 989-9
93.
[6]
KD Strohmaier, JM Urrutia,
RL Stenzel.
Nonlinear
electron
magnetohy
drod
y
n
amics phy
s
ics.
III.
Electron e
ner
gi
z
a
ti
on Phys. Pl
asmas.
200
8; 15
:
04
23
09.
[7]
JM Urrutia,
R
L
Stenz
el, K
D
Strohma
i
er.
Nonl
in
ear
el
ec
tron ma
gn
etoh
ydr
o
d
y
n
a
mics
ph
ysics. IV.
Whistler instabilities Phys. Plasm
a
s.
2
008; 1
5
: 0621
09.
[8]
JM
Urrutia,
RL Stenz
el, K
D
Strohm
aier.
No
nli
n
e
a
r e
l
ectron m
a
g
net
oh
ydr
o
d
y
n
a
mic
s
ph
ys
ics. I.
W
h
istler sph
e
r
o
maks, mirrors
, and field rev
e
rsed confi
gurat
ions.
Phys. Plasm
a
s
.
2
008; 1
5
: 0423
07.
[9]
RW Ziolko
w
s
ki, A Erentok.
Metamateri
al-b
ased effici
ent
electric
all
y
sm
all a
n
ten
nas.
IEEE Trans.
Antenn
as Prop
ag.
, 200
6; 54(7
)
: 2113–
21
30,.
[10]
A Erentok. RW
Z
i
olko
w
s
k
i
. An
efficient meta
material-
i
ns
pir
ed el
ectrica
l
l
y
-
s
mall a
n
ten
na.
Microw. Opt.
Tech. Lett.
, 2007; 49(6):1
28
7
–12
90.
[11]
Glenn SS. Ra
diati
on Efficien
c
y
of Electrica
l
l
y
Sma
ll Multit
urn Lo
op Ante
nnas IEEE T
r
a
n
s Antenn
a
s
Propa
gat. 197
2; 20(5): 65
6-6
57.
[1
2
]
Ju
n
w
ei
L
v
, Zi
l
i
C
h
en
, Yi
ng
song
Li
.
Jour
nal
o
f
Electro
m
a
g
n
e
tic Ap
plic
atio
n a
nd A
n
a
l
ysis
. 201
1;
3(8)
:
123-
121.
[13]
ya
ng
Lu, Y
i
H
uan
g, Hass
an
T
a
riq, Ping
C
ao.
R
educ
in
g grou
nd-p
l
a
ne effects
on UW
B
mon
opo
l
e
anten
nas.
IEEE Antennas & Wirele
ss Propagation Letters
. 201
1; 10; 147-
150.
Evaluation Warning : The document was created with Spire.PDF for Python.