TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.5, May 2014, pp
. 3431 ~ 34
4
3
DOI: http://dx.doi.org/10.11591/telkomni
ka.v12i5.5364
3431
Re
cei
v
ed O
c
t
ober 2
4
, 201
3; Revi
se
d Decem
b
e
r
5, 2013; Accepte
d
De
cem
ber
26, 2013
Experimental Verification of Circulating Current
Mitigation Scheme in MMC by Using ISE Technique
Madichetty
Sreedhar*, Abhijit Dasgupta
Camp
us-3, Schoo
l of Electric
al Eng
i
ne
eri
ng,
KIIT
Universit
y
*Corres
p
o
ndi
n
g
e-mail: sre
e
d
har.80
3
@gm
a
il
.com
A
b
st
r
a
ct
The circulating currents of a
m
o
dular multilevel conv
erter (MMC)
are ideally assumed to be
t
h
e
sum of
an
ac
compo
nent
an
d dc
ac
co
mp
one
nt o
per
ati
n
g w
i
th fu
nda
mental
freq
uenc
y. How
e
ver,
a
s
a
c
current flow
s throug
h the s
u
b
m
o
dul
e (S
M) capacitor
s,
the capac
ito
r
voltages fl
u
c
tuate w
i
th time.
Cons
equ
ently, the
circul
ating current
is usu
a
lly distorte
d an
d all
o
w
s
multi
p
le frequ
ency c
o
mpo
nents w
i
th
the pe
ak va
lu
e
of it is i
n
creas
ed co
mpar
ed
w
i
th the theor
e
t
ical va
lue. T
h
e
circul
ating
cur
r
ents w
ill i
n
cre
a
se
pow
er l
o
sses
and
may thr
e
a
t
en the
safe
o
perati
on
of
the
sw
itching
dev
i
c
es a
nd
mod
u
l
e
ca
pacitors. T
h
i
s
article pr
op
ose
s
a MMC w
i
th a new
control
l
e
r
desig
n
to
miti
gate circu
l
ati
n
g
currents for va
rious
mo
dul
atio
n
ind
e
xes for w
i
d
e
rang
es in
loa
d
. T
h
is new
controll
er
is opti
m
i
z
e
d
w
i
th up
p
e
r and
low
e
r modu
le vo
ltages
a
s
an o
b
j
e
ctive fu
nction. T
h
e
opt
imu
m
val
ues f
o
r control
l
er
ar
e
obtai
ne
d by
usi
ng co
nve
n
tion
a
l
inte
gral s
q
u
a
r
e
error tech
niq
u
e
(ISE). T
he pro
pose
d
sch
e
m
e
show
s its e
ffe
ctiveness
by c
ontrol
lin
g the c
i
rculati
ng curr
e
n
ts
for vari
ous
loa
d
s. It made
strategic
conc
lus
i
ons
on MM
C t
o
mak
e
the
sys
tem
more r
o
b
u
st in
oper
atio
n
and
less com
p
lex
i
ty in design and c
ontrol. The
proposed syst
em
is verified
by 10KVA
prot
otypes MMC and
results are ex
pl
ored.
Ke
y
w
ords
:
mo
dul
ar multi lev
e
l converter, circ
ulati
ng cu
rre
nt miti
gati
on, ap
pl
icatio
n of ISE to MMC
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Many investi
gation
s
in th
e field of mo
dular
multi-le
vel inverters
are l
ead to
succe
ssfu
l
operation
in
high
voltag
e DC (HVDC)
system
s. In rece
nt times,
I
n
the p
o
we
r t
r
an
smi
ssi
on
era,
for very long
distan
ce
s HV
DC tran
smission line
s
ba
sed on
current
sou
r
ce inverters
(CSI) a
n
d
voltage source inve
rters
(VSI) have b
een offe
ri
ng more econo
mic
a
nd co
st
effective
po
we
r
transmissio
n. But, recently
HVDC tran
smissi
on
syste
m
s ba
se
d on
VSI have received incre
a
si
ng
attention du
e
to many
opp
ortunitie
s
li
ke
to the
g
r
id
a
c
cess
of we
a
k
AC net
works, ind
epen
de
nt
control of a
c
ti
ve and
rea
c
ti
ve power,
su
pply of
pa
ssi
v
e netwo
rks
and bl
ack
sta
r
t ca
pability, high
dynamic p
e
rf
orma
nce and
small spa
c
e requireme
nts.
In parti
cula
r, the novel
power
conve
r
te
r top
o
logy
for MMI h
a
s b
een i
n
tensivel
y
resea
r
ched a
nd develo
ped
, valuated by many feat
ures like high
modula
r
ity, simple scal
abili
ty,
low
expen
se
of filters,
ro
bust
co
ntrol,
sim
p
le i
n
d
e
sig
n
a
n
d
re
dund
an
cy. T
h
is
co
nverte
r
is
comp
osed b
y
identical p
o
we
r cells
conne
cted i
n
seri
es, e
a
ch
one b
u
ild u
p
with
stand
ard
comp
one
nts,
enabli
ng th
e co
nne
ction
to high
volt
age p
o
le
s. Although th
e
MMI and
derived
topologi
es
offer
several ad
vantage
s the
y
also int
r
od
uce
a mo
re
compl
e
x de
si
gn of the p
o
w
er
circuit a
nd
co
ntrol g
oal
s, which
have
be
en the
ma
in
reason fo
r the
re
cent
and
o
ngoin
g
research.
Furthe
rmo
r
e also
Medi
um
Voltage Co
nverters ar
e
an inte
re
stin
g area fo
r th
e ap
plicatio
n
of
MMCs.
The impo
rtan
t features of the modul
ar
m
u
ltilevel conv
erters a
r
e as
follows:
a.
Voltage sh
ari
ng of the device
s
will be
h
a
ndled a
u
toma
tically by the topolo
g
y.
b.
The
wavefo
rm shape
will
l
ead to
si
nu
so
idal
waveform due
to
whi
c
h th
e T
H
D
will b
e
redu
ced
and the ha
rm
onics a
s
well.
c.
The
ope
ratin
g
voltage
can
be i
n
cre
a
sed
of th
e
conve
r
ters, in
stead
of co
nne
cting
the
device
s
in seri
es o
r
in
parallel, which make
s the
system mo
re
compl
e
x.
As the
concept is still in
nurturi
ng
stage, m
any researches are goi
ng on in
suppression
of circul
ating
cu
rrents. In
[1], it propo
ses
a
ci
rculati
ng curre
n
t
suppressin
g
controlle
r (CCSC)
based on the
doubl
e line-freque
ncy, neg
ative-se
que
n
c
e
rotatio
nal frame a
nd are
minimize
d by a
pair
of propo
rtional i
n
tegral co
ntroll
ers. A closed
-lo
op meth
od f
o
r
sup
p
re
ssi
on of the i
n
ner
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3431 – 34
43
3432
curre
n
t in an
MMC
wa
s propo
sed [2]. Whe
r
e a
s
in
[
3
], it develops a ge
ne
ral framework for
the
cap
a
cito
r volt
age
bala
n
ci
n
g
of
an
MMC. In [4], it de
signs,
co
nst
r
u
c
ts,
and
test
s a
100
-V 5
-
kVA
pulsewi
dth-m
odulate
d
STATCOM b
a
sed
on the SDBC
, with focus o
n
the operatin
g prin
ciple a
n
d
perfo
rman
ce.
An imp
r
ove
d
ci
rculating
curre
n
t c
ontrol metho
d
[5]
by ap
plying
a digital
plug
-in
repetitive con
t
roller
i
s
discussed
for ha
rmoni
c
el
i
m
in
ation of a
ca
rrie
r
-pha
se
-shift pulse
-wid
th-
modulatio
n (CPS-PWM)
based mo
dul
ar multilevel
c
onve
r
ter i
s
discu
s
sed. In
[6] propo
se
s a
control meth
od for ci
rcul
ating cu
rrent
s MMCs u
n
d
e
r unb
alan
ce
d voltage co
ndition
s. In [7] it
prop
oses
a supplem
enta
r
y dc voltage
ri
pple supp
re
ssing
cont
rolle
r (DCV
RSC) to eliminate the
se
con
d
-o
rd
er harm
oni
c in
the dc volt
age of
the
MMC-HV
D
C system. A
modified
con
t
rol
architectu
re f
o
r MM
C, aimi
ng at su
ppre
ssi
ng the
AC comp
one
nts in the circul
a
t
ing cu
rre
nt h
a
s
prop
osed in [
8
]. An additio
nal propo
rtio
nal-re
s
on
ant
control loo
p
is de
sign
ed to
regul
ate the
AC
comp
one
nt of the circulatin
g current to zero [9].
Multicarri
er level-sh
ifted pulse
-wi
d
th-mo
dulatio
n
is ap
plied
a
nd the p
e
rfo
r
man
c
e
of in
terleavi
ng
an
d non
-inte
r
le
aving the
ca
rrie
r
waveforms
betwe
en th
e
uppe
r a
nd th
e lo
wer arms is
rep
o
rted
[10]. The
pro
portion
al-re
s
o
nant (P
R) terms
for the line
c
u
rrent, mak
i
ng it th
u
s
p
o
ssible
to in
trodu
ce
expli
c
itly any
ch
ose
n
h
a
rm
o
n
ic
comp
one
nt [11]. In [12], it p
r
esents
a mul
t
ivari
able con
t
rol app
roa
c
h
to reali
z
e an
optimal curre
n
t
control of the
positive, ne
gative and zero p
h
a
s
e-se
quen
ce conv
erter cu
rre
nts
without
ste
a
d
y-
state erro
r a
nd the comp
ensati
on of h
i
gher
harmon
i
cs
usin
g an
extended e
s
ti
mator. A co
n
t
rol
method
of ad
ding th
e feed
-forward
cu
rrent is intro
d
u
c
ed
with
strategy of remov
i
ng the
seco
nd
harm
oni
c cu
rrent is al
so descri
bed in
orde
r to
improve the arm current
s [13]. One of the
prop
osed
sol
u
tions i
n
clu
d
e
s
a mai
n
-circuit filter
that is tune
d to blo
ck th
e secon
d
-o
rde
r
ha
rm
onic
in the circula
t
ing cu
rre
nt the
ac-side
current and th
e highe
r-ord
e
r
harmoni
cs i
n
the circul
ating
curre
n
t whe
n
su
ch a filter i
s
used [1
4]. The opt
imal am
plitude an
d p
hase of the h
a
rmo
n
ic
cu
rre
nt
comp
one
nts
can
be inje
ct
ed in the
circulatin
g cu
rrents of a M
M
C to minim
i
ze the
ca
pa
citor
voltage fluctu
ations [15].
This pa
per is
orga
nized i
n
f
i
ve se
ction
s
. I
n
sectio
n-1, it intro
d
u
c
e
s
a
bout the
MM
C a
nd it
will reveal
s a
bout the nece
ssi
sty of MMC and p
r
oble
m
s face
d, In se
ction-2, it shall be discu
s
sed
about the p
r
opo
sed
circu
i
t and its op
eration. In
section
-
3, it shall be di
scu
s
sed ab
out the
controlle
r de
sign a
nd it’s stability analysis. In
se
ction-4, it sh
all di
sc
u
s
sed about
thesim
ulatio
n
and expe
ri
mental re
su
lts. In Section 5, it
shall di
scussed a
bout con
c
lu
sio
n
with
recomme
ndat
ions.
The ba
si
c ci
rcuit topolo
g
y is sh
own in
Figure
1. It
is a three ph
ase five leve
l MMC
having four
sub modul
es i
n
uppe
r limb
and four
su
b
module
s
in lowe
r limb. Each
sub mo
d
u
le
basi
c
circuit is sho
w
n
in Figure
2. Th
is circ
uit m
a
i
n
ly co
nsi
s
t o
f
an in
du
ctor having
self-
indu
ctan
ce L
1
and L
2
.Each
module co
nsists of main switch S
1
and auxiliary switch S
2
with their
anti-pa
rallel diode
s
D
1
a
nd D
2
re
spe
c
tively. Main switch and
auxiliary switch con
s
ist
s
of a
cap
a
cito
r co
n
necte
d in parallel as
C
s1
.
It has bee
n consi
dered the
five levels MMC fo
r valid
a
t
ion. The switchin
g ope
rati
ons a
r
e
as
sho
w
n i
n
Table 1. T
he
top four
swit
ches i
n
‘R’
ph
ase lim
b is ta
ken
as S
1
, S
2
, S
3
, S
4
and the
bottom four
switch
es
con
s
i
dere
d
a
s
S
5
, S
6
, S
7
, S
8
of
a singl
e leg.
Whereas the
auxiliary swit
ches
are in
anti-operation of
main
switches provided with del
ay
, whi
c
h
will be explained in
sub
s
e
que
nt section
s
. In the Table 1, it sho
w
s t
he switching
states of a MMC. Here, it has
be
en
con
s
id
ere
d
‘
1
’ indi
cate
s t
he
swit
ch i
s
in O
N
condit
i
on an
d ‘0’
indicates t
he
swit
ch i
s
in
off
conditions. It mainly consis
ts of o
ne
sta
t
e of ‘V/2’ out
put volt
age
a
nd ‘1
6’ state
s
of ‘V/4’ outp
u
t
voltage and ‘
16’ state
s
of ‘0’ voltage. In
Table
2, It shows the basi
c
operatio
n of a redu
nda
nci
e
s
swit
ch state
con
d
ition of a one up
pe
r limb of Fi
gure 2. In Ta
ble 3, it sho
w
s the
ca
pa
citor
cha
r
gin
g
stat
us of a upp
er
limb of a Figu
re 2.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Expe
rim
ental Verificatio
n
of Circulating
Current Mitigation Schem
e in
MMC by… (,
,,)
3433
2.
Fiv
e
Le
v
e
l MMC Oper
a
t
ion and Deriv
a
tion of Circulating Cur
r
ents
Figure 1. Three Phase Five Level MMC
Fi
gure 2. Expande
d MMC f
o
r a ‘R’ Pha
s
e Limb
Table 1. Basi
c Switching O
peratio
n of a Five Level MMI
State
2
S
1
S
2
S
3
S
4
S
5
S
6
S
7
S
8
S
1
S
2
S
3
S
4
S
5
S
6
S
7
S
8
State
1
1 1 1 0 0 0
0
0 0 0 0 1
1 1 1
2
4
1
1 1 0 1 0 0
0
0 0 0 1 0
1 1 1
4
1
1 1 0 0 1 0
0
0 0 0 1 1
1 0 1
1
1 1 0 0 0 0
1
0 0 0 1 1
1 1 0
0
1 1 1 1 0 0
0
1 0 0 0 0
1 1 1
0
1 1 1 0 1 0
0
1 0 0 0 1
0 1 1
0
1 1 1 0 0 1
0
1 0 0 0 1
1 0 1
0
1 1 1 0 0 0
1
1 0 0 0 1
1 1 0
1
0 1 1 1 0 0
0
0 1 0 0 0
1 1 1
1
0 1 1 0 1 0
0
0 1 0 0 1
0 1 1
1
0 1 1 0 0 1
0
0 1 0 0 1
1 0 1
1
0 1 1 0 0 0
1
0 1 0 0 1
1 1 0
1
1 0 1 1 0 0
0
0 0 1 0 0
1 1 1
1
1 0 1 0 1 0
0
0 0 1 0 1
0 1 1
1
1 0 1 0 0 1
0
0 0 1 0 1
1 0 1
1
1 0 1 0 0 0
1
0 0 1 0 1
1 1 0
1
1 1 0 1 0 0
0
0 0 0 1 0
1 1 1
1
1 1 0 0 1 0
0
0 0 0 1 0
1 1 1
1
1 1 0 0 1 0
0
0 0 0 1 1
0 1 1
1
1 1 0 0 0 1
0
0 0 0 1 1
1 0 1
1
1 1 0 0 0 0
1
0 0 0 1 1
1 1 0
0
1
1 0 0 1 1 0
0
1 0 1 0 1
1 0 0
0
1
1 0 0 0 1 1
0
1 0 1 0 0
1 1 0
1
1 0 0 0 0 1
1
1 0 1 0 0
0 1 1
1
1 0 0 1 0 0
1
1 0 1 0 1
0 0 1
1
1 0 0 1 0 1
0
1 0 1 0 1
0 1 0
1
1 0 0 0 1 0
1
1 0 1 0 0
1 0 1
0
1 1 0 1 1 0
0
0 1 0 1 1
1 0 0
0
1 1 0 0 1 1
0
0 1 0 1 0
1 1 0
0
1 1 0 0 0 1
1
0 1 0 1 0
0 1 1
0
1 1 0 1 0 0
1
0 1 0 1 1
0 0 1
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3431 – 34
43
3434
0
0 1 1 1 1 0
0
1 0 0 1 0
1 1 0
0
0 1 1 0 1 1
0
1 0 0 1 0
0 1 1
0
0 1 1 0 0 1
1
1 0 0 1 1
0 0 1
0
0 1 1 1 0 0
1
1 0 0 1 1
0 1 0
0
0 1 1 1 0 1
0
1 0 0 1 0
1 0 1
0
0 1 1 0 1 0
1
0 1 0 1 1
0 1 0
1
0 0 1 1 1 0
0
0 1 0 1 0
1 0 1
Table 2. Basi
c Switching O
peratio
n of
a Red
und
ance
Switchin
g State in MMI
State Curre
nt
Sw
itching
Capacitor
Capacitor
1010
> 0
S
1
D
2
S
4
D
3
Cs
2
Cs
4
1010
< 0
S
2
D
1
S
3
D
4
Cs
4
Cs
2
0110
> 0
S
2
D
1
S
4
D
3
Cs
1
Cs
4
0110
< 0
S
2
D
1
S
4
D
3
Cs
4
Cs
1
0101
> 0
S
2
D
1
S
3
D
4
Cs
1
Cs
3
0101
< 0
S
1
D
2
S
4
D
3
Cs
3
Cs
1
1001
> 0
S
1
D
2
S
3
D
4
Cs
1
Cs
3
1001
< 0
S
2
D
1
S
4
D
3
Cs
3
Cs
2
Table 3. Basi
c Ca
pa
citor S
w
itchi
ng Op
erati
on of a Re
dund
an
ce Switching State in MMI
S
1
S
2
V
out
Curre
nt
Power
Capacitor
On
Off
0
> 0
S
1
Undefined
On
Off
0
< 0
D
1
Undefined
Off
On
V
dc
> 0
D
2
Charge
Off
On
V
dc
< 0
S
2
Discharge
Due to the un even voltage di
stri
bution in
t
he phase
legs, circul
ating current will
flow
throug
h the
system. It also con
s
ist
s
of curr
ent h
a
rmo
n
ics wh
ich dete
r
io
rat
e
s the sy
ste
m
perfo
rman
ce.
So, an atte
mpt is made
to derive
the curre
n
t harmonics p
r
e
s
ent in circula
t
ing
curre
n
ts a
nd
its ne
ce
ssary
controller to
sup
p
re
ss the
same. T
he i
n
stanta
neo
us voltage acro
ss
the ca
pa
citor
is taken a
s
,
,
,
….
. It consi
ders the volta
ge di
stributio
n acro
ss th
e
cap
a
cit
o
rs i
s
same.
V
V
V
V
….
V
.
(
1
)
Und
e
r
any switchi
ng
con
d
ition, the av
erag
e
voltag
e acro
ss the
uppe
r a
r
m
switch
es i
s
sho
w
n in Equ
a
tion (2
):
∆
(
2
)
The total ca
p
a
citor volta
g
e
of the capa
cito
r i
s
sh
own in Equatio
n (3) a
nd de
ferential
cap
a
cito
r voltage is i
s
sh
o
w
n in Equati
on (4
). The same ha
s bee
n repe
ated fo
r lowe
r limb
and
sho
w
n in Equ
a
tion (5
), (6)
and (7
).
V
V
V
V
….
V
.
(3)
∆V
∆
V
∆
V
∆V
….
∆V
.
(
4
)
∆
(
5
)
V
V
V
….
V
(6)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Expe
rim
ental Verificatio
n
of Circulating
Current Mitigation Schem
e in
MMC by… (,
,,)
3435
∆V
∆
V
∆
V
….
∆V
(7)
The ci
rculatin
g cu
rre
nts in
the arm in
du
ct
ors con
s
ist
s
of both DC
and AC
com
pone
nts.
These A
C
co
mpone
nts
are called
as the h
a
rm
onics
, si
nce tho
s
e are
rotatin
g
with
the hi
ghe
r
freque
nci
e
s i
n
the system.
i
∑
i
∞
(
8
)
i
i
i
i
+….
i
(
9
)
In orde
r to derive the ci
rculating voltag
e
and ci
rculat
ing cu
rrent, the output voltage in a
singl
e pha
se
out of three p
hases i
s
:
V
..
ω
(
1
0
)
I
I
.s
i
n
ω
t
φ
(
1
1
)
Whe
r
e ‘m’ is t
he modul
atio
n index of a signal.
But, the actual voltage at the output volt
age is
sho
w
n
in Equation (12) an
d (1
3):
V
N
.
1
m
.
s
in
ω
tV
∆
V
(
1
2
)
V
N
.
1
m
.
s
in
ω
t
V
∆
V
(
1
3
)
Therefore, th
e total voltage is:
V
V
V
(
1
4
)
1
m
.
s
in
ω
t
∆
V
V
(
1
m
.
s
i
n
ω
t
V
∆
V
)
(15
)
V
V
V
∆
∆
.
ω
.∆
∆
(
1
6
)
To derive th
e disturban
ce voltage in the uppe
r an
d lowe
r cell
cap
a
cito
r of a leg i.e.
∆V
and
∆V
.
It consid
ers the voltage a
c
ross on
e ca
p
a
citor m
odul
e
as:
V
i
t
.d
t
(
1
7
)
V
i
t
.N
.d
t
(
1
8
)
Her
e
:
i
∑
i
∞
(
1
9
)
i
∑
i
∞
(
2
0
)
N
.
ω
(
2
1
)
N
.
ω
(
2
2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3431 – 34
43
3436
V
i
.
.
ω
∞
(
2
3
)
V
i
.
.
ω
∞
(
2
4
)
C
C
C
….C
(
2
5
)
C
C
C
….C
(
2
6
)
The cu
rrent in uppe
r and l
o
we
r limb is:
i
i
i
∑
i
n
∞
(
2
7
)
i
→
The curre
n
t present in the phase ’a
’ upper a
r
m,
i
→
Dc
comp
one
nt of the
cur
r
e
n
t
,
i
→
Fund
amental com
pone
nt of the curre
n
t,
i
.n
→
Harm
onic
comp
on
ent of the current.
i
i
i
∑
i
.n
∞
(
2
8
)
i
i
.
cos
n
ω
t
φ
(
2
9
)
∴
The total current
i
i
i
(
3
0
)
i
i
i
∑
i
.n
∞
i
i
∑
i
.n
∞
(
3
1
)
It conce
der’
s
about voltage
for ‘N’ modul
e in terms of
cap
a
cita
nce.
i
I
.s
i
n
ω
t
φ
(
3
2
)
it can be written as
sum of
dc compo
nen
t and ac com
pone
nt as in
Equation (33):
i
i
∑
i
.n
∞
i
i
∑
i
.n
∞
(
3
3
)
The
small
ch
ange
in
cap
a
c
itor volta
ge i
n
up
per
an
d l
o
we
r lim
b is shown in E
qua
tion (3
4)
and Equatio
n
(35):
∆V
.N
.
1
m
.s
i
n
ω
t
.
∑
i
∞
.
dt
(
3
4
)
∆V
.
N
.
1
m
.s
i
n
ω
t
.
∑
i
∞
.
dt
(
3
5
)
∴
The total pha
se ‘a’ voltage
is sum
of upp
er and lo
we
r
voltages.
V
V
V
(
3
6
)
V
∆
∆
ω
.∆
ω
.∆
(
3
7
V
.N
.
1
m
.s
i
n
ω
t
.
∑
i
∞
.
dt
.
N
.
1
m
.s
i
n
ω
t
.
n
1
∞
ia
cn
.
dt
(38)
ω
.
..
.
ω
.
∑
∞
.
ω
.
..
.
ω
.
∑
∞
.
(39
)
From
the
abo
ve Equation
(39) it con
c
lud
e
s th
at, the
system
con
s
i
s
ts of
both
d
c
a
nd
a
c
comp
one
nts.
The main i
m
porta
nt issue is
steady
st
ate. To mai
n
tain it is fun
damental
an
d to
eliminate the
dc an
d ac
co
mpone
nts, so
me co
nt
rolle
r
is req
u
ired to be add
ed in the syste
m
. The
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Expe
rim
ental Verificatio
n
of Circulating
Current Mitigation Schem
e in
MMC by… (,
,,)
3437
controlle
r sh
o
u
ld be de
sig
n
ed in su
ch a
way that, the followin
g
Equ
a
tion (4
0) an
d (41
)
sh
ould
be
sat
i
sf
ie
d.
1
m
sin
ω
t
1m
s
i
n
ω
t.
∑
i
∞
0
(
4
0
)
∑
i
∞
0
(
4
1
)
From
the E
q
uation
(40
)
, i
t
clea
rly
sho
w
s the
u
s
ag
e of m
u
ltiple
freq
uen
cy
controlle
d
controlle
r. It has bee
n d
e
s
ign
ed a
nd it
s
stability an
alysis also h
a
s
been
test
ed
su
ccessfu
lly in
f
o
llowin
g
se
ct
ion.
3.
Optimal Controller Us
ed to Comp
e
n
sate the
Cir
c
ulating Cur
r
ents
By con
s
ide
r
i
ng the
Equa
tion (3
9),
(4
0) a
nd
(4
1),
the
controll
er
sho
u
ld
d
e
sig
n
to
eliminate th
e
lower orde
r and
hig
h
e
r
ha
rmoni
cs
as
well. Eve
n
thou
gh th
e hig
her o
r
d
e
r
harm
oni
cs are le
ss in
num
ber, a
s
th
e o
r
der
of inve
rt
e
r
in
cr
ea
se
s it
sho
w
s it
s
ef
f
e
ct
on
sy
st
em.
I
n
orde
r to elimi
nate the com
p
lete ha
rmoni
cs, he
re
it ha
s bee
n used repetitiv
e cont
rolle
r. Base
d on
Equation
(40
)
, a clo
s
ed lo
op re
petitive controlle
r ha
s been p
r
o
p
o
s
ed an
d sh
owed in Fig
u
re
3.
The
circul
ating
cu
rre
nt re
feren
c
e
is ta
ken
a
s
ze
ro
and
co
mpa
r
e
d
with
the
a
c
tual
ci
rculati
ng
curre
n
t after
passin
g
th
rou
gh the
p
r
op
ortional inte
gral
co
ntroll
er. Al
l the
even
an
d hig
h
e
r
o
r
de
r
circulatin
g cu
rre
nts a
r
e
su
ppre
s
sed
by employing
th
e inne
r re
peti
t
ive controll
er, which i
s
sh
own
in dotted lines in Figura
3. This inner
and outer
cont
rollers
will ensures
the steady state error
rea
c
h to
ze
ro. In this a
r
ti
cle, it have
not
sh
own th
e tran
sfer fu
nction
mod
e
ling an
d relat
ed
analysi
s
b
u
t
one
can
ea
si
ly obtain the
tran
sfer
fu
n
c
tion a
nd it
s analysi
s
by Figure 3
bl
ock
diagram. F
u
rt
her, it
ha
s b
e
en te
sted
the
stability
of
propo
sed
controller and
it’s
band
width
ph
ase
and mag
n
itu
de re
spo
n
se
s are
sho
w
n
in Figure 4.
The optimu
m
values of prop
ortio
nal and
integral
controller value
s
are
obtain
e
d
by th
e
Inte
gral
Squa
re
Erro
r T
e
chni
que
(ISE)
wi
th
Equation (40
)
as an
obje
c
tive function ‘
J
’
.
These
opt
im
um value
s
is
sho
w
n in T
a
b
l
e 1 for 1% st
ep
load an
d 10%
step load.
The frequ
en
cy cha
r
a
c
teri
stic
of
controller
i
s
di
spl
a
yed in
Fig
u
r
e
4. Obvio
u
s
ly, this
controlle
r ha
s a wide ran
ge of band
wi
dth. Outs
ide
the regio
n
of 200/4000
Hz, the gain of
it
decreases quickly. So, this
cont
rolle
r only affect
s the h
a
rm
onic
cu
rrent
s of
i
cir
a
r
o
und
200/40
00
Hz.
At the freque
ncy of 0.001
Hz, the g
a
in
of it is much belo
w
−
100dB, very trivial
influen
ce o
n
the dc co
mp
onent in
i
cir
.
As the d
c
co
mpone
nt in
i
cir
is respon
si
ble for
delive
r
ing
active power
from the dc to the ac
side, the
proposed cont
rolle
r will suitable for wide range of
harm
oni
c co
mpone
nts. Th
e co
ntrolle
r is desi
gned
by
kee
p
ing th
e stability in view. Co
ntrolle
r
and
it is stability responses as
show
n i
n
Figure
3 and Figure
5 resp
ect
i
vely. It shows the
controll
er
will be in sta
b
l
e con
d
ition
s
unde
r any disturban
ce.
Figure 3. Re
petitive Controller u
s
ed fo
r MMC
-
-
.
.
2
.
.
1
1
1
V
in
I
cirref
I
cir
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3431 – 34
43
3438
In order to m
a
ke
the
syste
m
fully bala
n
c
ed,
one
sho
u
ld e
n
sure
th
e net
ene
rgy
transfe
r
woul
d be eq
u
a
l to zero.
→
,
→
,
→
4. Simulation and Experi
mental Re
su
lts
In ord
e
r to te
st the
pro
p
o
s
ed meth
od fo
r mitigatin
g th
e ci
rculating
curre
n
ts
of th
e MM
C,
comp
uter
sim
u
lation is
carried out first a
nd then verifi
ed experi
m
en
tally as well.
Table 1. Opti
mum Gain fo
r Proportio
nal
and Integral Controlle
r
Five level MMC
Optimum integral
controller gain of
KI*
Optimum pr
oport
i
onal
controller gain Kp*
1% Step Lo
ad fo
r m=1
1.4
3.6
10% Step L
oad
2.4
1.8
Table 2. Para
meters Used
For Five Leve
l
MMC Simul
a
tion and Exp
e
rime
nt
MMC Level
Five
DC Voltage
V
dc
=200V Dc
Circulating Curre
nt
reference
I
cre
f
= 0
Arm Inductors
L
1
=L
2
=L=3 mH
Sw
itching freq
ue
ncy
S
f
=100 Hz
Capacitor Value
C=16 µF/400V
Band
w
i
dth of the
controller
2000
Load Parame
ters
L
r
=10mH/R
r
=30
Ω
Gain of
Resonan
t
c
ontrol
l
e
r
Gr
c
=1250
Resonant f
r
eq
uenc
y
of
c
ontrol
l
e
r
ɷ
0
=2000
The
system
has bee
n te
sted with th
e
para
m
et
ers li
sted in
Ta
ble
1 an
d Ta
ble
2. The
experim
ental
setup h
a
s b
e
en sh
own in Figure 6.
Figure 4. Re
petitive Controller Use
d
for MMI Showin
g Magnitud
e
and Pha
s
e Resp
on
se
s
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Expe
rim
ental Verificatio
n
of Circulating
Current Mitigation Schem
e in
MMC by… (,
,,)
3439
Figure 5. Repetitive Controller Used fo
r MMC Showi
ng Impulse Stability Responses
It has
bee
n
develop
ed a
model,
with
pro
p
o
s
ed
controlle
r
whi
c
h is suitable
for
wid
e
rang
e of load
with different
modulatio
n in
dex.
Firstly, System has
been
investigated
for it
s outp
u
t voltage. Since, it is o
n
e
of the
importa
nt fact
or to
acce
ss t
he
controller
perfo
rman
ce.
System with
out controll
er
is di
storte
d
wi
th
its actu
al values
and p
r
o
duce un
want
ed compo
n
e
n
ts called a
s
harm
onics i
n
the syste
m
. As
sho
w
n in
Fig
u
re 7, it is
cle
a
r that outp
u
t volt
age is di
storted
witho
u
t controller.
The RMS value
s
of phase to n
eutral current
are 31.4A with cont
roll
er
and 29.2A wi
thout controll
er. From tho
s
e
values it is
cl
ear that, out
put cu
rre
nt is also
di
storte
d due to ci
rculating curre
n
ts. Please n
o
te
that, each div
i
sion i
s
take
n as 5m
s.
Form the Fi
gure 8, it is clear that,
A
ll harmoni
cs up to 500
0Hz are eli
m
inated
compl
e
tely. Due to which, the lo
sses i
n
t
he sy
st
em
wil
l
dra
s
tically d
e
crea
se
s an
d
efficien
cy ha
s
been in
crea
sed 14% co
mp
ared
with
syst
em without controlle
r.
Figure 6. Experim
ental Setup for Five Level MMC
Contr
o
ller
Ar
m Induc
tor
s
Capac
i
tor
Submodule
Optocoupler
used
for Module
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3431 – 34
43
3440
Figure 7. ‘R’ Phase T
o
Ne
utral Voltage
With and
With Out Cont
rol
l
er
Figure 8. ‘R’ Phase T
o
Ne
utral Volt
age
With it is Freq
uen
cy Analysis
Figure 9. Sub Module
Ca
pacito
r
Voltag
e for S
udde
n Cha
nge in L
o
ad Of 10% an
d Its Controller
Perform
a
n
c
e
Output voltage
without Controller
Output voltage
with Controller
Evaluation Warning : The document was created with Spire.PDF for Python.