Indonesi
an
Journa
l
of El
ect
ri
cal Engineer
ing
an
d
Comp
ut
er
Scie
nce
Vo
l.
9
, No
.
2
,
Februa
ry
201
8
,
pp.
526
~
538
IS
S
N:
25
02
-
4752
,
DOI: 10
.11
591/
ijeecs
.
v9.i
2
.
pp
5
26
-
538
526
Journ
al h
om
e
page
:
http:
//
ia
es
core.c
om/j
ourn
als/i
ndex.
ph
p/ij
eecs
Perform
ance
of
Ful
l
-
Dupl
ex
On
e
-
Way
an
d
Two
-
Way
Coopera
tive Rela
ying Net
works
Arun
m
oz
hi.S
1
, Na
ga
r
aja
n.G
2
1
Resea
rch
Schol
ar/
SC
SV
MV
Univesity
,
Kan
cheepura
m
,
Ind
ia.
2
Pr
ofess
or,
De
pt. of
ECE,P
on
diche
rr
y E
ngin
eerin
g
Coll
e
ge, Pon
diche
rr
y,
I
nd
ia
Art
ic
le
In
f
o
ABSTR
A
CT
Art
ic
le
history:
Re
cei
ved
O
ct
5
, 2
01
7
Re
vised
N
ov
18
, 2
01
7
Accepte
d
Ja
n 2
, 201
8
The
wire
l
ess
rese
arc
h
req
uir
es
conc
urre
n
t
tra
ns
m
ission
and
rec
ept
ion
in
a
single
ti
m
e
/fre
q
uency
ch
anne
l
with
good
spec
tra
l
eff
icien
c
y
.
Th
e
Full
duplex
s
y
stem
is
th
e
al
t
ern
ate
for
th
e
conv
ent
ion
al
hal
f
dup
le
x
sy
stems
.
An
inve
stigation
on
the
ne
ed
for
a
fu
ll
dupl
ex
two
w
a
y
(FD
-
TWR)
a
nd
one
w
a
y
rel
a
y
i
ng
(FD
-
O
W
R)
to
improv
e
the
per
fo
rm
anc
e
of
outa
g
e
pr
obabi
lit
y
an
d
ave
rag
e
rate
em
plo
y
ing
amplif
y
-
and
-
forward
(AF
)
and
dec
ode
-
a
nd
-
forward
(DF
)
protoc
ol
is
conside
red
.
Furt
her
the
re
lay
ing
s
y
stems
per
form
anc
e
under
the
ne
twork
c
oding
sche
m
es
is
ta
ken
int
o
conside
ra
ti
on
.
The
out
age
proba
bil
i
t
y
and
ave
rag
e
ra
te
of
FD
-
T
W
R
and
FD
-
O
W
R
using
a
ph
y
sic
al
lay
er
ne
twork
codi
ng
was
per
form
ed.
In
cont
rast
to
“
straightforward
”
net
work
codi
ng
which
per
form
s
ari
thmeti
c
fun
ct
ion
on
digi
t
al
bit
strea
m
s
aft
er
informa
ti
o
n
have
bee
n
r
e
ce
iv
ed.
Th
e
res
ult
show
s
the
DF
protoc
ol
ac
hi
eve
s
be
t
t
er
outa
ge
proba
bi
lit
y
and
ave
r
age
rat
e
,
when
compare
d
to
th
e
AF
protoc
ol.
And
compari
ng
the
full
duple
x
sche
m
es
li
ke
FD
-
T
W
R
and
FD
-
OW
R,
it
is
found
tha
t
th
e
FD
-
T
W
R
ac
hie
ves
be
tt
er
out
age
prob
abi
lit
y
an
d
ave
rag
e
rate,
when
compare
d
to
the
FD
-
OW
R.
The
per
fo
rm
anc
e
was
ext
end
ed
with
diffe
ren
t
loop
i
nte
rfe
r
ence
among
the
rel
a
y
an
te
nnas.
Th
e
per
form
anc
e
show
tha
t
FD
-
TWR
per
forms
well
eve
n
in
spite
of
loop
int
erf
ere
n
ce
.
Ke
yw
or
d
s
:
AF
proto
col.
Fu
ll
-
duplex
Ph
ysi
cal
la
ye
r
netw
ork
c
odin
g
(P
NC
)
Tw
o
-
way Re
la
y
Copyri
ght
©
201
8
Instit
ut
e
o
f Ad
vanc
ed
Engi
n
ee
r
ing
and
S
cienc
e
.
Al
l
rights re
serv
ed
.
Corres
pond
in
g
Aut
h
or
:
Arun
m
ozh
i.
S
,
Re
se
arch Sc
hola
r/ SCSV
M
V Un
i
vesity
,
Kan
c
hee
puram
, In
dia.
Em
a
il
:
s_
arun
m
ozh
i@red
if
f
m
ai
l.co
m
1.
INTROD
U
CTION
Cooperati
ve
c
omm
un
ic
at
ion
is
on
e
of
the
luring
resea
rc
h
ti
tl
es
wh
ic
h
offe
r
a
bette
r
re
su
lt
for
the
batte
ry
li
fe
crisi
s
and
i
m
pr
ov
i
ng
the
tra
nsm
issi
on
capa
ci
ty
.
Coo
per
at
ive
div
e
rs
it
y
can
be
de
fine
d
as
a
nu
m
erous
a
ntenn
a
te
ch
nique
pro
po
s
ed
t
o
i
m
pr
ov
e
the
w
ho
le
netw
ork
c
hannel
ca
pacit
ie
s
inten
ded
f
or
any
sp
eci
fied
set
of
ba
ndwidt
hs
.
In
the
wireless
m
ulti
-
hop
net
works
the
us
e
d
di
ver
sit
y
can
be
f
ur
t
her
devel
op
e
d
by the c
om
bina
ti
on
of r
el
ay
e
d
si
gn
al
a
nd th
e d
irect
si
gnal
that is
bein
g
r
ec
ei
ved
.
Com
par
ed
to
the
half
duplex
relay
ing
,
f
ull
duple
x
ac
hieve
higher
ca
pacit
y
in
both
t
ran
s
m
issi
on
an
d
receptio
n
on
t
he
sam
e
carrier
fr
e
que
ncy.
T
he
capaci
ty
tr
adeoff
betwee
n
A
F
base
d
f
ull
duplex
with
sel
f
-
interfe
ren
ce
a
nd
half
duple
x
unde
r
abse
nce
of
fad
i
ng
i
n
th
e
so
urce
-
relay
and
sel
f
-
i
nterference
c
ha
nn
el
s
was
stud
ie
d
[1
]
.
T
he
capaci
ty
tradeo
f
f
betwee
n
DF
base
d
f
ull
duplex
with
se
lf
-
inter
fer
e
nce
and
half
du
plex
unde
r
abse
nce
of
fa
din
g i
n
t
he
s
ourc
e
-
re
la
y an
d sel
f
-
inte
rf
e
ren
ce
c
hannels
was
a
na
ly
zed [2].
Fu
rt
her
t
he
ca
pa
ci
ty
tradeo
f
f
betwee
n
Am
plify
and
Forwa
r
d
(
AF)
ba
sed
f
ull
duplex
an
d
half
-
duple
x
relay
ing
was
giv
e
n
[3
]
with
an
as
su
m
ption
that
t
he
s
ource
-
relay
cha
nnel
was
un
der
fad
i
ng.
T
he
ou
ta
ge
pro
ba
bili
ty
was
der
ive
d
us
i
ng
the
assum
ption
that
there
wa
s
no
direct
li
nk
between
the
s
ource
an
d
desti
nation
nodes
.
T
wo
ga
in
c
on
tr
ol
sc
hem
es
fo
r
th
e
AF
based
fu
ll
duplex
prot
oco
l
m
axim
iz
ing
the
Sign
al
-
to
In
te
r
fer
e
nce
-
pl
us
-
No
ise
Ra
ti
o
(SINR
)
an
d
decr
ease
d
tra
n
sm
it
po
wer
wa
s
ob
ta
ine
d
[
4].
The
ou
ta
ge
analy
sis
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Tit
le
o
f m
anusc
ript is s
ho
rt
and cl
ear
, impli
es rese
ar
ch
res
ults (
First
Au
th
or
)
527
for
a
DF
base
d
FD
-
O
W
R
unde
r
the
ass
um
pt
ion
that
th
ere
was
no
direct
li
nk
bet
w
een
the
s
ourc
e
and
destinat
io
n nod
es g
i
ves
the
cond
it
io
ns
t
o gu
a
ran
te
e s
uperi
or full
-
duple
x
a
ga
inst half
-
dupl
ex
m
od
e
[5
]
.
The
ac
h
ie
va
bl
e
rate
for
t
he
DF
base
d
f
ull
-
duplex
m
ulti
pl
e
input
m
ulti
ple
-
outp
ut
(MIM
O)
one
-
way
relay
ing
.
And
then,
resid
ual
sel
f
-
inter
fere
nc
e,
direct
li
nk,
lim
it
ed
transm
it
te
r/recei
ver
dy
nam
ic
ran
ge
an
d
i
m
per
fect
channel
sta
te
info
r
m
at
ion
(CSI
)
,
wer
e
al
so
ta
ke
n
i
nto
co
ns
ide
rati
on
[
6].
I
n
[
7]
a
co
m
bin
at
ion
of
opport
un
ist
ic
f
ull
-
du
plex/hal
f
-
du
plex
m
od
e
sel
ect
ion
an
d
t
ran
sm
it
te
d
power
a
dap
ta
ti
on
for
m
axi
m
iz
i
ng
t
he
sp
ect
r
um
eff
ic
ie
ncy w
a
s a
naly
zed.
A
com
par
iso
n
on
t
he
outa
ge
pro
bab
il
it
y
and
syst
em
throu
ghput
for
a
tw
o
-
way
half
-
duplex
to
one
-
way
f
ull
-
du
plex
r
el
ay
ing
wa
s
car
ried
out
and
the
FD
-
O
WR
c
ou
l
d
ou
t
perform
bid
ire
ct
ion
al
ha
lf
-
du
plex
relay
ing
,
ev
e
n i
n
the
presenc
e
of self
-
inter
fere
nce
[8
-
9].
The
th
r
oughpu
t
and
outa
ge
pro
ba
bili
ty
of
a
fu
ll
-
duple
x
bl
ock
Ma
r
kov
r
el
ay
ing
schem
e
with
sel
f
interfe
ren
ce
at
the
relay
unde
r
in
dep
e
nde
nt
non
-
ide
ntica
ll
y
distrib
uted
Nak
a
gam
i
-
m
fad
in
g
[
10]
.
T
he
pair
-
wise
er
r
or
pro
bab
il
it
y,
bit
er
ror
r
at
e
(BER)
an
d
div
e
rsity
pe
rfor
m
ance
of
t
he
AF
bas
ed
fu
ll
-
duplex
li
nea
r
relay
ing
an
d
dual
-
hop
sy
ste
m
s,
un
de
r
the
eff
ect
of
resid
ual
sel
f
-
inter
fe
ren
ce
[
11]
.
In
[12],
the
virt
ua
l
fu
ll
-
duplex
relay
in
g
by
m
eans
of
two
half
-
dupl
ex
relay
s
w
hic
h
was
a
go
od
al
te
rn
at
ive
befor
e
sta
ndar
dizing
f
ull
-
duplex
te
ch
nolog
y.
I
n
the
sa
m
e
wo
r
k,
sel
f
-
interfe
ren
ce
is
rep
la
c
e
d
by
inter
-
relay
interfe
ren
ce
in
this
vi
rtua
l
ver
si
on is c
on
s
idere
d.
The
outa
ge
prob
a
bili
ty
of
a
va
riable
-
gain
AF
base
d
F
D
-
O
W
R
with
direct
li
nk
t
o
half
-
dupl
e
x
counter
par
t
a
nd
pro
pose
d
a
highly
exact
appr
ox
im
at
ion
to
the
ou
ta
ge
pro
bab
il
it
y.
FD
-
T
WR
ca
n
f
ur
t
her
i
m
pr
ove
syst
em
capaci
ty
by
achievin
g
bi
di
recti
on
al
data
transm
issi
on
and
receptio
n
on
t
he
sam
e
c
arr
ie
r
fr
e
qu
e
ncy sim
ultaneo
us
ly
[1
3
-
14]
.
The
achie
vab
l
e
rate
reg
io
n
fo
r
F
D
-
T
WR
without
resid
ual
sel
f
-
inter
f
eren
ce
.
Also
der
i
ved
this
achieva
ble
rate
reg
io
n
bu
t
the
y
assum
ed
the
existe
nce
of
re
sidu
al
sel
f
-
inte
rf
e
ren
ce
a
nd
t
he
resour
ce
e
ff
i
ci
ency
of
tw
o
-
way
an
d
f
ull
-
duple
x
r
el
ay
ing
syst
e
m
s
[15
-
18]
.
The
n
the
di
ver
sit
y
-
m
ulti
plexing
trade
off
of
F
D
-
T
WR
and
p
r
opose
d
a
com
pr
ess
an
d
forw
a
r
d
strat
eg
y
to
achieve
th
e
op
t
im
al
div
ersit
y
-
m
ulti
plexing
tra
de
off.
I
n
[19],
the
ou
ta
ge
pro
bab
il
it
y
of
the
AF
base
d
FD
-
T
W
R
wit
h
re
sidu
al
sel
f
-
i
nterf
e
ren
ce
,
in
case
of
the
pe
rf
e
ct
and
i
m
per
fect CS
I a
nd d
e
rive
d
a
ppr
oxim
a
te
closed
form
ex
pr
es
sion
s
.
An
opti
m
al
m
a
x
-
m
in
relay
selecti
on
schem
e
of
the
A
F
base
d
relay
ing
an
d
stud
ie
d
it
s
BE
R,
ergod
ic
capaci
ty
and
ou
ta
ge
pro
ba
bi
li
t
y
[2
0].
I
n
the
sam
e
wo
rk,
an
opti
m
a
l
po
we
r
al
locat
io
n
an
d
du
plex
m
od
e
sel
ect
ion
to
m
i
nim
iz
e
the
outa
ge
probabil
it
y
was
al
s
o
pr
ese
nted.
I
n
[21],
t
he
Degree
of
F
reedom
(D
oF
)
of
t
he
K
-
pair
-
us
e
r
with
a
MIM
O
re
la
y.
In
this
,
a
fu
ll
du
plex
P
NC,
in
w
hich
the
relay
us
e
d
detect
-
an
d
-
f
orward
te
chn
iq
ue
a
nd
the
m
axi
m
u
m
li
kelihoo
d
(ML)
based
joint
detect
io
n
to
el
i
m
inate
the
m
ult
iple
acce
ss
interfe
ren
ce
[2
2].
The
F
ull
Dupl
ex
syst
em
can
b
e
analy
zed
by
us
in
g
the
Ph
ysi
cal
la
ye
r
netw
ork
co
di
ng
a
nd
the
perform
ance
of
outa
ge
probabil
it
y
and
av
erag
e
rate
are
i
m
pr
ov
e
d.
T
he
rest
of
the
pap
e
r
is
orga
ni
zed
as
fo
ll
ows:
T
he
s
yst
e
m
m
od
el
hav
in
g
M
relay
s
was
disc
us
se
d
in
sect
ion
I
I.
Sect
i
on
III
give
s
the
perform
ance
evaluati
on
of
th
e
Nth
best
rela
y
sel
ect
ion
sche
m
e
ov
er
the
AF
an
d
D
F
Ch
ann
el
s
.
The
si
m
ula
ti
on
resu
lt
s a
re
pr
es
ented
i
n
th
e se
ct
ion
IV an
d
c
on
cl
us
io
n
is
di
scusse
d
i
n
the
sect
ion
V.
2.
SY
STE
M MO
DEL
A
three
-
no
de
FD
-
T
W
R
m
odel
wh
ic
h
c
on
si
sts
of
tw
o
node
s
A
an
d
B,
and
a
relay
,
is
consi
der
e
d
i
n
with
F
D
-
O
W
R
and
FD
-
T
WR
.
I
n
each
ti
m
e
slot,
F
D
-
O
W
R
can
ac
hieve
unidirect
io
nal
da
ta
transm
issi
on
an
d
receptio
n
betw
een n
odes
sou
r
ce(S)
an
d
desti
nation
(
D)
via the
relay
o
n
th
e
sam
e
carrier
fr
e
qu
e
ncy
, while
FD
-
T
W
R
can
ach
ie
ve
bi
directi
onal
data
tra
nsm
issi
on
an
d
r
ecepti
on.
T
his
m
eans
that
F
D
-
T
WR
ca
n
f
ur
t
her
m
ul
ti
plex
the
t
ran
sm
it
t
ing
a
nd
recei
ving
ti
m
e,
com
par
ed
with
F
D
-
O
W
R.
More
over
,
on
ly
the
relay
in
F
D
-
O
W
R
wor
ks
in
f
ull
-
du
plex,
wh
e
reas
al
l
th
e
nodes
in
FD
-
T
W
R
operate
in
this
m
od
e.
Ther
e
fore,
F
D
-
T
WR
would
s
uffer
f
r
om
m
or
e
severe
sel
f
-
inter
fer
e
nce,
al
so
cal
le
d
Lo
op
I
nterf
e
r
ence
(L
I),
caus
ed
by
the
c
o
-
c
hannel
transm
issi
on
and
im
per
fect
interfe
re
nce
ca
ncell
at
ion
,
c
om
par
ed
with
FD
-
O
WR.
F
urt
her
m
or
e,
F
D
-
T
W
R
is
si
m
il
ar
to
half
-
du
plex
tw
o
-
w
ay
relay
ing
[7
]
an
d
sti
ll
con
s
ist
s
of
t
he
m
ulti
ple
acce
ss
(
MAC)
a
nd
bro
adcast
(BC) stages
. Bu
t, these stage
s
in
FD
-
T
W
R c
an
be per
form
e
d
in p
a
rall
el
, in t
he
sam
e
tim
e
slot and
t
hu
s
, a
ll
the
nodes
w
ork
in
fu
ll
-
duplex
m
od
e
an
d
suffe
r
f
ro
m
residu
al
sel
f
-
inter
fer
e
nc
e.
In
cel
lular
ne
tworks
,
the
node
A,
relay
and
node
B,
are
de
no
te
d
as
the
U
s
er
Eq
uip
m
ent
(U
E
),
Re
la
y
Node
(R
N)
a
nd
Ba
se
Stat
io
n
(BS
),
resp
ect
ively
.
The
i
nvolv
e
d
c
hannels
a
re no
de
S
to
relay
(SR
),
r
el
ay
to
node
A
(
RS),
n
ode
B
to r
el
ay
(
DR),
relay
t
o
node
B
(RD
),
and
resi
du
al
sel
f
-
inter
fere
nc
e
in
node
S,
relay
and
no
de
D.
The
c
orr
esp
onding
cha
nn
el
coeffic
ie
nts
a
r
e
de
note
d
as
h
SR
,
h
RS
,
h
DR
,
h
RD
,
h
SS
,
h
RR
,
h
DD
.
T
hu
s
the
in
sta
nt
aneous
noise
s
ign
al
-
to
-
no
ise
r
at
io
(SN
R),
γ
is a
n
e
xponentia
l ra
ndom
v
a
riable (R
V)
with
pro
bab
il
it
y densi
ty
f
unct
ion
(PDF
),
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
526
–
538
528
f
γ
̅
(
γ
)
=
(
1
/
γ
̅
)
e
−
γ
/
γ
̅
wh
e
re,
γ
̅
is an i
ns
ta
nta
neous S
NR.
The
i
ns
ta
nta
ne
ou
s
c
hannel S
NR is
γ
=
|
h
|
2
P
/
σ
2
wh
e
re,
h
is
c
ha
nn
el
c
oeffici
ent,
σ
2
is
noise
powe
r.
T
he
nor
m
al
iz
ed
trans
m
itted
powers
of
a
no
de
S,
r
el
ay
,
node
D
are
P
S
=
1
,
P
R
=
1
,
P
D
=
1
res
pecti
vely
and
the
re
sid
ua
l
sel
f
i
nterf
e
r
ence
c
ha
nn
el
s
are
ass
um
ed
to
be
ide
ntica
l,
i.
e.
γ
̅
SS
=
γ
̅
RR
=
γ
̅
DD
=
γ
̅
LI
.
F
or
FD
-
T
WR,
the
relay
si
m
ultaneou
sly
recei
ves
sig
na
ls
f
ro
m
both
so
urce
nodes
A
an
d
B,
an
d
the
resid
ual
se
lf
-
inter
fer
e
nce
cause
d
by
it
s
co
-
c
ha
nn
el
tra
ns
m
issi
on
signa
l
and
then f
orwards t
hem
to
the c
orr
esp
onding
dest
inati
on
node
s
B an
d A.
Figure
1. Syst
em
Mod
el
of
Ful
l
-
Duplex
Tw
o
W
ay
a
nd
O
ne Way
Rel
ay
ing
The
destinat
io
n
nodes
B
an
d
A
si
m
ultaneou
sly
receive
sign
al
s
f
orwa
rd
e
d
by
the
relay
and
re
sid
ual
sel
f
-
inter
fere
nc
e
create
d
by
t
he
ir
co
-
cha
nnel
transm
itted
sig
nals.In
t
he
k
-
t
h
ti
m
e
slot,
the
signa
ls
recei
ved
at
th
e relay
(R)
, n
od
e
s D a
nd S
c
an be e
xpresse
d
as
,
y
R
[
k
]
=
h
SR
x
S
[
k
]
+
h
DR
x
D
[
k
]
+
h
RR
t
R
[
k
]
+
n
R
[
k
]
(1)
[
]
=
ℎ
[
]
+
ℎ
[
]
+
[
]
(2)
[
]
=
ℎ
[
]
+
ℎ
[
]
(3)
wh
e
re
t
R
[
k
]
,
t
D
[
k
]
an
d
t
S
[
k
]
a
re th
e
tra
nsm
itted sig
nals
of the
relay
, nodes
D
a
nd S
r
e
sp
ect
ively
.
3.
PERFO
R
MANC
E
M
ODEL
The per
f
or
m
ance of th
e
DF
ba
sed Full
Dupl
ex
a
nd AF
bas
ed
F
D rel
ay
is
pr
ese
nted
h
e
re.
3.1 DF b
as
e
d
FD
-
T
WR
The
DF
ba
sed
FD
-
T
W
R
with
PN
C
,
the
rela
y
decodes
the
sign
al
s
receive
d
from
bo
th
source
no
des
S
and
D
,
a
nd
t
he
n
it
im
ple
m
e
nts
P
NC
t
o
re
cod
e
the
dec
oded
data
an
d
forw
a
r
ds
th
e
r
ecod
e
d
data
t
o
t
he
destinat
io
n
no
des
D
an
d
S.
Af
te
r
r
ecei
ving
the
netw
ork
cod
e
d
signa
ls
fr
om
the
relay
,
the
nodes
D
an
d
S
perform
d
eco
din
g t
o o
btain t
he
ir d
esi
red data
, r
es
pecti
vely
.
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Tit
le
o
f m
anusc
ript is s
ho
rt
and cl
ear
, impli
es rese
ar
ch
res
ults (
First
Au
th
or
)
529
=
+
̅
+
1
,
=
̅
+
1
,
=
̅
+
1
Fo
r
t
he
DF
ba
sed
F
D
-
T
WR
with
PN
C
,
in
k
-
th
tim
e
slot,
the
sign
al
tra
nsm
it
te
d
at
the
relay
can
be
expresse
d
as
,
[
]
=
[
−
]
⨁
[
−
]
(4)
The
n,
t
he
insta
ntane
ous S
NR
of the si
gn
al
re
cei
ved
at
the
re
la
y ca
n
be
e
xpr
essed
a
s,
=
{
|
ℎ
[
]
|
2
}
+
{
|
ℎ
[
]
|
2
}
{
|
ℎ
[
]
|
2
}
+
{
|
[
]
|
2
}
=
+
̅
+
1
(5)
Substi
tute eq
ua
ti
on
(4)
in
(2) a
nd (3)
[
]
=
ℎ
(
[
−
]
⨁
[
−
]
)
+
ℎ
[
]
+
[
]
(6)
[
]
=
ℎ
(
[
−
]
⨁
[
−
]
)
+
ℎ
[
]
+
[
]
(7)
Since
both
des
ti
nation
nodes
D
an
d
S
know
their
preci
ousl
y
transm
itted
da
ta
,
they
can
s
ub
t
ract
the
back
-
prop
a
gati
ng
sel
f
i
nter
fe
ren
ce
in
(
6)
a
nd
(
7)
afte
r
de
cod
i
ng,
t
hrough
bit
-
le
vel
X
OR
op
e
rati
on.
The
instanta
ne
ous
SN
Rs
of sig
na
l
s r
ecei
ve
d
at
nod
e
s D a
nd S
c
an be
resp
ect
i
ve
ly
ex
presse
d
a
s,
=
{
|
ℎ
[
−
]
|
2
}
{
|
ℎ
[
]
|
2
}
+
{
|
[
]
|
2
}
=
̅
+
1
(8)
Si
m
il
arly
at no
de
S
,
=
{
|
ℎ
[
−
]
|
2
}
{
|
ℎ
[
]
|
2
}
+
{
|
[
]
|
2
}
=
̅
+
1
(9)
3.1.1
Av
er
age
Rate
The
a
ver
a
ge
r
at
e
for
the
D
F
base
d
F
ull
-
Duplex
tw
o
-
w
ay
relay
ing
e
qu
al
s
t
he
a
ve
rag
e
of
the
m
ini
m
u
m
o
f
th
e
rate f
or the
s
ource
-
relay
and
relay
-
destina
ti
on
c
hannels i
n
,
R
̅
=
ε
{
min
(
log
2
(
1
+
γ
R
)
,
min
(
log
2
(
1
+
γ
S
2R
)
,
log
2
(
1
+
γ
R
2
D
)
)
+
min
(
log
2
(
1
+
γ
D2R
)
,
log
2
(
1
+
γ
R2S
)
)
)
}
̅
≤
(
{
2
(
1
+
)
}
,
{
2
(
1
+
(
2
,
2
)
)
}
,
+
{
2
(
1
+
(
2
,
2
)
)
}
)
(10)
Applyi
ng Je
nse
n’
s
ine
qu
al
it
y i
n
a
bove
e
quat
ion
,
{
2
(
1
+
)
}
=
{
2
(
1
+
+
̅
+
1
)
}
(11)
{
2
(
1
+
)
}
=
1
2
{
∫
(
1
+
+
̅
+
1
)
−
̅
⁄
̅
+
∞
0
∫
∫
1
̅
+
1
+
+
∞
0
∞
0
−
̅
⁄
−
̅
⁄
̅
}
(12)
I
n
orde
r
t
o
de
rive
t
he
cl
ose
d
form
-
expre
ssion
co
nvenie
ntly
,
we
first
def
i
ne
a
ra
ndom
var
ia
ble
X
as
the
m
ini
m
u
m
o
f
γ
S2R
and
γ
R
2
D
,
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
526
–
538
530
=
(
2
,
2
)
=
(
̅
̅
+
1
,
̅
̅
+
1
)
(13)
The
n,
we de
duce it
s cu
m
ulativ
e
distrib
utive
functi
on (
C
DF),
(
)
=
(
≤
)
=
(
(
2
,
2
)
≤
)
{
1
−
−
(
̅
(
̅
+
1
)
+
̅
(
̅
+
1
)
)
̅
̅
,
>
0
0
,
≤
0
(14)
Ba
sed on CD
F
of X
,
ε
{
log
2
(
1
+
min
(
γ
S
2
R
,
γ
R
2
D
)
)
}
is de
riv
ed
as
,
̅
=
{
2
(
1
+
(
2
,
2
)
)
}
̅
=
∫
2
(
1
+
)
(
)
∞
0
̅
=
1
2
(
̅
(
̅
+
1
)
+
̅
(
̅
+
1
)
)
̅
̅
×
1
(
(
̅
(
̅
+
1
)
+
̅
(
̅
+
1
)
)
̅
̅
)
(15)
Si
m
il
arly
,
ε
{
log
2
(
1
+
min
(
γ
D2R
,
γ
R2S
)
)
}
is
r
epr
ese
nted
as,
̅
=
{
2
(
1
+
(
2
,
2
)
)
}
̅
=
1
2
(
̅
(
̅
+
1
)
+
̅
(
̅
+
1
)
)
̅
̅
×
1
(
(
̅
(
̅
+
1
)
+
̅
(
̅
+
1
)
)
̅
̅
)
(16)
Substi
tute eq
ua
ti
on
(12),
(14)
and (
15)
i
n (10
),
T
he
a
ver
a
ge r
at
e o
f
for t
he D
F b
as
ed
FD
-
T
WR is e
xpress
ed
as
,
̅
,
≤
̅
̅
+
1
̅
1
(
̅
+
1
̅
)
−
̅
̅
+
1
̅
1
(
̅
+
1
̅
)
(
2
)
(
̅
−
̅
)
,
1
2
̅
(
̅
+
1
)
+
̅
(
̅
+
1
)
̅
̅
1
(
̅
(
̅
+
1
)
+
̅
(
̅
+
1
)
̅
̅
)
+
1
2
̅
(
̅
+
1
)
+
̅
(
̅
+
1
)
̅
̅
1
(
̅
(
̅
+
1
)
+
̅
(
̅
+
1
)
̅
̅
)
(17)
Accor
ding to
[(2),
(5),(6
)], the
av
e
rag
e
r
at
e
f
or the
DF base
d
F
D
-
O
WR ca
n be e
xpresse
d as,
̅
=
{
2
(
1
+
(
,
)
)
}
(18)
̅
=
1
2
(
+
(
+
1
)
)
1
(
+
(
+
1
)
)
(19)
3.1.2 O
uta
ge Pr
obabil
ity
The o
utage pr
obabili
ty
o
f
the
DF
base
d
F
D
-
T
W
R
from
[3
3,(14),(
15)],
=
1
−
(
{
{
2
≥
ℎ
}
∩
{
2
≥
ℎ
}
∩
{
2
≥
ℎ
}
∩
{
2
≥
ℎ
}
}
∪
{
{
2
≥
ℎ
}
∩
{
2
≥
ℎ
}
∩
{
2
≥
ℎ
}
∩
{
2
≥
ℎ
}
}
)
(20)
2
=
+
̅
+
1
,
2
=
̅
+
1
,
2
=
+
̅
+
1
2
=
̅
+
1
,
2
=
̅
+
1
,
2
=
̅
+
1
(21)
Substi
tute (
21)
in (2
0),
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Tit
le
o
f m
anusc
ript is s
ho
rt
and cl
ear
, impli
es rese
ar
ch
res
ults (
First
Au
th
or
)
531
CASE 1
:
ℎ
≥
1
,
,
=
1
−
∫
∫
1
̅
−
̅
⁄
1
̅
−
̅
⁄
−
∞
ℎ
(
+
̅
+
1
)
∞
ℎ
(
̅
+
1
)
∫
∫
1
̅
−
̅
⁄
1
̅
−
̅
⁄
∞
ℎ
(
+
̅
+
1
)
∞
ℎ
(
̅
+
1
)
(22)
CASE 2
:
ℎ
∈
(
0
,
1
)
,
1
−
̅
̅
+
̅
ℎ
−
ℎ
(
̅
+
1
)
(
̅
+
̅
+
̅
ℎ
)
̅
̅
−
̅
̅
+
̅
ℎ
−
ℎ
(
̅
+
1
)
(
̅
+
̅
+
̅
ℎ
)
̅
̅
+
(
1
−
ℎ
)
2
̅
̅
(
ℎ
̅
+
̅
)
(
̅
+
ℎ
̅
)
−
ℎ
(
̅
+
1
)
(
̅
+
̅
)
(
1
−
ℎ
)
̅
̅
(23)
Her
e
the
outa
ge
proba
bili
ty
o
f
the
DF
based
FD
-
T
W
R
w
it
h
PN
C, is
g
i
ven in e
qu
at
io
n (
24)
.
{
1
−
̅
̅
+
̅
ℎ
−
ℎ
(
̅
+
1
)
(
̅
+
̅
ℎ
)
̅
̅
−
̅
̅
+
̅
ℎ
−
ℎ
(
̅
+
1
)
(
̅
+
̅
+
̅
ℎ
)
̅
̅
,
ℎ
≥
1
1
−
̅
̅
+
̅
ℎ
−
ℎ
(
̅
+
1
)
(
̅
+
̅
ℎ
)
̅
̅
−
̅
̅
+
̅
ℎ
−
ℎ
(
̅
+
1
)
(
̅
+
̅
+
̅
ℎ
)
̅
̅
+
(
1
−
ℎ
2
)
̅
̅
(
ℎ
̅
+
̅
)
(
̅
+
ℎ
̅
)
−
ℎ
(
̅
+
1
)
(
̅
+
̅
)
(
1
−
ℎ
)
̅
̅
,
ℎ
∈
(
0
,
1
)
(24)
Accor
ding to
[(5),
(
3)
]
the
ou
ta
ge
pr
ob
a
bili
ty
o
f
D
F
b
a
sed
FD
-
O
WR is,
=
1
−
(
1
−
∫
1
−
̅
ℎ
(
+
1
)
0
)
×
(
1
−
∫
1
̅
ℎ
0
−
̅
)
=
1
−
−
ℎ
(
̅
+
̅
(
̅
+
1
)
)
̅
̅
(25)
The
c
om
par
iso
n
of
(24
)
a
nd
(
25)
rev
eal
s
t
ha
t
the
outa
ge
pr
ob
a
bili
ty
of
th
e
DF
base
d
F
D
-
T
WR
with
PN
C
is
higher
than
that
in
the
DF
base
d
FD
-
O
WR,
bec
ause
resid
ual
sel
f
inter
f
ere
nc
e,
ge
ne
rated
at
the
destinat
io
n nod
es due t
o
thei
r c
o
-
c
ha
nn
el
t
ra
ns
m
issi
on
, det
erior
at
es
the
S
NRs
of
t
he rec
ei
ved
sig
nal.
3.2 AF b
as
e
d
FD
-
TWR
In
the
AF
ba
sed
FD
-
O
WR,
in
t
he
k
-
t
h
t
i
m
e
slot,
the
sign
al
t
ran
sm
i
tt
ed
by
t
he
re
la
y
is
the
a
m
plific
at
ion
of
the
prio
r
rec
e
ived si
gnal
and
it
can be e
xpre
ssed
as
,
[
]
=
[
−
]
(26)
Wh
e
re
is t
he
a
m
pl
ific
at
ion
f
a
ct
or
,
which
d
e
pends
on t
he
c
hannel c
oeffici
ents, a
nd
is t
he
pro
ces
sin
g d
el
ay
.
Sub e
qu
at
io
n (
1) in
(26
)
[
]
=
(
ℎ
[
−
]
+
ℎ
[
−
]
+
ℎ
[
−
]
+
[
−
]
)
(27)
The
i
ns
ta
nta
ne
ou
s
tra
ns
m
itted pow
e
r
is e
xpre
ssed
as
,
{
|
[
]
|
2
}
=
2
(
|
ℎ
|
2
+
|
ℎ
|
2
+
|
ℎ
|
2
{
|
[
−
]
|
2
}
+
2
)
(28)
Con
si
der
i
ng th
e pow
e
r
c
onstr
ai
nt of
P
R
at
th
e
r
el
ay
an
d
a
ssu
m
ing
t
hat it
s tra
nsm
it
t
ing
power i
s
ε
{
|
t
R
[
k
]
|
2
}
=
P
R
=
1
. T
hen,
2
=
1
|
ℎ
|
2
+
|
ℎ
|
2
+
|
ℎ
|
2
+
2
=
[
|
ℎ
|
2
+
|
ℎ
|
2
+
|
ℎ
|
2
+
2
]
−
1
2
⁄
(29)
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
526
–
538
532
wh
e
re
h
RR
is
resi
du
al
sel
f
-
i
nterf
e
r
ence
a
fter
inte
r
fer
e
nce
cancel
l
at
ion
.
T
he
rece
ived
sig
nal
at
node
D
can
be
e
xpress
ed
as
,
Sub e
qu
at
io
n (
27)
i
n
(
2)
[
]
=
ℎ
[
(
ℎ
(
−
)
+
ℎ
(
−
)
+
ℎ
(
−
)
+
(
−
)
)
]
+
ℎ
[
]
+
[
]
=
ℎ
(
ℎ
(
−
)
+
ℎ
(
−
)
+
ℎ
(
−
)
+
(
−
)
)
+
ℎ
[
]
+
(30)
Since
the
node
D
know
their
transm
it
te
d
s
ym
bo
ls,
the
ba
ck
-
pro
pag
at
i
ng
sel
f
-
i
nterf
e
re
n
ce
can
be
su
bt
racted.
[
]
=
ℎ
(
ℎ
(
−
)
+
ℎ
(
−
)
+
(
−
)
)
+
ℎ
[
]
+
[
]
The
i
ns
ta
nta
ne
ou
s
po
wer rece
ived
at
t
hese
node
s ar
e
exp
re
ssed
as
,
{
|
[
]
|
2
}
=
2
|
ℎ
|
2
(
|
ℎ
|
2
+
|
ℎ
|
2
{
|
[
−
]
|
2
}
+
2
)
+
|
ℎ
|
2
+
2
Her
e
the
powe
r
c
on
st
raint
ε
{
|
t
R
[
k
]
|
2
}
=
P
R
=
1
{
|
[
]
|
2
}
=
2
|
ℎ
|
2
(
|
ℎ
|
2
+
|
ℎ
|
2
+
2
)
+
|
ℎ
|
2
+
2
(31)
The
n
the
insta
ntane
ous S
NR
at
the no
de D c
an be e
xpresse
d
as
,
=
2
|
ℎ
|
2
|
ℎ
|
2
2
|
ℎ
|
2
(
|
ℎ
|
2
+
2
)
+
|
ℎ
|
2
+
2
=
|
ℎ
|
2
|
ℎ
|
2
(
|
ℎ
|
2
+
2
)
+
|
ℎ
|
2
+
2
2
(32)
Si
m
il
arly
the i
ns
ta
nta
neous S
NR at the
no
de
S
ca
n be e
xpre
ssed
as
,
=
2
|
ℎ
|
2
|
ℎ
|
2
2
|
ℎ
|
2
(
|
ℎ
|
2
+
2
)
+
|
ℎ
|
2
+
2
=
|
ℎ
|
2
|
ℎ
|
2
|
ℎ
|
2
(
|
ℎ
|
2
+
2
)
+
|
ℎ
|
2
+
2
2
(33)
The
n
substi
tute
equ
at
io
n
(
29)
in
(31)
a
nd
(
33)
.
The
in
sta
nt
aneous
S
NR
of
the
AF
based
FD
-
T
W
R
at
the no
de
S
and
D
ca
n be e
xpr
essed
a
s,
=
|
ℎ
|
2
|
ℎ
|
2
|
ℎ
|
2
(
|
ℎ
|
2
+
2
)
+
|
ℎ
|
2
+
2
[
[
|
ℎ
|
2
+
|
ℎ
|
2
+
|
ℎ
|
2
+
2
]
−
1
2
⁄
]
2
=
(
+
1
)
+
(
+
1
)
(
+
+
+
1
)
(34)
Si
m
il
arly
at no
de D,
=
(
+
1
)
+
(
+
1
)
(
+
+
+
1
)
(35)
Eq
uation
(
34)
and
(
35)
in
dicat
e
that
F
D
-
T
WR
has
m
or
e
resid
ual
sel
f
-
in
te
rf
ere
nce
c
om
par
e
d
t
o
F
D
-
O
W
R
beca
us
e
al
l
the
node
s
in
F
D
-
T
WR
op
e
rate
in
f
ull
-
du
plex
m
od
e,
w
hile
on
ly
th
e
relay
in
F
D
-
O
WR
op
e
rates in
this
m
od
e. T
hu
s
, FD
-
T
WR
deteri
or
at
es t
he
S
NR
of the
r
ecei
ve
d
e
nd
-
to
-
en
d si
gn
al
.
The
a
ver
a
ge
r
a
te
f
or the
AF
ba
sed FD
-
T
W
R
is def
i
ned as,
̅
=
{
log
2
(
1
+
)
}
+
{
log
2
(
1
+
)
}
(36)
Sub e
qu
at
io
n (
36)
i
n
(
34)
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Tit
le
o
f m
anusc
ript is s
ho
rt
and cl
ear
, impli
es rese
ar
ch
res
ults (
First
Au
th
or
)
533
{
log
2
(
1
+
)
}
=
1
2
(
∫
∫
+
̅
+
1
+
(
̅
+
1
)
+
(
̅
+
1
)
(
+
+
̅
+
1
)
∞
0
∞
0
1
̅
−
̅
−
̅
)
−
∫
∫
̅
+
1
(
̅
+
1
)
+
(
̅
+
1
)
(
+
+
̅
+
1
)
∞
0
∞
0
1
̅
−
̅
−
̅
(37)
Fr
om
the a
bove
equ
at
ion
1
,
1
and
2
,
2
is,
1
,
1
=
∫
∫
+
̅
+
1
+
(
̅
+
1
)
+
(
̅
+
1
)
(
+
+
̅
+
1
)
∞
0
∞
0
1
̅
−
̅
−
̅
1
,
2
=
∫
∫
1
̅
−
̅
−
̅
̅
+
1
(
̅
+
1
)
+
(
̅
+
1
)
(
+
+
̅
+
1
)
∞
0
∞
0
The
n,
1
,
1
can
be
si
m
pl
ifie
d
in e
qu
at
ion
(38) in t
he
bott
om
o
f
the
p
a
ge.
1
,
1
=
∫
∫
+
̅
+
1
(
+
̅
+
1
)
+
2
(
+
̅
+
1
)
(
̅
+
1
)
−
(
̅
+
1
)
2
∞
0
∞
0
1
̅
−
̅
−
̅
(
38)
In
order
t
o
obta
in
a
ti
ghtl
y
lo
wer
bound
eas
il
y,
the
c
onsta
nt
te
rm
−
(
̅
+
1
)
2
can
be
discar
d
i
n
th
e
deno
m
inator.
1
,
1
=
∫
∫
+
̅
+
1
+
̅
+
1
×
1
+
2
(
̅
+
1
)
∞
0
1
̅
−
̅
−
̅
∞
0
1
,
1
=
2
(
̅
+
1
)
̅
1
(
2
(
̅
+
1
)
̅
)
(
39)
The
n,
1
,
2
=
∫
∫
̅
+
1
(
̅
+
1
)
+
(
̅
+
1
)
(
+
+
̅
+
1
)
1
̅
−
̅
−
̅
∞
0
∞
0
Her
e
, th
e
r
esi
dual
self i
nter
fere
nce is as
su
m
ed
to
b
e
ide
ntica
l, then
̅
=
̅
=
̅
=
̅
1
,
2
=
∫
∫
1
̅
−
̅
−
̅
̅
+
1
(
̅
+
1
)
+
(
̅
+
1
)
(
+
+
̅
+
1
)
∞
0
∞
0
1
,
2
=
1
̅
∫
−
̅
2
+
̅
+
1
̅
1
(
2
+
̅
+
1
̅
)
∞
0
1
,
2
=
̅
2
̅
−
̅
(
(
̅
+
1
)
2
̅
1
(
̅
+
1
2
̅
)
−
(
̅
+
1
)
̅
1
(
̅
+
1
̅
)
)
(
40)
Sub e
qu
at
io
n (
39)
a
nd (4
0) in
(37). T
he
av
e
r
age
rate o
f
F
D
-
T
W
R
from
d
est
inati
on
t
o
s
our
ce
{
log
2
(
1
+
)
}
>
1
2
(
2
(
̅
+
1
)
̅
1
(
2
(
̅
+
1
)
̅
)
−
̅
2
̅
−
̅
(
̅
+
1
2
̅
1
(
̅
+
1
2
̅
)
−
̅
+
1
̅
1
(
̅
+
1
̅
)
)
)
(
41)
The
a
ver
a
ge
r
a
te
o
f
F
D
-
T
WR
from
so
ur
ce
to desti
natio
n,
{
log
2
(
1
+
)
}
>
1
2
(
2
(
̅
+
1
)
̅
1
(
2
(
̅
+
1
)
̅
)
−
̅
2
̅
−
̅
(
̅
+
1
2
̅
1
(
̅
+
1
2
̅
)
−
̅
+
1
̅
1
(
̅
+
1
̅
)
)
)
(
42)
The
n
s
ubsti
tute eq
uation (
41) a
nd (4
2)
i
n (36
).
T
he
a
ver
a
ge r
at
e for
the
AF
base
d
F
D
-
T
WR is,
̅
≥
1
ln
2
(
2
(
̅
+
1
)
1
(
2
(
̅
+
1
)
̅
)
+
2
(
̅
+
1
̅
1
(
2
(
̅
+
1
)
̅
)
−
̅
2
̅
−
̅
(
̅
+
1
2
̅
1
(
̅
+
1
2
̅
)
−
̅
+
1
̅
1
(
̅
+
1
̅
)
)
−
̅
2
̅
−
̅
(
̅
+
1
2
̅
1
(
̅
+
1
2
̅
)
−
̅
+
1
̅
1
(
̅
+
1
̅
)
)
)
(
43)
The
a
ver
a
ge
r
a
te
f
or the
AF
ba
sed FD
-
O
WR
is,
̅
−
=
ℎ
(
+
1
)
+
1
1
(
+
1
)
(
ln
2
)
(
(
+
1
)
−
)
−
1
/
1
(
1
)
(
ln
2
)
(
(
+
1
)
−
)
(44)
The
AF
bas
ed
FD
-
T
WR
ca
nnot
ac
hie
ve
f
ul
l
tim
e
m
ul
ti
plexing
gain,
c
om
par
ed
with
FD
-
O
W
R,
because
it
also
su
f
fer
s
fro
m
th
e resid
ual self
-
interfe
ren
ce
at
the tw
o desti
na
ti
on
nodes
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
526
–
538
534
3.2.2 O
uta
ge prob
ab
il
it
y
Let
ℎ
=
2
ℎ
−
1
,
w
her
e
ℎ
and
ℎ
are
the
ou
t
age
S
NR
a
nd
r
at
e
thres
ho
l
ds
,
res
pecti
vely
.
Th
us
,
the outage
pr
obabili
ty
o
f
F
D
-
T
W
R i
s
def
i
ne
d
as
,
=
{
min
(
log
2
(
1
+
)
,
log
2
(
1
+
)
)
<
ℎ
}
Fo
r
the
AF
bas
ed
F
D
-
T
W
R
, t
he
inte
gr
al
do
m
ai
n
for
it
s
ou
t
age
pro
bab
il
it
y co
ns
ist
of
1
=
{
(
,
)
|
0
<
<
∞
,
0
<
<
ℎ
(
̅
+
1
)
}
3
=
{
(
,
)
|
(
̅
+
1
)
(
3
ℎ
+
(
9
ℎ
2
+
4
ℎ
)
1
2
⁄
)
2
≤
<
∞
,
ℎ
(
̅
+
1
)
(
+
̅
+
1
)
−
2
ℎ
(
̅
+
1
)
≤
<
ℎ
(
̅
+
1
)
(
2
+
̅
+
1
)
−
ℎ
(
̅
+
1
)
}
The
n,
t
he ou
ta
ge pr
obabili
ty
o
f
A
F
b
a
sed
F
D
-
T
WR is
give
n
in
(4
5)
.
=
∫
1
̅
−
̅
∫
1
̅
−
̅
∞
0
ℎ
(
̅
+
1
)
0
+
∫
1
̅
−
̅
∞
ℎ
(
̅
+
1
)
∫
1
̅
−
̅
ℎ
(
̅
+
1
)
(
2
+
(
̅
+
1
)
)
−
ℎ
(
̅
+
1
)
0
+
∫
∫
1
̅
−
̅
ℎ
(
̅
+
1
)
(
2
+
̅
+
1
)
−
ℎ
(
̅
+
1
)
ℎ
(
̅
+
1
)
(
+
̅
+
1
)
−
2
ℎ
(
̅
+
1
)
∞
(
̅
+
1
)
(
3
ℎ
+
(
9
ℎ
2
+
4
ℎ
)
1
2
)
2
1
̅
−
̅
(45)
Fr
om
the e
qu
at
ion
(
45)
2
,
1
an
d
2
,
2
is re
pr
ese
nted
a
s,
2
,
1
=
∫
1
̅
−
̅
ℎ
(
̅
+
1
)
0
∫
1
̅
−
̅
+
∞
0
∫
1
̅
−
̅
∞
ℎ
(
̅
+
1
)
∫
1
̅
−
̅
ℎ
(
̅
+
1
)
(
2
+
(
̅
+
1
)
)
−
ℎ
(
̅
+
1
)
0
(
46)
2
,
2
=
∫
∫
1
̅
−
̅
ℎ
(
̅
+
1
)
(
2
+
̅
+
1
)
−
ℎ
(
̅
+
1
)
ℎ
(
̅
+
1
)
(
+
̅
+
1
)
−
2
ℎ
(
̅
+
1
)
∞
(
̅
+
1
)
(
3
ℎ
+
(
9
ℎ
2
+
4
ℎ
)
1
2
)
2
1
̅
−
̅
(
47)
Eq
uation (
46) c
an be
wr
it
te
n as,
2
,
1
=
1
−
2
(
ℎ
(
̅
+
1
)
(
̅
+
2
̅
)
̅
̅
)
1
2
×
−
ℎ
(
̅
+
1
)
(
̅
+
2
̅
)
̅
̅
×
1
(
2
(
ℎ
(
̅
+
1
)
(
̅
+
2
̅
)
̅
̅
)
1
2
)
(48)
Eq
uation (
47)
can
be writt
en a
s,
2
,
2
=
2
(
ℎ
(
2
ℎ
+
1
)
(
̅
+
1
)
2
̅
̅
)
1
2
−
ℎ
(
̅
+
1
)
(
̅
+
2
̅
)
̅
̅
1
(
2
(
ℎ
(
2
ℎ
+
1
)
(
̅
+
1
)
2
̅
̅
)
1
2
)
−
1
̅
∫
−
(
̅
+
ℎ
(
2
ℎ
+
1
)
(
̅
+
1
)
2
̅
+
ℎ
(
̅
+
1
)
(
̅
+
2
̅
)
̅
̅
)
−
(
̅
+
1
)
(
−
ℎ
+
(
9
ℎ
2
+
4
ℎ
)
1
2
)
2
0
2
(
ℎ
(
2
ℎ
+
1
)
(
̅
+
1
)
2
̅
̅
)
1
2
−
ℎ
(
̅
+
1
)
(
2
̅
+
̅
)
̅
̅
1
(
2
(
ℎ
(
2
ℎ
+
1
)
(
̅
+
1
)
2
̅
̅
)
1
2
)
+
1
̅
∫
−
(
̅
+
ℎ
(
2
ℎ
+
1
)
(
̅
+
1
)
2
̅
+
ℎ
(
̅
+
1
)
(
2
̅
+
̅
)
̅
̅
)
(
̅
+
1
)
(
ℎ
+
(
9
ℎ
2
+
4
ℎ
)
1
2
)
2
0
(49
)
Fr
om
the e
qu
at
ion
(
49)
2
,
2
,
1
an
d
2
,
2
,
2
is re
pr
ese
nted
as,
2
,
2
,
1
<
−
ℎ
(
̅
+
1
)
(
̅
+
2
̅
)
̅
̅
×
(
1
−
−
(
̅
+
1
)
(
−
ℎ
+
(
9
ℎ
2
+
4
ℎ
)
1
2
)
2
)
(
50)
2
,
2
,
2
<
−
ℎ
(
̅
+
1
)
(
2
̅
+
̅
)
̅
̅
×
(
1
−
−
(
̅
+
1
)
(
ℎ
+
(
9
ℎ
2
+
4
ℎ
)
1
2
)
2
)
(
51)
The o
utage pr
obabili
ty
o
f
the
AF
base
d
F
D
-
T
W
R ca
n be ti
gh
tl
y u
pper
bo
unde
d by,
Sub
2
,
1
an
d
2
,
2
in e
qu
at
io
n (
45)
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Tit
le
o
f m
anusc
ript is s
ho
rt
and cl
ear
, impli
es rese
ar
ch
res
ults (
First
Au
th
or
)
535
≤
1
−
2
(
ℎ
(
2
ℎ
+
1
)
(
̅
+
1
)
̅
̅
2
)
1
2
×
−
ℎ
(
̅
+
1
)
(
2
̅
+
̅
)
̅
̅
1
(
2
(
ℎ
(
2
ℎ
+
1
)
(
̅
+
1
)
̅
̅
2
)
1
2
)
+
(
1
−
(
̅
+
1
)
(
ℎ
+
(
9
ℎ
2
+
4
ℎ
)
1
2
2
̅
)
−
−
ℎ
(
̅
+
1
)
(
̅
+
2
̅
)
̅
̅
(
1
−
(
+
1
)
(
−
ℎ
+
(
9
ℎ
2
+
4
ℎ
)
1
2
2
̅
)
(
52
)
Wh
e
re
(
.
)
is
the
m
od
ifie
d
Be
ss
el
functi
on
of
the
sec
ond
ki
nd.Th
e
outa
ge
prob
a
bili
ty
of
A
F
ba
se
d
FD
-
O
WR is,
,
−
=
1
−
2
(
ℎ
(
ℎ
+
1
)
(
̅
+
1
)
̅
̅
)
1
2
×
−
ℎ
(
̅
+
̅
(
̅
+
1
)
)
)
̅
̅
×
1
(
2
(
ℎ
(
ℎ
+
1
)
(
̅
+
1
)
̅
̅
)
1
2
)
(53)
The
ou
ta
g
e
prob
a
bili
ty
of
th
e
AF
base
d
F
D
-
T
WR
is
higher
t
han
that
i
n
F
D
-
O
W
R
.
T
his
is
beca
use
the
resi
du
al
se
lf
-
inter
fer
e
nce
generate
d
at
the
destinat
i
on
nodes
i
n
F
D
-
T
W
R
deterio
r
at
es
the
SN
R
of
t
he
receive
d
sig
na
ls.
This
al
so
rev
eal
that
ti
m
e
m
ulti
plexi
ng
ca
n
help
t
o
im
pr
ov
e
t
he
aver
a
ge
r
at
e,
but
si
m
ultaneou
sly
it
also lead
s to
a loss i
n
t
he o
utage pe
rfor
m
ance.
4.
SIMULATI
O
N RESULTS
In
this
sect
io
n,
the
perform
ance
of
the
F
D
-
T
WR
schem
e
is
pr
ese
nted
us
in
g
MATL
AB
sim
ula
ti
on
s
.
The
a
ver
a
ge
r
a
te
an
d O
utage
pro
bab
il
it
y
of
FD
-
T
W
R
sch
e
m
e are prese
nted.
In
Fi
gure
2
th
e
ou
ta
ge
pro
ba
bili
ty
of
the
DF
ba
sed
F
D
-
T
W
R
an
d
F
D
-
O
W
R
with
P
NC
unde
r
the
ou
ta
ge
rate
th
r
esh
old
,
ℎ
=
1
b/s/Hz
is
sh
ow
n.
I
n
t
his
FD
-
T
WR
a
chieves
bette
r
perform
ance
than
t
he
F
D
-
O
W
R
,
beca
us
e
the
DF
base
d
FD
-
T
W
R
s
uffe
rs
from
m
or
e
s
ever
e
re
sid
ual
sel
f
-
inter
fere
nc
e
than
FD
-
O
W
R.
It
is
al
so
sh
ow
n
that
PN
C
can
i
m
pr
ov
e
the
ou
ta
ge
perf
or
m
a
nce
of
the
DF
base
d
FD
-
T
W
R,
becau
s
e
it
e
nab
le
s
the
relay
to
f
orward
the
si
gn
a
ls
with
m
axi
m
um
po
we
r
with
ou
t
perform
ing
power
al
loca
ti
on,
w
hich
im
pr
ove
s
the
qu
al
it
y
of
the
relay
ing
li
nk.
I
n
this
the
loop
inter
fer
e
nc
e
can
be
var
ie
d
with
resp
ect
to
3
dB,
6
dB,
and
10
dB.
Figure
2.
O
uta
ge
P
r
ob
a
bili
ty
of the
DF
Ba
se
d
FD
-
T
W
R
and FD
-
O
WR
Figure
3
com
par
es
the
ou
ta
ge
pro
bab
il
it
y
of
the
AF
base
d
FD
-
T
W
R
a
nd
FD
-
O
WR.
It
is
evide
nt
that
FD
-
T
W
R
achi
eves
bette
r
pe
rfor
m
ance
tha
n
t
he
F
D
-
O
W
R
with
P
NC
unde
r
the
ou
t
age
rate
th
res
ho
l
d
of
ℎ
=
1 b/s/
Hz.
Evaluation Warning : The document was created with Spire.PDF for Python.