TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 1, Janua
ry 201
5, pp. 57 ~ 6
4
DOI: 10.115
9
1
/telkomni
ka.
v
13i1.701
7
57
Re
cei
v
ed Au
gust 2, 201
4; Re
vised Sept
em
ber
18, 20
14; Accepted
Octob
e
r 16, 2
014
Modelling and Simulation of Tidal Current Turbine with
Permanent Magnet Synchronous Generator
Mar
w
a M.Elzalabani
1
*, Fa
ten H.F
a
hmy
1
, Abd El-Shaf
y
A. Nafeh
1
, Gaber Allam
2
1
Electronics R
e
search Institute
(ERI), Giza, Eg
ypt
2
F
a
cult
y
of Ele
c
tronic Eng
i
ne
erin
g, Meno
ufiaUniv
ersit
y
, Eg
ypt
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: mar
w
a
e
lz
al
a
ban
i@er
i.sci.e
g
A
b
st
r
a
ct
This p
aper
ex
plai
n th
e cre
a
t
i
on
of a
Matla
b
-Si
m
ul
ink
mo
del f
o
r a
tida
l
current tur
b
in
e
syste
m
throug
h the
mode
lin
g of th
e
source, th
e rot
o
r, driv
e
train
and t
he
gen
er
ator. T
he a
i
m
of the si
mulati
on
mo
de
l is to
ill
ustrate h
o
w
the tida
l curr
ent
ener
gy
syste
m
w
o
rks a
nd
how
to make
use of it
in
po
w
e
r
gen
eratio
n. Ha
rnessi
ng tida
l c
u
rrents pow
er
don
e throu
gh
various types of water cu
rrent turbi
nes. Ow
ing to
its adva
n
tag
e
s
in pr
oduc
in
g p
o
w
e
r from ti
dal
currents, Op
e
n
Hydr
o tida
l cu
rrent turbi
ne w
i
ll b
e
use
d
i
n
th
is
w
o
rk. W
i
th its
Perman
ent
ma
gnet sync
h
ron
ous g
ener
ator
(PMSG) that is suita
b
le for
low
tidal c
u
rre
nt
spee
ds
and
n
o
ne
ed
for g
ear
box. T
h
e
rotati
ona
l
moti
on
of
the turb
in
e rot
o
r is
transferre
d to th
e
el
ectric
a
l
gen
erator by means of
a mec
han
ical
tra
n
s
m
i
ssion
syst
e
m
c
a
lle
d dr
ive trai
n. MATLAB/SIMULINK i
n
terfac
e
has be
en ex
a
m
i
n
e
d
and th
e max
i
mu
m el
ectrical p
o
w
e
r extraction w
i
thin the a
llow
a
ble ra
nge of ti
da
l
currents ca
n b
e
ach
i
eve
d
if the co
ntroll
er c
an pr
oper
ly foll
ow
t
he opti
m
u
m
curv
e w
i
th any w
a
ter curr
en
t
spee
d cha
nge.
Ke
y
w
ords
:
Re
new
abl
e en
erg
y
, T
i
dal current
s, T
i
dal ener
gy
conversi
on, Open
Hydro turb
i
ne, PMSG.
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Ren
e
wable
e
nergi
es, th
at are
natu
r
all
y
r
eple
n
ish
e
d
, are th
at g
enerated fro
m
natural
resou
r
ces
su
ch as
wi
nd, sunlight,
tide, hydro, bi
oma
s
s , ge
othe
rmal
and
o
c
e
an. Ene
r
gy
crisis,
climate cha
n
ges su
ch as atmosp
he
re
t
e
mpe
r
ature
ri
se d
ue to the
increa
se of g
r
eenh
ou
se ga
se
s
emission, hi
g
h
oil pri
c
e
s
, limitation and
depletio
n
of fossil fuels
re
serve
s
in
crea
sed d
e
ma
nd
in
these g
r
e
en
energie
s
[1]. Away from conventio
n
a
l h
y
dro and tid
a
l
barrage
systems drawba
cks
(intermittent source of
en
ergy,
hi
gh i
n
itial co
sts, li
mited
location
s a
n
d
ba
d effe
ct o
n
ma
rine
lives)
tidal cu
rrent
turbine
s
can ge
nerate
power fr
om free flowing water
with almos
t
zero
environ
menta
l
effects.
The ene
rgy is stored in o
c
ea
ns in several form
s as chemi
c
al an
d biologi
cal p
r
odu
cts,
thermal
ene
rgy and
kineti
c
en
ergy
(wa
v
es an
d cu
rrents). T
he m
a
in adva
n
tag
e
of tidal en
e
r
g
y
over othe
r re
newable e
nergy technol
ogi
es
is its
pre
d
i
c
tability away
from e
ff
e
c
ts
due to ch
angi
ng
in weath
e
r pa
tterns [2].Tida
l
current
s are
the flow of wa
ter as a tide e
bbs a
nd flood
s, De
spite the
fact that o
c
e
a
n
current
s m
o
ve sl
owly
rel
a
tive to typical wi
nd
sp
ee
ds,
wate
r i
s
8
00 time
s
den
ser
than air. Th
erefore, for the
same
su
rfa
c
e
area, water moving
12 kn
ots exert the
same
amou
nt of
force a
s
a co
nstant 11
0 kn
ots win
d
. Because of th
is p
h
ysical pro
p
e
r
ty, tidal currents contain
an
enormou
s
am
ount of energ
y
that can be captu
r
ed a
nd
conve
r
ted to a usa
b
le form
[3].
This pa
pe
r prese
n
ts the m
a
thematical mode
llin
g an
d simulatio
n
for tidal cu
rren
t energy
system i.e. tidal curre
n
t spe
ed profile, tid
a
l
curre
n
t turbine, drive tra
i
n and the ge
nerato
r
.
Applying these model
s in Matlab/Simuli
nk an
d output
result
s are a
nalyze
d
.
2. Location
of cas
e stu
d
y
The Sue
z
g
u
l
f, Egypt, is cho
s
e
n
to be
the site
und
er
con
s
ide
r
at
ion, the lo
cat
i
on ha
s
28°4
5
′
N
o
r
t
h 3
3
°
00
′
Eas
t
.
Tidal current s
peed ranges
between
0.5 m/s
and
1.2 m/s
[4].this
locatio
n
wa
s ch
osen
as i
t
have the
hi
ghe
st tidal
cu
r
r
e
n
t
s
p
ee
d in
eg
yp
t w
i
th
su
ita
b
l
e wa
te
r
depth.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 1, Janua
ry 2015 : 57 – 6
4
58
3. Tidal Curr
ents Po
w
e
r
Sy
stem
Tidal cu
rrent device
s
seek to
extract energy from the
kinetic move
ment of wate
r much
as
wind tu
rbi
nes
extra
c
t e
nergy from m
o
vement
of a
i
r; these tidal
cu
rre
nts
are
often enla
r
g
e
d
whe
r
e water i
s
forced to flo
w
throu
gh na
rrow
cha
nnel
s or aro
und b
e
a
ch
es.
The followi
ng
figure sh
ows the general sc
hem
e of tidal current
s po
wer
system.
Figure 1. Tidal curre
n
t ene
rgy system
The mai
n
co
mpone
nts of
this sy
stem a
r
e the tid
a
l currents, tidal
curre
n
ts tu
rbi
ne (i.e.
Open
Hydro),
the me
chani
cal drive train
and the
ge
n
e
r
ator. T
u
rbi
n
e
conve
r
ts th
e
kineti
c
en
ergy
of the tidal curre
n
ts into
mech
ani
cal
energy
rep
r
esented i
n
form of me
chani
cal torqu
e
that cont
rol
s
the d
r
ive t
r
ain
with the
gene
rato
r a
ngula
r
spee
d
pro
d
u
c
ing
electri
c
al
torque
that drive the generator and roto
r angular spe
ed
controlling the tip
speed ratio o
f
the turbine.
4. Mathema
t
i
cal Modelling
4.1. Tidal Current Spe
e
d
Profile
As tidal curre
n
ts are a pe
ri
odic ho
ri
zont
al flow of water accom
pan
ying the rise
and fall of
the tide they can b
e
model
ed as a
strea
m
of
harmoni
cs a
c
co
rding
the followin
g
equatio
n.
∑
.s
i
n
2
t
(
1
)
Whe
r
e,
is the amplitude,
is the perio
d and
is the pha
se for i-th harmo
ni
c
con
s
tituent
s.
Each
con
s
tituent is d
e
fined
by its
an
gula
r
fre
q
ue
ncy
in sola
r h
ours. The
pha
se
of
each compo
n
ent ha
s to be
spe
c
ified [5].
A simulin
k
m
odel for five h
a
rmo
n
ic
co
nstituents bel
o
w in
figure 2 give
s the tidal turbine sp
eed p
r
of
ile as in figure 3.
Figure 2. Wat
e
r sp
eed p
r
ofi
l
e impleme
n
tation in Simul
i
nk
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modellin
g an
d Sim
u
lation of Tidal Cu
rre
nt Turbin
e wit
h
Perm
anent
… (Ma
r
wa M.
Elzalab
ani)
59
Figure 3. Tidal curre
n
t spe
ed profile fo
r 30 days.
It is clear fro
m
figure 3 th
at durin
g one
lunar m
onth
there a
r
e two
spri
ng tide
s (at times
of new and full moon) a
n
d
two neap tides (at times of
first and last qua
rter of
the moon). This
spe
ed profile repe
ats for all
year month
s
.
4.2. Tidal Current Tu
rbin
e
Gene
rating
el
ectri
c
ity from flowing
wate
r can b
e
don
e
either by bui
lding a tidal b
a
rrage
across a bay
in high tide areas (tid
al pot
ential ene
rgy), or by extracting ene
rgy from free flowi
ng
water (tidal ki
netic
e
nergy).
The amo
u
n
t of power t
hat a tidal
cu
rre
nt
turbin
e can extract
from
flowing
wate
r depe
nd
s on
the turbi
ne d
e
sig
n
. Fa
ctors such a
s
rot
o
r di
amete
r
a
n
d tidal
cu
rre
nt
spe
ed affect this amo
unt of powe
r
. Powe
r ava
ilable in
tidal curre
n
ts
is given by [3]:
0
.5
(1)
Whe
r
e,
is th
e se
awater d
ensity =102
5,
is the
rotor blade
are
a
a
n
d
is
the water
curre
n
t spe
e
d
.
Actual powe
r
can b
e
ha
rn
essed a
s
follo
ws by
0
.
5
,
(
2
)
Whe
r
e,
is the
power
coeffi
cient that i
s
a
function i
n
tip sp
eed
ratio
TSR (
and tu
rbine
blad
e
pitch an
gle (
) and it is th
e perce
ntage
of powe
r
th
at
the turbine
can extra
c
t from the
wate
r
flowing throu
gh the turbin
e
.
Tip speed
ra
tio can be giv
e
n by the followin
g
equati
on:
ω
(
3
)
Whe
r
e,
R
are the roto
r blad
e radi
us a
nd
ω
is the roto
r a
ngula
r
speed.
The po
we
r coefficient
can b
e
determined from th
e followin
g
eq
uation
,
1
3
4
/
6
(5)
.
.
(
6
)
Whe
r
e,
is the next value of
,
can’t e
x
cess 0.59
3 that mean
s that the powe
r
extracted
fro
m
the water i
s
al
ways less than 5
9
.3%
(Betz '
s
limit) [6] that is re
flect to vario
u
s
aero
d
ynami
c
losse
s
dep
e
nd on the
rot
o
r con
s
tru
c
ti
on (n
umbe
r
and
shap
e of
blade
s, wei
g
ht,
st
if
f
nes
s,
et
c.
).
In this wo
rk,
Open
Hydro turbin
e, havin
g spe
c
ificatio
ns in tabl
e 1
and po
we
r
curve i
n
figure 4,
is u
s
ed as it possesse
s
many gain
s
ma
ke it preferable th
an other tidal
curre
n
t turbin
es.
Such simple construction with
only
one
moving
secti
on, scalability
(10
m diam
eter generate 1
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 1, Janua
ry 2015 : 57 – 6
4
60
MW
rated
po
wer)
and
It is
a self-contain
ed roto
r with
a solid-state
perm
ane
nt m
agnet
gen
era
t
or
encap
sulate
d
within the ou
ter rim me
ani
ng ther
e are no se
als
and
no gea
rb
ox neede
d. No
se
als
mean
s there i
s
no mi
nimu
m or maximu
m depth. Thi
s
con
c
ept p
e
rmits in fact th
e minimizatio
n
of
maintena
nce requi
rem
ents.
The main ad
vantage di
stingui
sh Op
en
Hydro tu
rbin
e
is its ability to
operate in bid
i
rectio
nal tidal
flow and saving mari
ne life
[7].
Table 1. Ope
n
Hydro sp
ecif
ication
s
.
Whe
n
the tidal cu
rre
nt speed e
xceed
s the 2.57 m/s spe
ed ra
ng
e the extracted power will
be
limited to 1.5 MW by po
wer control
strate
gy.
Figure 4.Ope
n
Hydro po
we
r cu
rves
with tidal curre
n
t speed.
The ge
nerato
r
is rated el
e
c
tri
c
ally to 1.520 M
W
a
s
a
maximum va
lue and
at an
y other
highe
r wate
r
spe
e
d
s
; the output is limited to this value as sho
w
n in
the bottom curve.
For c1
=0.5
17
6, c2=11
6
, c3=0.4, c4
=5, c5
=21, c6
=0.
0068 in equa
t
ion (5), chan
ging
sho
w
s t
hat
has its maximum value at one particul
a
r value of
for spe
c
ific b
l
ade pitch.
Hen
c
e, by
being able to
maintain
th
e
at
this optimum value,
the
maximum value of
can be mai
n
tained de
pen
dably , and there
b
y extrac
t the maximum powe
r fro
m
the turbine.
Figure 5
sh
o
w
s th
at the m
a
ximum valu
e of
(
max
≈
0.
48) i
s
a
c
hi
eved for
β
=0
de
g
r
ee
and for
=6.5. This parti
cul
a
r value of
defined a
s
the nominal val
ue (
nom). For max
i
mum
power point
tracking of
water curre
n
ts
p
o
we
r with
cu
rrents variatio
n, it is ne
ce
ssary to adj
ust t
h
e
rotor
spe
ed with the optimum value of
(
nom).
Equation (1
)-(5)
d
e
scri
bi
ng tidal cu
rrent
turbine im
ple
m
ented in Ma
tlab/ Simulink as given in F
i
gure 6.
4.3. Driv
e Tr
ain
Drive train i
s
the co
nne
ct
or
that delive
r
s the tu
rbi
n
e roto
r me
ch
anical motion
to the
generator. It generally
c
onsi
s
ts of
low-speed
shaft, connected to th
e turbi
ne hub, speed
multiplier
and high-speed
shaft, motivating the el
ectr
ical generator. Direct
driv
e transmi
ssi
on
(i.e. the ge
n
e
rato
r an
d th
e roto
r a
r
e
couple
d
on th
e sa
me
shaft
without g
e
a
r
box and
sp
e
e
d
multiplier) is
use
d
in ca
se
of multi pole synchro
nou
s
gene
rato
r.
1.5 MW at v=2.57 m/s
RATED P
O
WER
15m
ROT
O
R DIAMET
ER
11 kV AC,50- 60
HZ-3
φ
OUTP
UT P
O
WE
R
0.7m/s
CUT IN SPEED
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modellin
g an
d Sim
u
lation of Tidal Cu
rre
nt Turbin
e wit
h
Perm
anent
… (Ma
r
wa M.
Elzalab
ani)
61
Figure 5. Power
coeffici
en
t relation with
tip speed ratio with
β
=0.
Figure 6. SIMULINK mo
del
of tidal curre
n
t turbine
Modellin
g is done u
nde
r the assum
p
tion that the mech
ani
c
al
transmissio
n ha
s a
con
s
tant effi
ciency fo
r the
entire
spee
d ra
nge; the
effect of th
e const
r
u
c
tio
n
features (e
.g.,
vibration
s
, ge
ar type,
gea
r
rea
c
tion, et
c.) on it
s p
e
rfo
r
mance i
s
co
n
s
ide
r
ed
very
small
and
will
be
negle
c
ted.
The d
r
ive trai
n ca
n be mo
deled a
s
follo
ws
whit
ch co
nsid
er the
sy
stem a
s
a n
u
m
ber
of
disc
rete mass
es
.
(
7
)
.
,
(
8
)
Whe
r
e,
is the summatio
n
of rotor a
nd
gene
rato
r ine
r
tia,
is the turbine me
ch
ani
cal torque,
is the generat
or elect
r
oma
g
netic torqu
e
,
is
the vis
c
o
us fric
tion c
oeffic
i
ent or damping ratio,
is the gene
ra
tor angul
ar speed an
d
is the roto
r angu
lar sp
eed. Ma
thematical m
odel of the
drive train
e
is represented i
n
Matlab/
Simulink a
s
indi
cated in Figu
re
7.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 1, Janua
ry 2015 : 57 – 6
4
62
Figure 7. SIMULINK d
r
ive train an
d sh
aft model
4.4. Permanent Mag
n
et
Sy
nchronou
s Gener
a
tor
(PMSG)
As the
outpu
t is 3
-
ϕ
A
c
system, Cla
r
ke/Park tran
sf
ormatio
n
is u
s
ed fo
r t
w
o
reason
s:
many of elect
r
ic ma
chi
n
e
s
prop
ertie
s
ca
n applie
d wit
hout co
mplex
i
ties in voltag
e equatio
ns a
n
d
to avoid any confli
ct as rot
o
r acco
rdi
ng to stator a
ngle
can't be
kno
w
n [8].
PMSG has several adva
n
t
ages ove
r
other types of
gene
rato
rs,
whi
c
h u
s
ed i
n
water
and
win
d
e
n
e
r
gy
system
s t
hese a
d
v
anta
ges such a
s
i
t
s si
mple
stru
cture,
ability
of ope
ration
at
slo
w
speed,
self-ex
c
itation
cap
ability leading to hi
gh
power fa
ctor and hig
h
efficien
cy op
erat
ion.
With low
sp
e
ed of PMSG operation, the
r
e is n
o
ne
ed
for a gea
rbo
x
that often suffers from fa
ults
and requi
re
s regul
ar mai
n
tenan
ce m
a
king the
syst
em
unreliabl
e, so in this
work PMSG
wa
s
prefe
rre
d ove
r
other ty
pe
s of generators [9].
The math
em
atical mo
del
of the PMSG
acco
rding to
the syn
c
h
r
o
nou
s d-q referen
c
e
frame is give
n by [10]:
(
9
)
(
1
0
)
(
1
1
)
(
1
2
)
(
1
3
)
Whe
r
e,
,
are the dire
ct and quad
ratu
re st
ator voltages,
respe
c
tively,
,
are
the
dire
ct and
q
uadrature st
ator
ind
u
cta
n
c
e
s
, re
spe
c
ti
vely,
,
are th
e dire
ct an
d
quad
ratu
re
st
at
or cu
rr
e
n
t
s
,
re
sp
ect
i
v
e
ly
,
,
are
the direct
and q
u
a
d
ratu
re
stator fluxe
s
,
r
e
spec
tively,
is the perman
ent ma
gnet flux,
,
are the ele
c
tri
c
al(roto
r
) and
gene
rato
r(sta
t
or) an
gula
r
velocity, resp
ectively and
is the numb
er
of poles[1
0
].
The ele
c
trom
agneti
c
torqu
e
can b
e
expressed in the
same frame a
s
follows:
(14)
PMSG Equation (9
)-(14
)
executio
n on
M
a
tlab/Simulin
k sh
own in Figure 8.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modellin
g an
d Sim
u
lation of Tidal Cu
rre
nt Turbin
e wit
h
Perm
anent
… (Ma
r
wa M.
Elzalab
ani)
63
Figure 8. Matlab/Simulin
k model for PM
SG.
5
. S
imulation Resul
t
s
Output stator voltage,
cu
rre
n
t, powe
r
and
angul
ar
rate
d speed
in tra
n
sie
n
t state
a
t
1 m/s
tidal curre
n
t speed a
nd fixed zero pitch a
ngle is
clea
re
d as sho
w
n in
Figure 9.
Figure 9. Tra
n
sie
n
t state load voltage,
curre
n
t, pow
e
r
and rotor an
gular
spe
e
d a
t
tidal current
spe
ed v=1 m/
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 1, Janua
ry 2015 : 57 – 6
4
64
It is cle
a
r th
at the outp
u
t rea
c
h
e
s ste
ady state
wit
h
in a ve
ry short time
ap
proximately 0
.
075
se
con
d
resu
lting po
wer =84.55
kW
wh
ich i
s
ap
proximately equal
to that from
equatio
n 1 a
n
d
according to t
u
rbin
e pa
ram
e
ter an
d po
wer curve
verif
y
ing the validity of the generated Sim
u
li
nk
model. Voltag
e and current
also ha
s the
same frequ
en
cy, which is 5
0
Hz.
Figure 9 shows that the
active power
stabilit
y at steady state va
lue is del
ayed compared
to the
spe
ed
sign
al, due
to
the MPPT
ch
ara
c
teri
stics.
The MPPT i
s
desi
gne
d in
such
a
way th
at
th
e
a
c
tive
p
o
w
e
r
p
r
od
uc
tion
is
r
e
ma
ined
c
o
ns
t
ant at
its rated val
ue even in
small ran
ge b
e
low
rated ge
nerat
or sp
eed in
orde
r to avoid unwanted
power fluctu
a
t
ions with tid
a
l curre
n
t sp
eed
cha
nge.
6. Conclusio
n
The ba
si
c the
o
ry of me
cha
n
ical
po
wer
e
x
tracti
on from
tidal cu
rrents is de
scrib
ed
briefly.
A detailed electri
c
al mod
e
l
for tidal current sp
eed p
r
ofile, turbine
,
drive train and PMSG h
a
s
been
introdu
ced.
The
mo
del h
a
s be
en
implem
ented
in M
a
tlab/ Si
mulink in
ord
e
r to
validate
it.
Curre
n
t spe
e
d
profile a
n
d
maximum p
o
we
r curve
s
are p
r
e
s
ent
ed.po
wer
co
efficient and
tip
spe
ed ratio curve indicate
d that increa
se in
value with the icrea
s
e
in
value until
rea
c
hin
g
its
maximum value, further increa
se in
over its no
minal value decrea
s
e
s
. F
r
om power
cha
r
a
c
teri
stics of tidal cu
rre
nt turbin
e
it c
an be
con
c
lu
ded th
at tidal current turbin
es are
monotoni
c
sy
stem in
which
for
each
tidal
cu
rrent
spe
e
d
there i
s
o
n
e
optimal
roto
r sp
eed
that
will
yield maxim
u
m po
we
r.
Gene
rato
r m
odel h
a
s be
en mo
delle
d
in d
-
q
synchron
ou
s rota
ting
referen
c
e fra
m
e due to it
s
advantag
es
cleare
d
. Finall
y
, voltage, cu
rre
nt, power
and rotor a
n
g
u
lar
spe
ed in tran
sient state al
so pre
s
ente
d
tidal
cu
rrent sp
eed =1 m/s a
nd ze
ro pitch angle.
Referen
ces
[1]
Kai-W
e
rn
Ng,
W
e
i-Haur
L
a
m
an
d K
hai-
C
hi
ng
Ng."
20
02–
201
2: 1
0
Ye
ar
s of R
e
se
arch
Progr
ess i
n
Horizontal-A
xis
Marine Current
T
u
rbines "
En
ergi
es
, 201
3. vol.6, p.p.14
97-
152
6.
[2]
S
y
e
d
Sh
ah K
h
alid, Z
h
ang
Li
a
ng a
nd N
a
zi
a
Shah."
Harn
es
sing T
i
dal E
ner
g
y
Usin
g Verti
c
al A
x
is T
i
dal
T
u
rbine".
Rese
arch Jour
nal
of Appli
ed Sci
e
n
c
es, Engin
eer
i
ng an
d T
e
chn
o
l
ogy
.2
01
2, Vol. 5, p.p. 239-
252.
[3]
Abdu
l Motin
H
o
w
l
a
der, N
a
o
m
itsu Urasak
i, Kous
uk
e Uch
i
da, Atsushi Y
o
na, T
o
monob
u
Senj
yu, C
h
u
l
-
H
w
an K
i
m ,A. Y. Saber. “Par
ameter Ide
n
tifi
cation
of W
i
nd
T
u
rbine for Ma
xim
u
m Po
w
e
r-
poi
nt T
r
acking
Contro
l
”
.
El
ectric Pow
e
r Co
mp
one
nts and Sy
stems
.2
010, V
o
l. 38, No.5, p.
p. 603-6
14.
[4]
T
adros Ibrahi
m Ria
d Gh
obri
a
l. Stud
y
of c
u
rrent
and
w
a
t
e
r lev
e
l
vari
ati
ons
alo
n
g
the
red s
ea.
M.S
c
thesis, F
a
culty of Engin
eer
ing,
Cairo u
n
ivers
i
ty
.June, 200
7.
[5]
Ben Elg
hal
i, S.E.; Benbouzi
d
, M.E.H.; Charpent
ie r, J.F
.
"Comparis
on of PMSG and DF
IG
for
Marin
e
Current T
u
rbin
e Applic
atio
ns
".
In Proceed
ings of the XIX
Internation
a
l
Conferenc
e o
n
Electrical
Machi
nes
, Ro
ma, Ital
y
, 6–8
Septemb
e
r 20
10; pp. 1–
6.
[6]
Bjarni
M Jó
nss
on. "H
arness
i
n
g
tida
l e
ner
g
y
i
n
the W
e
stfjor
ds".
M.sc thesis, Faculty of B
u
siness and
Scienc
e,
Un
ive
r
sity of Akureyri
.Ma
y
2
010.
[7]
Http://
w
w
w
.
o
p
e
n
h
y
dr
o.com/ho
me.html (last a
ccessed D
e
ce
mber 20
14)
.
[8]
Z
h
i
w
ei H
e
, Guang
ya
n Z
h
o
u
, Ming
yu Ga
o. “An Improved V
a
ria
b
le-F
re
que
nc
y
Dr
ive bas
e
d
on Curre
nt
T
r
acking".
TEL
K
OMNIKA
, November 2
0
1
3
, Vol.11, No.1
1, pp. 663
1-6
636.
[9]
Z
i
bhi
n Z
H
OU,
F
r
anck SCUI
L
L
ER, Je
an-F
r
e
deric
Ch
arpe
nt
ier, Mo
hame
d
Benb
ouzi
d
, T
i
anha
o T
ang.”
Po
w
e
r
Contro
l
of a No
npitc
ha
ble PMSG-Bas
ed Mar
i
ne
Cur
r
ent T
u
rbine
at Overrated C
u
r
r
ent Spe
e
d
w
i
t
h
F
l
u
x
-W
ea
keni
ng Strateg
y
”.
IEEE journal of oceanic engineering
, 20
1
4
, pp.1-10.
[10]
Ben E
l
g
hal
i, S.E.; Benb
ouzi
d
, M.
E.H.; Charp
entier, J.F
.
Ge
nerator
s
y
stem
s for mar
i
ne current turbine
app
licati
ons: A compar
ative stud
y.
IEEE J. Ocean. Eng
. 2
0
1
2
, vol. 37, p.p. 554
–5
63.
Evaluation Warning : The document was created with Spire.PDF for Python.