TELKOM
NIKA
, Vol.11, No
.2, Februa
ry 2013, pp. 82
7
~
83
8
ISSN: 2302-4
046
827
Re
cei
v
ed Au
gust 9, 201
2; Re
vised Decem
ber
29, 20
12; Accepted
Jan
uary 13, 2
013
Network Coding-Based Communications via the
Controlled Quantum Teleportation
Da
zu Hu
ang
*
1,2
, Shaopin
g
Zhu
1
, Dan
Song
1
, Ying Guo
2
1
Departme
n
t of Information, H
una
n Univ
ersit
y
of
F
i
na
nce a
nd Econ
omics
, Changs
ha 4
1
020
5, Chi
na.
2
School of Info
rmation Sci
enc
e & Engin
eer
in
g, Cent
ral So
ut
h Univ
ersit
y
, C
han
gsh
a
410
0
83, Chi
na.
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: hnmao
in@
g
mail.com
A
b
st
r
a
ct
Inspired
by th
e structure
of the n
e
tw
ork c
odi
ng
over th
e b
u
tterfly net
w
o
rk, a frame
w
ork o
f
qua
ntu
m
n
e
tw
ork co
din
g
sc
h
e
me is
i
n
vesti
gated, w
h
ic
h tr
ans
mits tw
o u
n
know
n
qu
ant
um states cr
os
sly
over the
butte
rfly qua
ntu
m
s
ystem w
i
th th
e
multi-
p
hoto
n
non-
maxi
ma
lly
enta
ngl
ed G
H
Z
states. In this
sche
m
e,
it co
n
t
ains c
e
rtain
n
u
mber
of
enta
ngl
e
m
ent-q
ub
it sourc
e
n
o
d
e
s
that tel
e
p
o
rt u
n
know
n
qu
ant
u
m
states to other nod
es on the s
m
a
ll-sca
le n
e
tw
ork w
here each inter
m
e
d
iat
e
nod
e can p
a
ss on its receiv
ed
qua
ntu
m
state
s
to others via
super
dens
e co
din
g
. In order
t
o
trans
mit the
unkn
o
w
n
states in a det
ermin
i
stic
w
a
y, the contr
o
lle
d q
u
a
n
tu
m
telep
o
rtatio
n is
ado
pted
on th
e inter
m
edi
at
e
nod
e. It mak
e
s
leg
a
l
nod
es
more
conve
n
ie
nt than any
other
previo
us tele
portatio
n
sche
m
es to trans
mit u
n
know
n
qua
ntu
m
state
s
t
o
unkn
o
w
n
parti
cipa
nts in
ap
pl
icatio
ns. It sho
w
s that
the int
r
insic
efficienc
y of trans
miss
i
ons a
ppr
oac
he
s
100
% in
princ
i
ple. T
h
is sch
e
m
e
is secur
e
base
d
on th
e
secure
ly-shar
e
d
qu
antu
m
ch
ann
els b
e
tw
ee
n all
nod
es a
nd th
e
qua
ntu
m
mec
han
ical
i
m
p
o
ss
ibil
ity of
loc
a
l u
n
itary
transfor
m
ati
ons betw
e
en
n
on-
maxi
mally
entan
gl
ed GHZ
states.
Moreover, the gen
e
r
ali
z
e
d
sc
he
me is propos
ed
for transmittin
g
tw
o multipar
tit
e
entan
gl
ed states.
Ke
y
w
ords
: n
e
tw
ork codi
ng
, non-
maxi
ma
l
l
y ent
ang
le
d
GHZ
st
ates, control
l
ed
tele
portatio
n
, butt
e
rfly
netw
o
rk, quant
um i
n
for
m
ati
o
n
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Quantum
en
tangleme
n
t, whi
c
h
ha
s
become
th
e
esse
ntial reso
urce fo
r qua
ntum
informatio
n
and
qua
ntu
m
co
mputin
g, is th
e m
o
st di
stin
ctive charac
te
ri
stic of
qu
an
tum
mech
ani
cs. E
n
tanglem
ent-based
comm
unication h
a
s a
ttracte
d mu
ch attentio
n
sin
c
e the i
n
itial
work
of Bennett, Brassard and
Ekert. For
exampl
e, in 1993 B
ennet et
al. [1] presented the
origin
al qu
ant
um telepo
rtation whi
c
h
pro
v
ides a
the
o
retical ba
si
s fo
r the con
s
tru
c
tion of quantu
m
cha
nnel
s. Th
e rea
s
o
n
ma
y be that the mode
rn te
chn
o
logy allo
ws it to b
e
demon
strated
in
laboratory, an
d thus p
r
acti
cal appli
c
ation
s
will be a
c
hi
eved in the future [2-4].
The conventi
onal q
uantu
m
comm
uni
cations
are
sometime
s li
mited to the
quantum
system i
n
a
p
o
int to poi
nt fashi
on
with lo
w tra
n
sm
i
s
sio
n
rate
s. In o
r
der to
achiev
e the multi
-
po
int
comm
uni
cati
ons in the
practical appli
c
ations,
the framework of the
qua
ntum netwo
rk ha
s
been
introdu
ce
d [5
-7], however
the de
clining
transmiss
ion
rate cau
s
ed
by the bottlene
ck
cha
n
n
e
ls
become
s
more and mo
re a
pparent [8-9].
In orde
r to solve the af
ore
-
mentio
ne
d pr
obl
em, Haya
shi et al. [10] prop
ose
d
the
quantum
net
work
co
ding
(QNC)
schem
e whil
e con
c
entrating
on t
he tra
n
smi
s
si
on of q
ubits
over
the butterfly q
uantum
network si
milar to
the cl
as
sical
netwo
rk [11-1
2
]. Ho
wever,
they found th
at
the bottlene
ck ca
n not b
e
re
solved i
n
the
quantu
m
setting an
d the perfe
ct
quantum
state
transmissio
n
is im
po
ssibl
e. That
mean
s one
ca
n
not
pe
rform
the
perfe
ct Q
N
C
in the
qua
ntu
m
system. Fo
rtunately, sin
c
e ent
angl
em
ent provid
es
several eleg
a
n
t approa
che
s
for en
han
ci
ng
efficien
cy of quantum
com
m
unication
s such a
s
supe
rden
se codin
g
[13], entanglement swa
p
p
i
ng
and tel
epo
rta
t
ion [1], it is ne
ce
ssary t
o
con
s
id
e
r
it
s a
ppli
c
ation
s
in
the
QNC
system. F
o
r
example,
Ha
yashi [1
4] su
gge
sted
an i
m
prove
d
but
t
e
rfly network that allo
ws the Q
N
C for the
transmissio
n
of one
pa
rticl
e
or two
bit classical
com
m
unication. K
obaya
s
hi et
a
l
. [15] pro
p
o
s
ed
Con
s
tru
c
ting
quantum n
e
twork codin
g
schem
es
from
cla
ssi
cal n
onl
inear p
r
oto
c
ol
s.
The maxim
a
l entangl
e
m
ent betwe
en two
se
nders e
nabl
es pe
rfe
c
t quantum
transmissio
n though it is i
m
possibl
e wit
hout prio
r ent
anglem
ent even in the mo
dification of the
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 2, Februa
ry 2013 : 827 – 838
828
previou
s
Q
N
C
schem
e [1
0]. In 20
09, u
nder the
a
s
sumption
that
there
is no
p
r
ior
entangl
em
ent
sha
r
ed
amo
n
g
any of the
partie
s
, Koba
yashi et
al. [
16] put forwa
r
d a p
e
rfe
c
t
QNC which can
perfe
ctly tran
sfer a
n
un
kn
own q
uantu
m
state fr
om
sou
r
ce su
b
s
ystem to ta
rget sub
s
yst
e
m,
whe
r
e
both
source
and
target a
r
e fo
rme
d
by the
o
r
de
red
set
s
of n
ode
s. In 2
0
1
0
, Ma
et al. [
17]
prop
osed an
improved Q
NC via prob
abilisti
c te
lep
o
rtation ba
se
d on the maximally entangled
photon
s shared beforeha
n
d
.
Re
cently, teleportatio
n
h
a
s bee
n active
ly investigated in b
o
th theoreti
c
s and
experim
ents.
With telepo
rtation Alice
can tr
an
smit an unkno
wn quantum
state to a remote
reci
pient B
o
b
[18-2
0
]. In g
eneral, a
pair of maxi
mally
entan
gled
Bell state
s
se
rved a
s
a
secure
quantum cha
nnel
should be
pre
par
ed
in advance, and the se
nd
er ca
n not al
ways tele
port
a
singl
e-q
ubit t
o
the
re
ceive
r
with
unit fid
e
lity
and u
n
it
prob
ability. Consequ
ently, there i
s
anot
her
kind
of tele
p
o
rtation
call
e
d
a
s
p
r
ob
abil
i
stic te
l
epo
rta
t
ion [21], fro
m
whi
c
h
on
e
ca
n a
c
hi
eve the
fidelity with a proba
bility less tha
n
unit. In any ca
se, teleportatio
n
has offe
red a
much p
o
we
rful
method while
transmitting
an un
kno
w
n
quantum
state.
Unfortun
ately, the universal processor
based on tel
e
portation
ca
n
not wo
rk fo
r
many pa
rt
icip
ants tra
n
smitting differe
nt unkno
wn st
ates
simultan
eou
sl
y, and thus
we a
r
e fa
ced
with
a
ne
w chall
enge
i
n
quantum co
mmuni
cation that
extends to
gl
obal q
uantum
comm
uni
cati
on net
workin
g. This
wo
rk
has
bee
n dev
oted to qu
ant
um
netwo
rki
ng t
hat pla
c
e
s
e
m
pha
sis on
basi
c
qua
ntu
m
effect
s a
n
d
on
em
ergi
ng te
chn
o
log
i
cal
solutio
n
s le
ad
ing to pra
c
tical appli
c
ation
s
in qua
ntum comm
uni
cati
ons.
In order to
enha
nce the
tran
smi
ssi
o
n
ra
te of
q
uantum
net
work
system,
a novel
teleportatio
n
-based QNC
scheme i
s
propo
sed to tr
a
n
smit two un
kno
w
n state
s
cro
ssly over
the
butterfly network
wh
ere t
w
o sen
d
e
r
s p
r
epares t
w
o G
r
een
be
rge
r
-Horne
-Zeili
nge
r (G
HZ
) state
s
in
advan
ce.
Wh
ile pe
rformin
g
the
controll
ed q
uantu
m
t
e
lepo
rtation [
19-2
1
] at i
n
te
rmedi
ate n
o
d
e
,
two re
ceivers can re
store the or
igi
nal qu
antum state
s
with pro
babilit
y 100%. Comparin
g with the
previou
s
QNC [17], the
pe
rforme
d o
peration at the
in
termedi
ate
n
ode over
th
e butterfly
network
is fo
r q
uantu
m
ope
ratio
n
, i
n
stea
d of th
e
cla
ssi
cal
op
eration. At the
receive
r
s,
with
the h
e
lp
of th
e
transmitted u
n
itary ope
rati
ons, the initial
quantum stat
es can be restored compl
e
tely.
The pap
er i
s
orga
nized a
s
follows. In se
ction 2, for th
e descri
p
tion
of QNC, som
e
basi
c
prop
ertie
s
of
the co
ntrolle
d
quantu
m
tele
portation
ar
e
pre
s
ente
d
wit
h
sim
p
licity. In se
ction
3, the
QNC i
s
p
r
op
ose
d
expli
c
itly to tran
smit
unkno
wn
stat
es
on th
e ba
sis of tele
port
a
tion in te
rm
s of
sup
e
rd
en
se coding at the i
n
terme
d
iate n
ode cro
ssly o
v
er the butterfly network. T
hen the prese
n
t
QNC is g
e
n
e
rali
zed to transmit two
multipartite
e
n
tangle
d
stat
es in
se
ction
4. The se
curity
analysi
s
is ill
ustrate
d
on t
he ba
sis of
cha
nnel
d
e
te
ction sch
e
m
e
in se
ction
5. Finally, th
e
discu
ssi
on an
d summ
ary are pre
s
ente
d
in se
ction 6.
2. Contr
o
lled Quantum Te
leporta
tion
w
i
th Enta
nglement Analy
s
is
The thre
e-p
h
o
ton-e
n
tangl
e
d
Gree
nbe
rg
er-Ho
r
ne Z
e
il
inger
states
(G
HZ state
s
) have
formed the
b
a
si
s of a very stri
ng
ent test of local reali
s
tic the
o
r
ies. Th
ey can be u
s
ed
for
cryptog
r
a
phi
c scena
rio o
r
for multi-p
h
o
ton gen
erations of
sup
e
r-den
se
co
ding to redu
ce
comm
uni
cati
on
compl
e
xity. It is kn
own
that G
H
Z
st
a
t
es a
r
e
no
lo
ng a
theo
reti
cal im
age
ry
since
they can be e
x
perime
n
tally implemente
d
by single
ph
otons in the h
y
brid entan
gl
ement state
s
.
In the
controll
ed q
uantum
telepo
rtation [
19-2
1
], a third pa
rticip
ant
who
may ta
ke pa
rt in
the
p
r
ocess of
qua
ntum
t
e
lepo
rtation as a sup
e
rvi
s
or i
s
in
clud
ed in
orde
r
to achieve t
he
transpo
rtation
.
Without
the
assist
a
n
ce of
the
co
ntrol
o
peratio
ns,
the
re
ceive
r
ca
n
not recover the
origin
al state
from the se
nd
er.
Assu
ming th
at three pa
rt
icipa
n
ts, Alice,
Bob and
Cha
r
lie, prep
are a n
o
n
-
m
a
ximal
entangl
ement
GHZ state b
e
foreh
and, i.e
.
,
1
(
000
1
1
1
)
.
2
AB
C
A
B
C
GHZ
(1)
An arbitra
r
y u
n
kn
own state
D
on photo
n
D
i
s
given by
01
.
m
(2)
To accom
p
lish the tran
sformation,Alice
perfo
rms the
Bell state ana
ly
sis on the p
a
rticle
s
D
an
d
A
,
AB
C
m
GHZ
(3)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Network Co
di
ng-Ba
se
d Co
mm
unication
s Via
the Con
t
rolled qu
antu
m
... (Dazu
Huang
)
829
whi
c
h can be
rewritten a
s
1
(
(
0
0
11
)
(
00
11
)
2
(
0
01
1
)
(
0
01
1
)
)
,
B
CB
C
mA
m
A
BC
BC
mA
mA
(4)
whe
r
e
and
denote the Bell-states give
n by
1
(0
0
1
1
)
,
2
1
(0
1
1
0
)
2
(5)
After perfo
rm
ing the Bell-stat
e measure
m
ent on p
a
rti
c
le
s
D
a
nd
A
, the origin
al
entangle
m
e
n
t
state can b
e
transfo
rme
d
i
n
to t
he state
on the pai
r of
particl
es
B
a
nd
C
.
With th
e help of
so
me
unitary ope
rat
i
ons, the re
su
lting stat
e ca
n be tran
sformed in the form
(0
0
1
1
)
,
B
C
BC
(6)
from whi
c
h
the re
ceiver Bob can
recove
r the
origin
al pa
rticle
with the
assista
n
ce o
f
Cha
r
lie’
s
control operation
perfo
rmed o
n
photon
C.
If Charlie wo
uld like to h
e
lp Bob for the
r
e
cover
y
of
,
he mea
s
u
r
e t
he pa
rticle
C
on the ba
se
s
of
1
(0
1)
2
.The entan
glement
state of parti
cles
B
and
C
can be re
presented a
s
1
((
0
1
)
(
0
1
)
)
.
2
BB
BC
C
C
(7
)
Whe
n
Bob
receive
s
Cha
r
lie’s me
asure
m
ent re
su
lt
s via a cl
assi
cal
cha
nnel,
he pe
rforms
an
approp
riate u
n
itary tran
sfo
r
mation to re
cover the
o
r
i
g
inal state
convenie
n
tly.
This controll
ed
teleportatio
n
over the butte
rfly quant
um netwo
rk crossly
is
implem
ented.
3. QNC v
i
a Controlled Tel
e
portation
s of T
w
o
Unkn
o
w
n S
t
a
t
es
In this
se
ctio
n, we
elab
orate on
our Q
NC
sche
me i
n
whi
c
h
two
unkno
wn
states a
r
e
transmitted from the sen
d
e
rs
i
A
to the receivers
(1
,
2
)
i
Bi
crossly over the butterfly quantum
netwo
rk.
N
a
mely
re
ceiv
e
r
s
1
B
and
2
B
ca
n obtain
t
w
o u
n
kn
own state
s
1
m
and
2
m
with t
h
e
certai
nty. The topology o
f
this quantu
m
netwo
rk i
s
similar to that of the classical butte
rfly
network, as illustrated in Fi
gure 1.
Two un
kn
own states
,{
1
,
2
}
i
mi
,
whi
c
h will be transmitted from
i
A
to
i
B
,
are d
enote
d
by
01
,
ii
i
m
(8)
whe
r
e
22
1
ii
.
T
w
o sende
rs
1
A
and
2
A
prep
are jointly two GHZ st
ates given by
11
21
1
1
1
2
1
1
,,
,,
1
(
000
11
1
)
,
2
AA
G
A
A
G
GHZ
(9
)
22
1
2
2
,
,
22
12
2
,,
1
(
0
00
11
1
)
,
2
AA
G
AA
G
GHZ
(10
)
whe
r
e on
e sende
r
1
A
posse
sse
s
photo
n
s
11
A
,
12
A
and
1
G
,
while an
other
2
A
kee
p
s p
hoton
s
21
A
,
22
A
and
2
G
.
Six EPR pairs
are
sha
r
ed
bet
ween
t
he inte
rme
d
ia
te nod
e
C
an
d send
er
i
A
,
as
w
e
ll
as re
ceive
r
1
i
B
.
In ad
dition, fo
ur EP
R p
a
irs sh
ared
by
C
and
1
i
B
are
de
n
o
ted by
1
,
2
,
3
,
and
4
,
respec
tively, w
her
e
re
pre
s
ent
s ope
ration of plus
mod 2.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 2, Februa
ry 2013 : 827 – 838
830
Encodi
ng ci
rcuit
Decodi
ng ci
rcuit
Figure 1. The
protocol for tran
smit two q
uantum
states.
i
m
is the particle
whi
c
h ought to be
sent.
The coding operation will
be performed
on the relay
node
C.
Figure 2. The
enco
d
ing
circuit and the
decodin
g
circuit at the relay node C
Table 1. The
result of the Operation
1
1
()
i
Mi
UM
1
1
()
i
Mi
UM
Oper
ation result
01
(0
1
)
U
1,
(0
0
1
1
)
ii
i
ii
A
G
00
(0
0
)
U
1,
(0
1
1
0
)
ii
i
ii
A
G
10
(
10)
U
1,
(0
0
1
1
)
ii
i
ii
A
G
11
(1
1)
U
1,
(0
1
1
0
)
ii
i
ii
A
G
Table 2.Th
e result of the o
peratio
n
11
1
()
ii
GM
i
HU
M
.
11
1
()
ii
GM
i
HU
M
Operation
res
u
l
t
1
00
(
00)
i
G
HU
,1
1
11
11
1
[(
0
1
)
0
2
(0
1
)
1
]
ii
i
ii
ii
A
G
1
01
(0
1
)
i
G
HU
,1
1
11
11
1
[(
0
1
)
0
2
(0
1
)
1
]
ii
i
ii
ii
A
G
1
10
(
10)
i
G
HU
,1
1
11
11
1
[(
0
1
)
0
2
(
0
1)
1]
ii
i
ii
ii
A
G
1
11
(1
1
)
i
G
HU
,1
1
11
11
1
[(
0
1
)
0
2
(
0
1)
1]
ii
i
ii
ii
A
G
Table 3. The
Unitary Op
eration Whi
c
h b
e
perfo
rmed
on the parti
cl
e
,1
ii
A
here
(
0
0,
0
1
,
1
0,
1
1
)
i
M
00
01
10
11
i
M
V
10
01
01
10
01
10
10
01
i
M
W
10
01
01
10
01
10
10
01
Then the p
r
e
s
ent Q
NC g
o
e
s a
s
follows.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Network Co
di
ng-Ba
se
d Co
mm
unication
s Via
the Con
t
rolled qu
antu
m
... (Dazu
Huang
)
831
Step 1
T
w
o sende
rs
i
A
prep
are
un
kno
w
n
states
i
m
and
G
H
Z
state
s
11
,
,,
ii
i
i
AA
G
GHZ
in
Eq.(9). The
n
the com
b
ine
d
quantum sy
stems can be
denote
d
as
,1
,
,
1
,
,,
,
,
,
,
ii
ii
i
i
i
i
i
i
i
i
mA
A
G
A
A
G
mG
H
Z
(11
)
whi
c
h can be
rewritten a
s
1,
1,
,1
,
,
,
1,
1,
,
,
11
1
1
11
11
1
(
(
00
1
1
)
(
00
11
)
2
(
0
0
1
1)
(
0
0
1
1)
)
.
ii
i
i
i
i
ii
ii
i
i
ii
i
i
i
i
ii
i
i
i
i
ii
i
i
i
i
AG
AG
mA
A
G
mA
m
A
AG
AG
mA
mA
(12
)
Step 2
Each
send
e
i
A
perfo
rms
the
Bell
-
st
at
e
m
easurement on pa
rticles
i
m
and
,
ii
A
with
four
r
e
sp
ect
i
v
e
B
e
ll st
at
e
s
{,
}
corre
s
po
nd
ing to re
sults given
by
00
01
10
11
{,
,
,
}
M
.
The
entan
gl
ed
state of th
e re
mainin
g p
a
rticle
s
1,
ii
A
,
and
i
G
can
be
den
oted
as
{(
)
:
ii
M
M
{
0
0
,
01
,
1
0
,
11
}
}
.
Sub
s
eq
u
ently, the inverse unita
ry o
peratio
n
1
i
M
U
will be applie
d
on parti
cle
,1
ii
A
of the resulting state
1
()
i
M
,
where unitary ope
rat
i
ons
i
M
U
are give
n as
00
01
10
01
00
1
1
,
1
0
0
1
,
00
1
1
,
0
1
1
0
UU
UU
(1
3)
It is easy to prove that
11
ii
i
i
MM
M
M
UU
U
(14
)
Then the pa
rticle
,1
ii
A
is sent to receiver
1
i
B
via the edge
1
ii
A
B
.
At the same tim
e
,
i
A
perfo
rms t
h
e
same
unita
ry ope
ration
i
M
U
on one
particle of the
EPR pair
share
d
before
han
d betwe
en
i
A
and
C
.
As soon
as the
op
era
t
ion bein
g
a
c
compli
she
d
, the resultin
g
particl
e is al
so delivere
d
to
C
.
Step 3
At no
de
C
,
a
s
soo
n
a
s
it receiv
es th
e pa
rticl
e
s from
i
A
,
the
Bell-state
an
alysis will
be pe
rformed
on e
a
ch p
a
ir of the p
a
rti
c
les
with
re
sult
s
corre
s
p
ondi
ng to
{
0
0,
0
1
,
1
0,
1
1
}
ii
i
Aa
b
.
After that, an
encodin
g
ope
ration is e
m
pl
oyed on
11
ab
an
d
22
ab
in successi
on, as is illustrated in
Figure 2(1).
Here, the CNOT
-gate i
s
deployed
to
accompli
sh
the encodin
g
operation, i.e.,
12
1,
2
,
aa
pC
a
12
2,
2
bb
pC
b
and
12
2,
2
ba
pC
a
.
After that the u
n
i
tary ope
rati
ons
11
bp
U
and
23
pp
U
are
respe
c
tively applie
d on
th
e pa
rticle
s of
four EP
R pa
irs
whi
c
h
are
sh
are
d
bet
ween
C
and
1
i
B
,
i.e.,
11
1
bp
C
U
,
23
1
1
23
,
Pp
b
p
CC
UU
,
an
d
23
4
Pp
C
U
. Finally, the re
sulti
ng pa
rticle
s
corre
s
p
ondin
g
to
11
1
bp
C
U
and
23
2
Pp
C
U
are
delivere
d
to
B
2
,
while
the particl
es of
11
3
bp
C
U
and
23
4
Pp
C
U
will be
sent to
B
1
.
Step 4
Whe
n
1
i
B
r
e
c
e
ives
th
e p
a
r
tic
l
e
s
fr
om
C
,
the Bell-state an
alysi
s
are a
pplie
d
on the
particl
es
of the re
sulting E
P
R pairs. Co
nse
que
ntly,
1
i
B
recove
rs th
e classical bit string
11
2
3
bp
p
p
.
After the o
p
e
r
ation,
1
i
B
obtain
s
11
ab
and
22
ab
with th
e de
co
ding
ci
rcuit i
n
Fi
gure 2(2). T
hen
the
unitary op
eration
1
ii
MM
U
is
p
e
rform
e
d
o
n
the yi
elded
stat
e
1
1
()
,
i
Mi
UM
i.e.,
1
1
1
()
,
ii
i
MM
M
i
UU
M
According to
Eq. (14), obtaining state
1
1
()
,
i
Mi
UM
the re
sult is shown
in Table 1.
Step 5
The
sende
r
1
i
A
perform
s Had
a
mard operation on the
pa
rticle
1
i
G
to re
store the
initial state
1
i
m
,
i.e.,
11
1
()
ii
GM
i
HU
M
.
T
he re
sul
t
is sho
w
n in
Table 2.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 2, Februa
ry 2013 : 827 – 838
832
As soon
as t
he ab
ove-m
e
ntioned t
r
an
sformation i
s
accompli
sh
ed
, the parti
cle
1
i
G
will
be mea
s
u
r
ed
by the send
er
1
i
A
.Then the initial state of
1
i
m
can b
e
re
cov
e
red by the receive
r
1
i
B
after performing a s
u
iTable unita
ry operation, as
s
h
own in Table III.
For example, if
i
G
is
measured wit
h
0
,
the resultin
g state of
1,
ii
A
can
be expre
s
se
d as on
e of the four state
s
01
,
0
1
,
0
1
,
1
0
.
ii
i
i
i
i
i
i
(15
)
Otherwise, the state of
1,
ii
A
can
be obtaine
d as
01
,
0
1
,
0
1
,
0
1
.
i
i
ii
ii
ii
(16
)
To accom
p
lish the tran
sfo
r
mation, fou
r
re
covery un
itary operatio
n are introdu
ced in
Table
3.
Here
, if
i
G
is
me
as
ure
d
w
i
th
0
,
the o
peratio
n
i
M
V
will be applied on
1,
ii
A
.
Otherwi
se, t
h
e
operation
i
M
W
is applied. After the unita
ry operation,
no matter what result is obtaine
d, the
rec
e
iv
er
1
i
B
ca
n r
e
sum
e
i
m
from
()
ii
GM
i
HU
M
.
Figure 3. The
protocol for tran
smi
ssi
on two
multipa
r
tite entangl
ed states. The pa
rticle
s
,
ik
x
are
the multipartit
e
entangl
ed states whi
c
h o
ught to be se
nt to the
recei
v
er
i
B
.
4. QNC
w
i
th
multipartite enta
ngled states
In this se
ction
,
with the assi
stan
ce of t
he
d-dim
e
n
s
iona
l controlled q
uantum tele
p
o
rtation
scheme
[22],
we
ge
nerali
z
e th
e p
r
oto
c
ol i
n
se
ctio
n 3 to
on
e
proto
c
ol fo
r t
r
an
smitting t
w
o
multipartite n-qudit entan
gl
ed state
s
,1
,
,,
ii
n
x
x
m
cro
ssly over the
butterfly network,
whe
r
e
,1
,
,1
,
,1
,
1
,,
,
1
,
,,
,,
0
,,
.
ii
n
ii
n
ii
n
d
xx
i
i
n
xx
xx
mx
x
(17)
The co
mplex
coeffici
ents
,1
,
,,
ii
n
x
x
satisfy the following
con
s
trai
nts
,1
,
,1
,
2
1
,,
,,
1.
ii
n
ii
n
d
xx
xx
(18
)
Assu
ming tha
t
two send
ers
1
A
and
2
A
sha
r
e
n
+1
gen
erali
z
e
d
GHZ
states b
e
foreh
and
11
,
2
1
,
1
,
11
,
2
1
,
1
,
1
,,
0
,,
1
,
kk
k
kk
k
d
AA
G
l
AA
G
GH
Z
lll
d
(1
9)
1
2
,
2
2,
2,
1
2
,
2
2,
2,
1
,,
0
,,
1
,
kk
k
kk
k
d
AA
G
l
AA
G
GHZ
l
l
l
d
(20
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Network Co
di
ng-Ba
se
d Co
mm
unication
s Via
the Con
t
rolled qu
antu
m
... (Dazu
Huang
)
833
w
h
er
e
pa
r
t
ic
le
s
11
,
k
A
,
12
,
k
A
and
1,
k
G
are h
e
ld in
1
A
’s
hands while parti
cles
21
,
k
A
,
22
,
k
A
and
2,
k
G
,
are
kept by
2
A
,
{1
,
2
,
,
}
kn
,
illustrated in Fi
g
u
re 3. In addit
i
on
6
n
ge
nera
lized
EPR
st
a
t
es
()
1
1
d
d
k
t
tt
d
(21)
are p
r
ep
are
d
by
C
and
i
A
as well
as
i
B
.
In order to facilitate descri
p
tion,
4
n
gen
eral
ized EPR
pairs betwee
n
C
and
i
B
are d
enoted by
1,
,
k
2,
3
,
,
kk
an
d
4,
k
,
re
spe
c
tiv
e
l
y
.
The process
of our protocol is as follo
ws:
Step 1
Send
er
i
A
prepa
re
s
n
-
qu
dit unknown state
,1
,
,,
ii
n
x
x
m
and
n
ge
ne
rali
zed G
H
Z
states. Th
e whole qu
antum
system is d
e
s
cribe
d
as
,1
,
,
,
1
,
,
,
1
,,
,
,
.
ii
n
i
i
k
i
i
k
i
k
n
k
xx
A
A
G
m
GHZ
(22
)
Then the
n
ge
nerali
z
e
d
Bell-state me
asurement
(GBS
M) with the bas
i
s
of
,
,,
2
1
,,
0
1
ik
ik
i
k
i
d
la
d
ab
i
k
d
l
Ue
l
l
b
d
(23
)
is pe
rformed
on the
pa
rticle
s
,
ik
x
and
,
,{
1
,
2
,
,
}
ik
Ak
n
, w
h
ere
,
ik
a
,
,
{0
,
1
,
,
1
}
ik
bd
.
Then
state of the re
maining p
a
rti
c
le
s
1,
,
ii
k
A
and
,
ik
G
c
a
n
be
written as:
,
1
12
12
2
1
,,
,
,,
0
,,
,
1
,
,
1
1
()
,,
.
n
ki
k
k
n
n
i
d
la
d
ik
l
l
l
n
ll
l
n
ki
k
k
i
k
i
k
i
i
k
dd
k
Me
a
d
lb
l
b
G
A
(2
4)
After that,
the corre
s
po
nd
ing unitary o
peratio
n
,
1
M
ik
U
is perform
ed on
particl
e
,1
,
ii
k
A
in state
1,
()
ik
M
.
After that t
he resulting
particl
es is d
e
livered
to
re
ceiver
1
i
B
via the ed
ge
1
ii
A
B
.
Mean
while, t
he unita
ry op
eration
,
ik
M
U
is ap
plied on
parti
cle
s
of gen
eralize
d
EPR p
a
irs
()
d
of
i
A
for supe
rde
n
s
e codin
g
. After that, the n particl
es a
r
e
sent to
C
.
Step 2
At
C
,
after it obtain
s
the pa
rticle
s from
i
A
,
the G
BSM is jointly performed o
n
the
particl
es th
at have bee
n re
ceived from
i
A
and the pa
rti
c
le
s in it’s ha
nds. After tha
t
,
k
cla
s
sic
a
l
bit string
pairs
,
ik
a
,
,
ik
b
and
1,
ik
a
,
1,
ik
b
are
both create
d
. Then a
n
en
coding o
p
e
r
ati
on simil
a
r to
that of opera
t
ion in sectio
n 3 is applie
d on
,
ik
a
,
,
ik
b
and
1,
ik
a
,
1,
ik
b
.
After that, t
he unitary
operation
s
1,
1,
,
kk
bp
U
and
2,
3
,
,
kk
pp
U
will be performed on the particl
es of
4
k
gene
rali
zed EPR pairs
sha
r
ed
bet
we
en
C
and
1
i
B
,
i.e.,
1,
1,
,1
,
,
kk
bp
k
U
2,
3
,
,2
,
kk
pp
k
U
1,
1,
,3
,
,
kk
bp
k
U
and
2,
3
,
,4
,
kk
pp
k
U
.
The
resulting parti
c
les will be delivered to
1
i
B
res
p
ec
tively.
Step 3
At
1
i
B
,
after applying
the GBSM o
n
the pairs of
corre
s
po
ndi
ng EPR pa
rti
c
le
s,
t
he st
rin
g
s
1,
1,
2
,
3
,
,,
,
kk
k
k
bp
p
p
are resto
r
e
d
, sub
s
eq
uentl
y
. Then the unitary op
era
t
ion
1,
2
,
,
kk
pp
U
is
perfo
rmed
o
n
the re
ceiv
ed pa
rticle
s f
r
om
i
A
, i.e.,
1,
2
,
,
1
,1
,
()
kk
i
k
pp
M
i
k
UU
M
.On
the ba
sis of
the
followin
g
pro
perty
,1
,
,
1
,
ik
i
k
ik
i
k
MM
M
M
UU
U
(25
)
in the
d
-
di
me
nsio
nal Hilb
ert space, one
obtain
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 2, Februa
ry 2013 : 827 – 838
834
1,
1,
1
1,
1
1
1,
,
1
,
22
11
1,
1,
,
,
0,
,
0
1,
1
,
1
,
1
()
,
n
ki
k
ik
k
ik
n
n
ik
i
i
k
ii
dd
la
la
dd
M
ik
i
k
l
l
n
d
ll
l
n
ki
k
k
i
k
dd
k
GA
UM
e
l
b
l
e
a
d
lb
lb
(2
6)
Then th
e de
coding
ope
rati
on is appli
e
d
on the
stri
n
g
s
1,
1,
2
,
3
,
,,
,
kk
k
k
bp
p
p
.
After that,
,
ik
a
,
,
ik
b
and
1,
ik
a
,
1,
ik
b
can be a
c
hi
eved by
1
i
B
.
Step 4
In
orde
r to re
cover the init
ial states i
n
1,
1
1
,
,,
ii
n
xx
m
,
1
i
A
perfo
rm
s th
e
gene
rali
zed
d
-
dime
nsi
on Hadama
r
d g
a
te operation o
n
particl
es
,1
,
ii
k
G
1,
1
2/
,0
1
ik
d
ijl
d
G
lj
H
ej
l
d
(27
)
i.e.,
1,
1,
1,
()
ik
ik
GM
i
k
HU
M
,
whi
c
h ca
n be re
written
as
1,
1,
1
1
1
1,
,
1
,
2
2
1
1
(
1,
,
,
21
,0
,
,
0
2
1,
1
,
1
,
1
,
n
ik
ki
k
k
n
n
ik
i
i
k
il
i
d
d
ja
la
d
d
d
ik
l
l
n
d
lj
l
l
n
ki
k
k
i
k
dd
k
GA
ej
l
l
b
l
e
a
d
lb
lb
(2
8)
After the me
a
s
ureme
n
t of p
a
rticle
s
1,
ik
G
at
1
i
A
on the
ba
se of
{0
,
1
,
,
1
}
d
, the initial
state
,1
,
,,
ii
n
x
x
m
5. Securit
y
a
n
aly
s
is
So
far
we
h
a
v
e
co
nsi
d
e
r
t
he
d
e
si
gn of the QNC b
a
sed on the multi-photo
n
e
n
tangle
d
s
t
ates
via teleportation. In this
sec
t
ion, we in
vestigate
the se
curity o
f
the present QNC schem
e
.
5.1. The sec
urit
y
anal
y
s
is of the c
h
a
nnel
1
ii
AB
In order to
de
tect the
chan
nel’s security, an
EPR
pair
whi
c
h
is shared by
i
A
and
1
i
B
is introdu
ce
d
as the
det
ection
chan
n
e
l. Before
p
a
rticle
,1
ii
A
is deliv
ered,
th
e CNOT
-gate
operation
al
C
will
be perfo
rme
d
on the dete
c
tion pa
rticle
cos
0
s
i
n
1
.
i
e
(29
)
Her
e
sub
s
cri
p
t
a
den
otes the p
a
rticl
e
of the EPR
pair i
n
i
A
’s ha
n
d
s. And
the
result can
be
expre
s
sed a
s
,0
,
1
,
0,
1
(cos
si
n
)
(0
0
0
0
(
1
)
)
,
2
i
ll
C
aa
b
a
b
i
Ci
i
(30)
here
,
ij
is
the Kroneck
e
r
s
y
mbol. After the
op
eration, the
dete
c
tion
pa
rticle
will
be
entangl
ed
wi
th the dete
c
t
i
on chan
nel
,
and the
thre
e-pa
rticl
e
ent
anglem
ent p
a
rticle
s
are
gene
rated co
rre
sp
ondi
ngly.
Assu
ming tha
t
Eve’s strate
gy is attack o
n
the cha
nnel
C with a pro
be parti
cle
,,
,
ab
(31)
after the unita
ry operation
U
,
th
e entan
g
l
ement state
can b
e
den
oted as
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Network Co
di
ng-Ba
se
d Co
mm
unication
s Via
the Con
t
rolled qu
antu
m
... (Dazu
Huang
)
835
,,
1
2
1
2
00
0
1
1
0
1
1
.
a
b
a
b
ab
a
b
ab
UE
E
E
E
(32
)
Her
e
12
1
2
,
EE
E
E
and
12
2
1
EE
E
E
0
.
Eq. (30
)
ca
n be rewritten a
s
'
,,
,
2
1
12
1
()
[
c
o
s
0
0
0
s
i
n
0
0
1
]
2
11
[co
s
0
0
0
s
i
n
0
1
1
]
[cos
1
0
1
22
1
sin
1
0
1
]
[
c
o
s
1
1
1
sin
1
1
0
]
.
2
Ci
aa
b
a
b
l
a
b
l
i
ab
l
a
b
l
ab
l
ii
a
b
l
abl
a
b
l
CU
e
E
eE
eE
eE
(33
)
At
1
i
B
,
as
s
o
on
a
s
it r
e
c
e
ives
th
e
pa
r
t
ic
le
,
the
CNOT
-g
ate op
eratio
n
,
bl
C
will be performed
on the
pa
rticl
e
of the
EPR
pair
whi
c
h
al
ready in
it’s
h
and
s a
nd th
e
particl
e
.
T
h
e r
e
su
lt c
a
n
b
e
expre
s
sed a
s
:
'
,
12
12
11
[cos
0
0
0
s
i
n
0
0
1
]
[cos
0
1
1
s
i
n
0
1
1
]
22
11
[
c
o
s
10
1
s
i
n
10
0
]
[
c
o
s
1
1
0
s
i
n
1
1
1
]
.
22
Ci
i
ba
b
a
b
a
b
a
b
ii
ab
ab
a
b
a
b
Ce
E
e
E
eE
e
E
(34
)
Obviou
sly
,
'
,
C
b
C
.
Therefore
,
can not be
extracte
d from
'
C
, the eave
s
d
r
o
pper
Eve ca
n b
e
d
e
tected.
With
the a
ssi
stan
ce of
the
d
e
tection op
eratio
n
,
the qu
antum
ch
ann
el
1
ii
A
B
’s se
cu
rity is guarantee
d.
5.2. The sec
urit
y
anal
y
s
is of the c
r
os
s-ch
annel
ii
AB
To en
su
re
th
e security of
the cro
s
s-cha
nnel
, the
seconda
ry dete
c
t
i
on
will be
int
r
odu
ce
d.
For
cla
r
it
y
,
we f
o
cu
s o
n
t
h
e ch
ann
el
1
A
C
to illustrate the
details
of
the
detection. The rest of the
cro
s
s-ch
ann
e
l’s se
cu
rity analysis i
s
simil
a
r to it.
The d
e
tails o
f
the dete
c
tio
n
on
the
ch
a
nnel
1
A
C
can be il
lustrated as f
o
llows:
At
1
A
,
in
addition to th
e EPR pair
whi
c
h en
co
d
ed the inform
ation with a l
o
cal o
p
e
r
atio
n on a si
ngle
particl
e,
1
A
prep
are
s
an
ord
e
red
N
-1
pai
r in
state
. After that, the
N
ordered EP
R pai
rs
will be
divided into
two
part
s
, na
mely,
()
i
PL
and
()
i
PM
.
1
A
send
s the
L
se
quen
ce
to th
e rel
a
y no
de
C
,
and the eave
s
dropp
er Eve
will be che
c
ked by t
he followin
g
pro
c
e
d
u
re: Firstly, at the node
C
, a
numbe
r of the particl
es fro
m
the
L
se
qu
ence will be chosen ra
ndo
ml
y and it will be perceived
by
1
A
. Af
ter that, t
w
o s
e
t
s
of MBs
,
s
a
ys
,
z
and
x
will be chosen to measure the particles. When
the ope
ration
is a
c
compli
she
d
,
C
tells
1
A
whi
c
h MB it
has
ch
osen
for ea
ch p
a
rt
icle a
nd the
outcom
e
s of i
t
’s mea
s
u
r
em
ent. After
1
A
use
s
the
sam
e
m
easurin
g ba
si
s a
s
which b
e
used at th
e
relay nod
e
C
to measure the corre
s
po
nding ph
oton
s in the
M
seque
nce and
che
c
ks with
the
res
u
lts of
C
, if there is no e
a
vesd
rop
p
ing
exists, their result
s sh
ould
be com
p
letel
y
opposite.
Suppo
sing th
at an attacke
r
Eve may access to the
quantum
cha
nnel to acqui
re some
informatio
n,
owin
g to th
e
pa
rticle
s
are
entan
gl
ement s
t
ates
, the mos
t
poss
ible attack is the
attac
k
n
the e
n
tangle
d
stat
e
, namely,
,,
,
,0
,
1
,
ab
ab
ab
ab
(3
5)
whe
r
e
,
ab
de
scri
bes Eve’s p
r
obe state,
a
an
d
b
are singl
e-photon state
s
of
1
A
and
C
in
each EPR pai
r re
spe
c
tively. We describ
e
Eve’s effect on the syste
m
as
00
01
0,
0
0
,
1
,
,
C
EE
E
E
(36
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 2, Februa
ry 2013 : 827 – 838
836
10
11
1,
1
'
0
,
'
1
,
.
C
EE
E
E
(37)
Here Eve’s probe can be m
odele
d
by
'
,
'
E
(38)
the compl
e
x numbe
rs must satisfy
22
1,
(39)
*'
*
'
*
0.
(40
)
The Eve’s ea
vesdroppi
ng
will introd
uce an error
rate
22
2
2
'1
1
'
.
e
(41)
Here the probability of the information whi
c
h
Eve
can maximall
y gain
will be calculated
as
follows. Assu
ming that at
1
A
,
the mea
s
u
r
em
ent re
sult of the EPR pa
rti
c
le is
1
, then th
e state of
the system
compo
s
ed of the relay no
de
C
’
s pa
rticle a
nd Eve’s prob
e can b
e
de
scrib
ed by
00
01
ˆ
'0
,
0
,
1
,
.
EE
(42)
After that, the
state of the system rea
d
s
22
**
0
0
00
01
01
00
01
01
0
0
'
0
,0
,
1
,
1
,
0
,0
,
1
,
0
,
.
(
43)
After encodin
g
of four diffe
rent u
n
itary o
peratio
ns
U
00
,
U
01
,
U
10
,
U
11
whi
c
h h
a
ve b
een el
abo
rate
in
section 3 with
the probabilities
p
0
,
p
1
,
p
2
,
p
3
,here
p
0
+
p
1
+
p
2
+
p
3
= 1
, the
state ca
n be
denote
d
as
22
*
0
3
00
00
01
01
0
3
00
22
*
01
01
00
1
2
00
0
0
01
01
**
1
2
00
01
01
00
''
(
)
(
0
,
0
,
1
,
1
,
)
(
)
(
0
,
1,
1,
0
,
)
(
)
(
1,
1,
0
,
0
,
)
()
(
1
,
0
,
0
,
1
,
)
,
pp
p
p
pp
pp
(44)
whi
c
h can be
rewritten in th
e orthog
onal
basi
s
00
01
00
01
{0
,
,
1
,
,
1
,
,
0
,
}
*
2
03
03
2
*
03
03
*
2
12
12
2
*
12
12
''
0
0
()
()
0
0
()
()
()
()
0
0
()
()
0
0
pp
pp
pp
pp
pp
pp
pp
pp
.
(4
5)
The maximal
information
I
0
that can
be
extracted fro
m
this state i
s
given by th
e
Vo
n Neuman
n
entropy
,
nam
e
l
y,
3
02
0
lo
g
.
ii
i
I
(46)
whe
r
e
(0
,
1
,
2
,
3
)
i
i
a
r
e th
e eigen valu
e
s
of
''
, which
can be expressed a
s
22
0,
1
0
3
0
3
0
3
11
()
(
)
1
6
(
)
,
22
pp
p
p
p
p
e
e
(4
7)
22
2,
3
1
2
1
2
1
2
11
()
()
1
6
(
)
.
22
pp
p
p
p
p
e
e
(48)
Assu
ming
tha
t
the p
r
oba
bili
ty of the fou
r
operation
s
i
s
equal
to e
a
ch
other,
nam
el
y,
14
i
p
,
the
expre
ssi
on can be sim
p
lified to
Evaluation Warning : The document was created with Spire.PDF for Python.