Indonesian Journal of
Electrical
Engineer
ing and
Computer Science
V
o
l. 10
, No
. 3, Jun
e
20
18
, pp
. 95
9
~
96
5
ISSN: 2502-4752,
DOI: 10.
11591/ij
eecs.v10
.i3.pp959-965
9
59
Jo
urn
a
l
h
o
me
pa
ge
: http://iaescore.c
om/jo
urnals/index.php/ijeecs
Positi
oning of a Wireles
s
Rel
a
y
Node for Useful Coop
erati
v
e
Communication
Tariq Muh
a
m
a
d Am
jad,
Els
h
ei
kh
Moham
e
d Ahmed Els
h
eikh
Interna
tiona
l Isl
a
m
i
c Universit
y
Mala
y
s
ia
, Ma
la
ysia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 19, 2018
Rev
i
sed
Ap
r 2, 20
18
Accepted Apr 17, 2018
Given the exorb
itant am
ount of data tr
ansm
itted
and the increasi
ng dem
a
nd
for data connectivity
in
the 21st centur
y
,
it has become imperativ
e to search
for pro-activ
e and sustainable solutions
to the effec
tive
l
y
all
e
via
t
e th
e
overwhelming burden imposed on wireless
netwo
r
ks. In this stud
y
a Decode
and Forward co
operative r
e
lay
channel
is
an
al
yz
ed, wi
th th
e em
plo
y
m
e
nt
of
Maxim
a
l Rat
i
o
Com
b
ining at
th
e destin
a
tion
no
de as th
e metho
d
of offering
diversity
combining. The
s
y
stem
frame
work used is based
on
a thr
ee-nod
e
relay
ch
annel with a sour
ce node, relay
node and
a destination no
de. A model
for the wire
les
s
com
m
unicati
ons
cha
nnel
is formulated in
order for
simulation to be carried out to
inve
stigate the impact on perf
ormance of
relay
i
ng on a no
de placed at the edge
of c
e
ll
. Fi
rstl
y, an AW
GN channe
l is
used before the effect of Ray
l
eigh fadi
ng is taken into consider
ation
.
Resul
t
shows that performance of cooperative
relay
i
ng performance is alway
s
superior or si
m
ilar to
conventional
rel
a
y
i
ng
. Addition
a
ll
y
,
relay
i
ng is
benefi
cia
l
when
the r
e
la
y
is
p
l
a
c
e
d
clos
er
to
the
re
ceiv
e
r.
K
eyw
ords
:
AW
GN
Co
op
erativ
e relay
Deco
de a
n
d
fo
rwa
r
d
R
a
y
l
ei
gh fa
di
n
g
Copyright ©
201
8 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
El
shei
k
h
M
oha
m
e
d A
h
m
e
d El
shei
k
h
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
C
o
m
put
er E
ngi
neeri
n
g
,
Facu
lty of En
gin
eering
,
In
tern
ati
o
n
a
l
Islam
i
c Un
iv
ersity Malaysia,
Jal
a
n Gom
b
ak,
Sel
a
g
o
r
Da
rul
Ehsa
n, P.
O.
B
o
x 10
, 50
7
2
8
K
u
al
a
L
u
m
pur,
Kual
a Lum
pur
-
M
a
l
a
y
s
i
a
.
Em
a
il: elsh
eik
h
@
iiu
m
.
ed
u.my
1.
INTRODUCTION
W
i
t
h
ongo
ing
p
r
og
r
e
ssi
o
n
of
m
o
d
e
r
n
technolo
g
y
,
n
e
w ch
al
len
g
e
s and
pr
ed
icam
en
ts h
a
ve e
m
er
g
e
d
i
n
or
der t
o
c
ope
wi
t
h
t
h
e net
w
o
r
ki
ng dem
a
nds
of an i
n
crea
si
ng
num
ber o
f
devi
ces
. C
u
r
r
e
n
t
t
echn
o
l
o
gy
pr
o
v
i
d
es
wi
rel
e
ss dat
a
c
o
n
n
ect
i
v
i
t
y
fo
r
voi
ce an
d vi
d
e
o, t
h
ro
u
gh
w
h
i
c
h h
u
m
a
n i
n
t
e
ract
i
on an
d c
o
m
m
uni
cat
i
ons have
b
een co
m
p
letely revo
lu
tion
i
zed
.
M
o
b
ile
n
e
two
r
k
traffic is
c
onst
a
nt
l
y
gr
o
w
i
ng at
a
n
e
x
po
nent
i
a
l
rat
e
.
I
n
or
der
to
co
m
b
at th
is d
ile
mm
a, o
n
e
o
f
th
e so
l
u
tio
ns th
at h
a
s
bee
n
comm
only researche
d
in
rece
nt years is the use of
co
op
erativ
e commu
n
i
catio
n
s
, n
a
m
e
ly co
o
p
erativ
e relayi
ng
.
W
ith
co
op
erativ
e relayin
g
, in
ad
d
ition
to
th
e
ex
istin
g
link
between
a
u
s
er
an
d
a
b
a
se stat
io
n
,
d
e
d
i
cated
relay n
o
d
e
s are also
u
tilized
in
ord
e
r to
forward
d
a
ta. Conv
en
ti
o
n
a
l
u
s
e
o
f
relay lin
k
s
in
clud
e co
mm
u
n
i
catio
n
v
i
a satellites an
d
m
i
cro
w
av
e
b
a
ck
h
a
ulin
g.
Recently, relaying is also
propos
ed
fo
r cellular networks a
nd a
d
hoc
net
w
or
ks.
In parti
c
ular, relaying is
very
usef
ul
whe
n
c
o
nsi
d
e
r
i
n
g c
o
o
p
e
rat
i
v
e c
o
m
m
u
n
i
cat
i
on i
n
wi
r
e
l
e
ss ad
h
o
c
ne
t
w
o
r
ks
[
1
]
.
The m
a
in advantage
offe
red by c
o
ope
r
ative
relaying
is sp
atial d
i
v
e
rsity [2
]. In
sp
atiall
y d
i
v
e
rse
syste
m
s, antennas
distributed in s
p
ace through
relay no
des so a
s
to
provide a
differe
n
t wireless c
h
a
nnel a
s
com
p
ared to a
single tra
n
smission
be
twee
n a source and
a receiver. Di
versity schem
e
s are use
d
in
order
i
m
p
r
ov
e n
e
t
w
ork
reliab
ility. Th
is is ach
iev
e
d th
rough
th
e tran
sm
issio
n
o
f
sev
e
ral ind
e
p
e
n
d
e
n
t
v
e
rsion
s
o
f
t
h
e
sam
e
signal. These si
gnals are the
n
c
o
m
b
ined at t
h
e
receiver. This im
prove
s relia
bility by
reduci
ng the
bi
t
error rate as
well as offeri
ng
increase
d
t
h
roughput. Due t
o
the
fact that it
o
ffe
rs s
u
perio
r
per
f
o
r
m
a
nce and
the
fact th
at it is
m
o
st co
mm
o
n
l
y u
s
ed
it
W
C
DMA and
LTE relayin
g
syste
m
s [3
],
d
u
rin
g
th
e cou
r
se
o
f
th
is
researc
h
, Maxi
m
a
l Ratio Com
b
ining
will be
im
plem
ente
d as
the
pre
f
erred
m
e
thod
of dive
rsity
com
b
ining.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
95
9 – 96
5
96
0
Wh
en
tran
sm
it
tin
g
sign
als thro
ugh
wi
reless
med
i
a, v
a
ri
o
u
s ch
an
n
e
l im
p
a
i
r
m
e
n
t
s ex
ist th
at h
i
nd
er t
h
e
reliab
ility o
f
th
e tran
sm
issio
n
. Two
of th
e
m
a
j
o
r issu
es th
at p
r
esen
t th
em
selv
es with
tran
sm
issio
n
o
v
e
r
wireless ch
an
nels are p
a
th
lo
ss and
m
u
lt
ip
ath
fad
i
ng
. In
th
is work
si
m
u
la
tio
n
is ca
rried
o
u
t
assumin
g
Rayleig
h
fad
i
n
g
. Rayleig
h
statist
i
cal
mo
d
e
l is
m
o
re su
itab
l
e fo
r ap
p
licatio
n
with
ou
tdo
o
r cellu
lar
networks [4]. One
of the m
o
st comm
only used m
odels
due to its sim
p
lic
ity and relative accuracy is the Le
e
m
odel
.
Lee’s m
odel
has bee
n
i
m
pl
em
ent
e
d t
h
ro
u
g
h
o
u
t
the cellu
lar in
dustry for rad
i
o
p
r
op
ag
ation
analysis
with
great s
u
cc
ess [5].
There a
r
e a num
b
er of c
o
operative
relaying tec
hni
ques
t
h
at
are use
d
i
n
m
odern cel
l
u
ar
net
w
or
ks
.
These t
e
c
h
ni
q
u
e
s can
be
cl
ass
i
fi
ed acc
or
di
n
g
t
o
t
h
e
m
e
t
hod
i
n
w
h
i
c
h
dat
a
i
s
f
o
r
w
ar
de
d at
t
h
e rel
a
y
no
de.
Fo
r
the purpose of this researc
h
, t
h
e
dec
o
de-a
n
d
-
f
o
r
w
ar
d rel
a
y
i
ng i
s
ass
u
m
e
d. Deco
de-a
n
d
-
f
o
r
w
ar
d i
s
p
o
p
u
l
r du
e
t
o
o
v
e
r
al
l
pe
rf
orm
a
nce i
n
c
o
m
p
ari
s
on t
o
ot
her
p
r
ot
ocol
s
[
6
]
wi
t
h
reas
o
n
a
bl
e de
g
r
ee
of
com
p
l
e
xi
t
y
.
This study des
i
gne
d to scrutinize
the effect
s of relay node placem
en
t o
n
the capacity of a 3-node
co
mm
u
n
i
catio
n
s
system
. Prin
cip
l
es o
f
i
n
fo
rmatio
n
th
eory
will b
e
app
lied in
o
r
d
e
r to
com
p
are syste
m
cap
acity
un
de
r va
ri
o
u
s
di
ffe
re
nt
p
o
si
t
i
ons
. Fact
ors i
n
vol
ved
i
n
c
o
o
p
erat
i
v
e
rel
a
y
i
ng
suc
h
as
rel
a
y
i
ng t
ech
ni
q
u
e
s an
d
dive
rsity co
mbining m
e
thods will be chosen in orde
r to accurately represe
n
ted those used in mode
rn
WCDM
A
a
n
d LTE networks.
Th
e rem
a
in
in
g o
f
th
is p
a
p
e
r is o
r
g
a
n
i
zed
as fo
llow
s
. Section
2
illu
strates th
e m
e
th
o
d
o
l
ogy u
s
ed
in
th
is
work, in
clud
ing
th
e m
o
d
e
l for th
e wireless l
i
n
k
,
p
e
rfo
rm
an
ce criteria an
d
syste
m
setu
p
.
Si
m
u
latio
n
resu
lts are
gi
ve
n i
n
Sect
i
o
n
3 t
o
get
h
e
r
wi
t
h
t
h
e
di
sc
ussi
on
o
n
t
h
ese
res
u
l
t
s
. Fi
nal
l
y
co
ncl
u
si
on
i
s
i
n
S
ect
i
on
4.
2.
SIMULATION OF
RELAY
CH
A
NN
EL PERFORMANCE
Th
is stud
y f
o
cu
ses on
a 3-n
o
d
e
r
e
lay ch
an
nel w
ith
a so
ur
ce, d
e
d
i
cated
r
e
l
a
y an
d
d
e
sti
n
atio
n
nod
e. The
relay
no
d
e
u
tilizes
th
e d
ecode-and
-fo
rward
relayin
g
p
r
o
t
oco
l
with a
h
a
lf-dup
lex
con
s
train
t
. Perfo
r
m
a
n
ce is
an
alyzed
b
a
sed on
th
e thr
oug
hp
u
t
wh
ich
is
re
prese
n
ted by t
h
e cha
nnel
capa
c
ity.
2.
1.
Modeling the
Wireless
Ch
annel
Th
e fo
llowing
eq
u
a
tion
s
presen
ted
fo
r p
a
th
l
o
ss,
no
ise and
fad
i
n
g
are
u
tilized
to m
o
d
e
l th
e
wireless
channel. B
o
th
AWGN a
n
d R
a
yleigh fa
ding
channels a
r
e
c
onsi
d
ere
d
.
Pat
h
l
o
ss i
s
acc
or
d
i
ng t
o
t
h
e
Lee
m
odel
:
1
5
1
5
2
0
(1
)
Each
o
f
th
e
v
a
riab
les in
t
h
e equ
a
tio
n presen
ted
ab
ov
e correl
a
tes to
th
e fo
llo
wi
n
g
:
-
Path lo
ss at
ref
e
rence
dista
n
ce
(
) in
[
d
B]
m
-
Slope
in [dB/decade]
-
Tran
sm
itter-re
ceiver se
pa
ration
in
[
k
m
]
-
Refere
nce distance (1
.6
0
9
k
m
)
-
Tran
sm
it
t
e
r ant
e
nna
hei
ght
i
n
[m
]
-
Refere
nce t
r
ansm
itter antenna
height (30.48 m
)
-
Receiver a
n
tenna
height in [m]
-
Refere
nce rece
iver a
n
tenna
he
ight
(3.048 m
)
-
Signal
fre
q
u
en
cy
in [M
Hz]
-
Refere
nce sig
n
a
l fre
que
ncy
(9
00M
Hz)
For
LT
E a
n
d
WC
DM
A
net
w
o
r
k
s
, t
h
e st
a
nda
r
d
out
do
o
r
base
st
at
i
o
n
a
n
t
e
n
n
a
hei
g
ht
i
s
8
0
m
,
m
obi
l
e
receiver a
n
tenna
height is as
sum
e
d to
be
1.5m
and
do
wnlink tra
n
sm
ission power is 62
dBm
[7]. Al
so, t
h
e
typical height for a
n
LTE rela
y node is 10m
[8]. T
h
e sign
al freque
n
cy is assum
e
d to be 1800 MHz
beca
use it
is the m
o
st c
o
m
m
only used
fre
quency
band for gl
obal LTE
de
ploym
e
nts [9]. In a
n
outdoor urba
n
envi
ro
nm
ent
,
116
dB
a
n
d
36.
8
dB/
d
ecade
.
For the
AWGN ch
annel
the
nois
e power is
rep
r
ese
n
t
e
d
by
Joh
n
s
o
n'
s Eq
u
a
t
i
on, a
s
s
h
ow
n E
q
uat
i
o
n
2:
(2
)
whe
r
e
is th
e B
o
ltz
m
a
n
n
'
s constan
t
(
1.3807
1
0
J·K
-1
),
is the
receive
r t
e
m
p
erature in
Kelvin and
is
t
h
e ba
nd
wi
dt
h i
n
Hert
z.
In
or
der t
o
cal
c
u
l
a
t
e
noi
se p
o
w
er
f
o
r st
an
da
rd L
T
E l
i
nk b
u
dget
i
ng
, t
h
e t
e
m
p
erat
ure i
s
assum
e
d t
o
be
290
K
an
d th
e
b
a
ndwid
th is t
a
k
e
n as
10
MH
z. Th
e to
tal
noise pow
er can th
er
efo
r
e
b
e
calculated to be approxim
a
t
ely
41
0
mW
.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Posi
t
i
oni
ng
of
a Wi
rel
e
ss
Rel
a
y N
ode
f
o
r
Us
ef
ul
C
o
oper
a
t
i
ve C
o
mm
u
n
i
c
a
t
i
on (
T
ari
q
Mu
ha
m
a
d
Amj
a
d)
96
1
In
fad
i
ng
ch
ann
e
ls, sm
all scal
e fad
i
ng
is represen
te
d b
y
Ray
l
eig
h
m
o
d
e
l wh
ich
fo
llo
ws the p
r
ob
ab
ility d
e
n
s
ity
fu
nct
i
o
n:
1
Г
Г
(3
)
whe
r
e
is th
e p
r
ob
ab
ility o
f
a
p
a
rticu
l
ar Sign
al-to-No
i
s
e ratio
(SNR
) occurri
n
g
and
av
erag
e
SNR is
rep
r
ese
n
t
e
d by
Г
.
2.
2.
Perfor
mance Analysis
C
o
m
p
ari
s
on
o
f
cha
nnel
ca
pa
ci
t
y
i
s
used i
n
or
der
t
o
c
o
m
p
are
pe
rf
orm
a
nce
of
di
f
f
ere
n
t
m
e
t
hods
of
transm
ission. In present
-
day
WCDM
A and
LTE relaying
ne
tworks
, the de
code
-a
nd-for
ward relaying protoc
ol
and t
h
e m
a
xi
m
a
l
rat
i
o
di
ver
s
i
t
y
co
m
b
i
n
i
n
g
m
e
t
hod are u
s
ed. T
h
e eq
uat
i
ons f
o
r cha
n
n
e
l
capaci
t
y
for
di
rect
tr
an
sm
issio
n
,
co
nv
en
tio
n
a
l
r
e
l
a
yin
g
an
d cooper
a
tiv
e relayin
g
ar
e
p
r
esen
ted in
Equ
a
tio
4
-
6 [1
0
]
:
Direct T
r
ansm
ission:
l
o
g
1
,
(4
)
Co
nv
en
tio
n
a
l Relayin
g
:
1
2
m
i
n
l
o
g
1
,
,
l
o
g
1
,
(5
)
Co
op
erativ
e R
e
layin
g
:
1
2
m
i
n
l
o
g
1
,
,
l
o
g
1
,
,
(6
)
In t
h
e E
q
u
a
t
i
o
ns
4,
5 a
n
d
6
,
C
represe
n
ts
the peak achie
vable bit
rate
of t
h
e c
h
an
nel
ex
presse
d i
n
bi
t
s
pe
r
second,
B
is the band
wi
d
t
h
o
f
th
e ch
ann
e
l
in h
e
rtz,
is t
h
e
sig
n
a
l
to no
ise ratio
at t
h
e receiv
er fo
r t
h
e link
specified
by the subsc
r
ipts. For exam
ple
,
refers to th
e signal to
no
ise rati
o
at t
h
e
d
e
stinatio
n
no
d
e
for
th
e so
urce-t
o
-destin
atio
n
link
.
Th
ese
Equ
a
tion
s
will b
e
u
tilized
and
sim
u
lated
usin
g
d
i
fferen
t
con
d
ition
s
, fo
r th
e co
m
p
arison
b
e
tween
t
h
e di
f
f
ere
n
t
m
e
t
h
o
d
s. B
y
bas
i
ng t
h
e
vary
i
n
g
SNR
a f
unct
i
o
n de
pe
nda
nt
o
n
di
st
ance, i
t
i
s
pos
si
bl
e t
o
co
m
put
e
a d
i
stan
ce li
mit with
in
wh
ich
coo
p
e
rativ
e relayin
g
prov
i
d
es th
e g
r
eatest cap
acity o
f
th
e th
ree
m
e
t
h
od
s,
th
er
eb
y pr
ov
id
i
n
g b
e
n
e
f
i
cial use of
co
op
er
atio
n.
2.
3.
Sys
t
em Model
Alth
oug
h
assum
p
t
i
o
n
s
will be
m
a
d
e
with
con
s
id
era
tio
n
of m
o
d
e
rn
m
o
b
ile n
e
two
r
k
s
, su
ch
as
W
C
DM
A
and LTE, this
study
represe
n
ts a ge
neral
wireless relay c
h
annel. The ana
l
ysis will be done
in two sta
g
es.
In
the first stage
,
a linear
relay c
h
anne
l will
be considere
d
,
wher
e the
source,
relay and
de
stination are
all placed
in
sing
le straigh
t
lin
e. Th
e seco
nd
stag
e will
b
e
to
exp
a
nd
t
h
is to
the an
al
ysis o
f
n
e
two
r
k
s
in
wh
ich
t
h
e relay
node ca
n
be placed any
w
he
re in the
vicini
ty of the
s
o
urce and desti
n
a
tion node as
oppose
d to
being in a
straig
h
t
line.
Figure
1. System
m
odel for t
h
e linear ca
se
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
95
9 – 96
5
96
2
Fig
u
re
1
illu
strates th
e syste
m
m
o
d
e
l u
s
ed
,
wh
ere th
er
e is
a lin
ear 3-n
o
d
e
n
e
two
r
k
with
a to
tal len
g
t
h,
fr
om
source t
o
dest
i
n
at
i
o
n,
of
40
km
(
40000
m
)
. Therefore, the only varia
b
le th
at is analyzed is t
h
e dista
n
ce
bet
w
ee
n t
h
e
s
o
urce
an
d
rel
a
y
,
de
not
e
d
by
d
.
For the
non-linear ca
se, th
e
relay geom
etry depicte
d
in Fi
gure
2 is consi
d
ere
d
,
where t
h
e s
o
urce a
nd
t
h
e dest
i
n
at
i
o
n
no
de a
r
e at
fi
xed
di
st
ance
(
,
4
0
km
) away from each othe
r.
Howe
ver, unlike with t
h
e
linear arc
h
itecture
,
the
relay
will be
placed
in va
rying poi
n
ts along the e
lliptical curve.
The c
h
a
nnel ca
pacity
i
s
pl
ot
t
e
d
by
c
h
angi
ng
t
h
e
val
u
e
of
.
The val
u
es of
,
and
,
are
gi
ve
n t
h
e
fol
l
o
wi
n
g
e
quat
i
o
ns
.
,
1
4
4
(7
)
,
1
4
4
2
(8
)
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
3.
1.
Per
f
or
m
a
nce w
i
t
h
L
i
n
e
ar
Rel
a
y Ge
o
m
etry
Using t
h
e e
quations
for cha
nnel
capacity,
the
perfor
m
a
nce can be
simulated
fo
r dire
ct
transm
ission,
con
v
e
n
t
i
onal
r
e
l
a
y
i
ng an
d co
ope
rat
i
v
e rel
a
y
i
ng. T
h
e
resul
t
s for the c
h
annel capacity with res
p
ect to
distance
are sh
o
w
n i
n
t
h
e f
o
l
l
o
wi
n
g
p
l
ot
s. Si
m
u
l
a
t
i
o
n was ca
rri
e
d
out
f
o
r b
o
t
h
A
W
G
N
a
nd R
a
y
l
ei
gh fa
di
n
g
c
h
annel
s
,
as show
in Figu
r
e
3.
Fo
r an
AWGN ch
an
n
e
l
with
direct tran
sm
issi
on
, t
h
e
m
a
xim
u
m
achi
e
vabl
e
dat
a
rat
e
i
s
18
.83
M
b
its/sec
wh
ile in
a Rayleig
h
fad
i
ng
ch
ann
e
l th
is
valu
e d
e
creases to
17
.39
Mb
its/sec. In
AWGN chan
n
e
l, th
e
p
e
ak
channel ca
pacity is
32.11
Mb
its/sec for
b
o
t
h
relay ch
ann
e
ls whereas wh
en
fad
i
ng
is tak
e
n
i
n
to
accou
n
t
the
capacity decre
a
ses to
31
.27
M
b
i
t
s
/
s
ec. It
can
be
obs
er
ved
fr
om
t
h
e gra
p
hs t
h
at
perf
orm
a
nce
i
n
a R
a
y
l
ei
gh
fadi
ng c
h
an
nel
i
s
decreased
whe
n
com
p
are
d
t
o
an A
W
G
N
cha
nnel
.
Ot
her re
searc
h
p
a
pers
have c
o
nfi
r
m
e
d
th
is ph
eno
m
en
o
n
. Mu
t
u
al info
rm
atio
n
fo
r t
h
e fad
i
ng
relay ch
an
n
e
l is al
ways less th
an o
r
equ
a
l to
t
h
at o
f
an
Figure
2. System
m
odel for t
h
e non-linear ca
se
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Posi
t
i
oni
ng
of
a Wi
rel
e
ss
Rel
a
y N
ode
f
o
r
Us
ef
ul
C
o
oper
a
t
i
ve C
o
mm
u
n
i
c
a
t
i
on (
T
ari
q
Mu
ha
m
a
d
Amj
a
d)
96
3
AW
GN
ch
annel [
5
]. In
bo
th
AW
GN
an
d Ra
yleigh fa
ding
cases, t
h
e
peak occ
u
rs
whe
n
,
3
4
km
.
Al
so,
th
e ch
ann
e
l cap
acity is id
en
tical for bo
t
h
con
v
e
n
tion
a
l and
co
op
erativ
e relaying
wh
en
,
3
4
km
.
Ho
we
ver
,
c
o
n
v
ent
i
o
nal
rel
a
y
i
ng
res
u
l
t
s
i
n
a hi
ghe
r
da
ta
tran
sm
issio
n
rate wh
en th
e relay n
o
d
e
is
m
o
v
e
d
closer to the s
o
urce
node.
T
h
e inters
ection betwee
n
plot
s
for c
o
operati
v
e relaying
and di
rect trans
m
ission
occurs
whe
n
,
i
s
26
.9
8
1
km
w
i
t
h
A
W
G
N
,
an
d
2
6
.
6
6
1
km
wi
t
h
R
a
y
l
ei
g
h
fadi
ng
c
h
an
nel
.
T
h
e
r
ef
ore
,
i
t
i
s
pos
sible to infer that the channel capacit
y
for coop
erat
ive relaying in an AWGN
channel is opt
im
u
m
com
p
ared
t
o
ot
her
m
e
t
hods
o
f
t
r
a
n
sm
i
ssi
on
whe
n
2
6
.
9
81
k
m
,
3
4km
. T
h
e c
o
r
r
es
po
n
d
i
n
g
r
a
nge
i
n
wi
t
h
fadi
ng t
a
ken
i
n
t
o
co
nsi
d
era
t
i
on i
s
2
6
.
6
6
1km
,
34
km
. It
can co
nse
q
u
e
nt
l
y
be co
n
c
l
ude
d t
h
at
co
op
erativ
e
relayin
g
is
u
s
efu
l
wh
en
t
h
e
relay n
o
d
e
is po
sition
e
d with
i
n
these ran
g
e
.
3.
2.
Per
f
or
m
a
nce w
i
t
h
n
o
n
-
L
i
near
Rel
a
y
Geo
metr
y
B
y
usi
ng (7
) and (8
), di
st
an
ces
of
t
h
e
so
u
r
ce-t
o
-re
lay and
relay-to-d
estin
atio
n
link
s
are calcu
lated.
Th
rou
g
h
th
e variatio
n
in
th
e
q
u
a
n
tity fo
r b, it
is p
o
ssib
l
e to
ob
tain
p
l
o
t
s
for th
e p
e
rfo
rman
ce o
f
relay n
o
d
e
s
with
d
i
fferen
t o
v
e
rall
ou
tlin
es. Fo
r ex
am
p
l
e,
0
represe
n
ts
the s
p
ecial cas
e of a
linear
network
while
2
0
is rep
r
esen
tativ
e o
f
ci
rcu
l
ar sh
ap
e. For th
e p
u
rp
o
s
e of th
i
s
si
m
u
latio
n
,
t
h
e chann
e
l was assu
m
e
d
to
be a
n
A
W
G
N
chan
nel
.
The
r
e
sul
t
s
are
sh
o
w
n i
n
Ta
bl
e 1
.
Tab
l
e
1
.
C
h
an
nel Cap
acity f
o
r no
n-
lin
ear 3-no
d
e
AW
GN r
e
l
a
y ch
ann
e
l
(k
m
)
Distance f
o
r Peak
Channel
Capacity(k
m
)
Intersection with d
i
rect t
r
ans
m
ission
(k
m
)
I
n
ter
s
ection with conventio
nal
r
e
laying (
k
m
)
5k
m
3
4
(
,
= 36.
187,
,
= 6.
982)
28.84
(
,
= 29.
19,
,
= 12.
028)
3
5
(
,
= 36.
16,
,
= 6)
10k
m
3
6
(
,
= 36.
49,
,
= 7.
211)
31.254
(
,
= 32.
33,
,
= 12.
03)
3
7
(
,
= 37.
37,
,
= 6.
.
062)
15k
m
3
8
(
,
= 38.
56,
,
= 6.
84)
32.206
(
,
= 34.
33,
,
= 14.
21)
3
8
(
,
= 38.
56,
,
= 6.
84)
20k
m
39
,
39.497,
,
6.325
36.34
(
,
= 38.
126,
,
= 12.
1)
3
9
(
,
= 39.
497,
,
= 6.
325)
Fi
gu
re 4.
C
h
a
n
nel
capa
c
i
t
y
fo
r no
n-l
i
n
ea
r 3-
no
de A
W
G
N
r
e
l
a
y
chan
nel
(a
)
b
=5, (b)
b
=1
0
,
(c
)
b
=15
,
(d
)
b
=20
It
can be
ob
se
rve
d
f
r
om
t
h
e pl
ot
s ab
o
v
e t
h
at
as t
h
e qua
nt
i
t
y
of
i
n
creas
es t
h
e o
p
t
i
m
u
m
rel
a
y
node
placem
ent corresponds
to increasing
value
s
of
. A
l
so
, th
e
r
a
ng
e
of
co
op
er
ativ
e
r
e
layin
g
i
n
ter
m
s of
decrease
s
as
becom
e
s great
er. T
h
e
results
ar
e s
u
mmarized in t
h
e
prec
eding table. In addition t
o
re
lay
p
o
s
ition
,
p
e
rform
an
ce o
p
timi
zatio
n
can
also b
e
soug
h
t
t
h
rou
g
h
o
p
tim
izin
g
p
o
wer
and
and
ti
m
e
allo
cati
o
n. In
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
95
9 – 96
5
96
4
t
h
e fi
rst
case,
a const
r
ai
nt
o
f
t
o
t
a
l
po
wer i
s
assum
e
d. The
n
rel
a
y
i
ng pe
rf
o
r
m
a
nce i
s
opt
i
m
i
zed by
fi
ndi
ng t
h
e
p
o
rtion
of power to
b
e
allocated
to
th
e
relay. Si
m
i
larly, th
e av
ailab
l
e
tran
sm
ission time can be opt
i
m
a
lly
share
d
betwee
n
4.
CO
NCL
USI
O
N
Co
op
erativ
e relayin
g
offers in
creased
t
h
ro
ugh
pu
t
an
d
reliab
ility o
f
tran
sm
issio
n
throug
h
sp
atial
d
i
v
e
rsity. Th
e
p
r
i
n
cip
l
e beh
i
nd
co
op
erative relayin
g
is to
sen
d
m
u
ltip
le co
p
i
es of th
e same in
fo
rm
atio
n
sig
n
a
l
t
h
r
o
u
g
h
di
ffe
re
nt
wi
rel
e
ss c
h
a
nnel
s
, s
o
t
h
ey
can t
h
en
be
com
b
in
ed
at th
e
d
e
stin
ation
.
The wireless ch
an
n
e
l
is
base
d o
n
m
odel
s
prese
n
t
e
d
by
pre
v
i
o
us
w
o
r
k
s a
nd a
r
e u
s
ed t
o
obse
r
ve
t
h
e effect
o
f
di
st
ance o
n
c
h
annel
capaci
t
y
i
n
a t
h
ree n
o
d
e net
w
or
k. T
h
i
s
pr
op
ose
d
ap
pr
oac
h
ado
p
t
e
d
f
o
r t
h
i
s
st
udy
wo
ul
d
be be
ne
fi
ci
al
in o
r
d
e
r
to o
ffe
r i
n
crea
sed
data
rates
fo
r c
o
o
p
e
r
ativ
e relay
i
ng
.
Howev
e
r, th
e m
o
d
e
l used fo
r the wireless ch
an
n
e
l
i
s
very s
p
ecific a
nd t
h
ere
f
ore the results m
a
y not be a
p
pli
cab
le to
o
t
h
e
r scenario
s.
Desp
ite th
is, th
e
sam
e
m
o
d
e
l
can be m
odi
fi
e
d
i
n
or
der t
o
t
a
ke i
n
t
o
a
cco
u
n
t
di
f
f
ere
n
t
en
vi
r
onm
ent
s
an
d wi
rel
e
ss net
w
o
r
ki
n
g
t
ech
n
o
l
o
gi
es.
Also, t
h
is work could be e
x
tende
d in
order to take into acco
unt the effe
cts on ra
ndom
ly distributed
nodes
.
On
e
way to
exten
d
t
h
is wo
rk is to
stud
y the case of m
u
lt
i-u
s
er with rand
o
m
ly d
i
st
ri
bu
t
e
d so
u
r
ces t
o
get
h
e
r
with
m
u
lti-h
op relayin
g
.
ACKNOWLE
DGE
M
ENTS
Th
is wo
rk
is su
ppo
rted
b
y
the Research
In
i
tiativ
e
Grant S
c
hem
e
(RIGS)
offe
re
d by
the
Inter
n
atio
nal
I
s
lamic
U
n
iversity
Malaysia
(
I
IU
M)
un
d
e
r
pr
oj
ect n
u
m
b
e
r
RI
G
S
15
-1
54-
01
54
.
REFERE
NC
ES
[1]
Elsheikh
. M. A.
Elsheikh
and K.-
K
. Wong,
“Wireless cooperative
networks: Pa
rtn
e
rship selection
and fairness,
” in
Wireless Day
s
, 2
008. WD’08.
1st IFIP, 2008, pp.
1–5.
[2]
A. F. M. S. Shah and
M. S. Islam, “A Survey
o
n
Coopera
tive C
o
mmunication in Wireless Networks,”
Int.
J. Intell.
Syst. Appl.
, vol.
6, no
. 7
,
pp
. 66–
78, Jun. 2014.
[3]
A. Ghosh, J. Zhang, J. G.
Andrews, and R. Muham
e
d,
Fundam
e
ntals of LTE
, 1
edition
.
Upper Saddle Riv
e
r, NJ:
Prentice Hall, 20
10.
[4]
B. Sklar, “Ray
leigh fading ch
ann
e
ls in mobile
dig
ital
com
m
unicati
on s
y
s
t
em
s
.I. C
h
arac
teri
za
tion,
”
IEEE Commun.
Mag.,
vol. 35, n
o
. 7
,
pp
. 90–100
, Jul. 1997
.
[5]
M. Ham
i
d and I. Kostanic, “
P
at
h Loss
Models for LTE a
nd LT
E-A Rela
y
S
t
ati
ons,” Univers. J. Comm
un. Netw.
,
vol. 1
,
no
. 4
,
pp
.
119–126, Dec. 2
013.
[6]
Elsheikh
. M. A
.
Elsheikh
, “Wir
e
less D&F relay chann
e
ls
: time allo
cation
st
rategies for
cooper
a
tion and
optimum
operation,” Univ
ersity
Co
lleg
e
London, London-
UK, 2010.
[7]
“
W
ile
y
:
W
C
DMA for UMTS:
HSPA Evolutio
n and LTE
, 5t
h
Edition - Harr
i
Holm
a, Antti T
o
skala.
” [Online
]
.
Availab
l
e: http
://www.wiley
.
com
/
Wiley
C
DA/Wiley
T
itle/productCd-0470686464.
html. [Accessed: 30-Aug-2017]
.
[8]
P.
Sz
ilá
gy
i
a
nd H.
Sa
nne
c
k
,
“LTE relay node self-configuration
,
”
in 12th IF
IP
/IEEE Int
e
rna
tion
a
l S
y
m
posium
on
Integrated
Netw
ork Managemen
t
(IM
2011)
and
Workshops, 2011, pp
. 841–855
.
[9]
“Wiley
:
The
LTE-Advanced Deplo
y
men
t
Handbook: The P
l
anning Guidelines for the Fourth Generation
Networks-Jy
r
ki
T. J. Penttinen
.
”
[Onlin
e]
. Ava
ilabl
e: h
ttp:
//w
ww.wile
y.
com
/
W
ile
y
C
DA/W
i
l
e
yT
itl
e/produ
ctC
d
-
1118484800,subjectCd-EE20
.
html. [Accessed: 3
0
-Aug-2017]
.
[10]
Cooperative Co
mmunications and Networking
-
Te
chnologies and |
Y.-W. Pe
ter
Hong |
Springer. .
[11]
Elsheikh
. M. A. Elsheikh and K.-
K
. W
ong, “Opti
m
izing Time an
d Power Allo
cation for Cooperation Diversity
in a
Decode-and-For
w
ard Thr
ee-Nod
e
Relay
Channel.,
” J
C
M,
vol. 3,
no. 2
,
pp
. 43–52
, 2008.
BIOGRAP
HI
ES OF
AUTH
ORS
Tariq M
uham
a
d
Am
jad recentl
y obtained a d
e
g
r
ee in Com
m
u
nica
tions
Engine
e
r
ing from
the
Interna
tiona
l Islam
i
c Universi
t
y
Mal
a
y
s
ia (II
UM), Mala
y
s
ia
. He is int
e
re
sted in da
ta
communications
and
information th
eor
y
. His
focus
ar
ea
is
m
odern m
obile
wirel
e
s
s
com
m
unications
s
y
s
t
em
s
.
His
curren
t
r
e
s
ear
ch work invo
l
v
ed th
e inv
e
s
t
i
g
ation
of th
e
performance of r
e
lay
ch
annels
an
d wireless cooperativ
e networks.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Posi
t
i
oni
ng
of
a Wi
rel
e
ss
Rel
a
y N
ode
f
o
r
Us
ef
ul
C
o
oper
a
t
i
ve C
o
mm
u
n
i
c
a
t
i
on (
T
ari
q
Mu
ha
m
a
d
Amj
a
d)
96
5
Dr Elsheikh M
ohamed Ahmed Elsheikh
currently
works
as
an as
s
i
s
ting pr
ofes
s
o
r at th
e
Department of
Electrical
and Co
mputer Engin
eer
i
ng, Faculty
of
Engineeri
ng at t
h
e
Inte
rnat
ional
Islamin Unversity
Malay
s
ia (IIU
M), Malay
s
ia. He
obtained
his Ph.D. (Ele
ctronic and Electical
Engineering)
an
d M.Sc. (R
adio
S
y
stems Engi
n
eering)
from University
Co
lleg
e
London
and
University
of Hull, r
e
spectively
;
both in the
United Kingdom. He obtained B
.
Sc.
(Electrical
and
Electronic Engineering) from Unifersity
of K
h
art
oum
in Sudan. Dr Elsheikh
is interested in
communication theor
y
and infor
m
ation theor
y
a
nd their app
l
ication to wireless communication.
Current res
e
arc
h
includ
e res
o
u
r
ce a
llo
cat
ion
and optimum operation te
chniqu
es applied to
cognitiv
e r
a
dio
n
e
tworks and
rel
a
y
chann
e
ls.
Evaluation Warning : The document was created with Spire.PDF for Python.