TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 11, Novembe
r
2014, pp. 76
5
0
~ 765
8
DOI: 10.115
9
1
/telkomni
ka.
v
12i11.65
73
7650
Re
cei
v
ed Au
gust 16, 20
14
; Revi
sed Se
ptem
ber 14, 2014; Accept
ed Octo
ber 1,
2014
Hysteresis Current Control with Input Filter Design for
High Frequency Series Resonant Full Bridge Inverter
Deba
bra
t
a Ro
y
*
1
, Pradip
Kumar Sadhu
2
, Nitai Pal
2
1
Batanag
ar Ins
t
itute of Engin
e
e
rin
g
Mana
ge
ment & Scienc
e,
B7-36
0
/ Ne
w
,
W
a
rd No. 30, Putkhal
i, M
ahe
shtalaKOLKAT
A - 70014
1W
e
s
t Bengal, Ind
i
a
2
Electrical En
gi
neer
ing D
e
p
a
rtment, Indian S
c
hoo
l of Mines
(und
er MHRD,
Govt. of India
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: deba
bratar
o
y
198
5@gm
ail.c
o
m
A
b
st
r
a
ct
T
h
is pa
per tal
ks abo
ut the
ana
lysis of a
hig
h
frequ
enc
y series res
o
nant i
n
verter f
o
r usi
n
g
do
mestic a
nd i
ndustri
a
l in
duct
i
on h
eati
ng p
u
r
pose. It is
a techni
que
i.e. used for he
at con
ductive
mater
i
a
l
s
hard a
nd soft meta
ls. Series
Reson
ant inve
rters w
h
ich operate at hig
h
frequ
ency pref
erabl
e for inducti
o
n
heati
ng w
h
ic
h
nor
mal
l
y w
o
rks
in 5-
55KH
z
.
H
i
gh fre
q
u
ency
series r
e
son
a
n
t
inverters w
h
i
c
h is
ma
de
up
of
Insulated Gate
Bipolar Transi
s
t
or (IGBT
)
. Pow
e
r control
is
o
b
tain
ed
by
Hys
t
eresis C
u
rre
nt Co
ntrol
and
filt
er
desi
gn
is i
n
cor
porate
d
i
n
the
i
nput
pow
er su
pply. S
o
ft sw
itchin
g tech
ni
que
s is p
e
rfor
med
w
h
ich
min
i
mi
ze
s
sw
itching loss
e
s
and pro
per fil
t
er desig
n mini
mi
z
e
s har
moni
c injecti
on in th
e pow
er sup
p
ly
.
Ke
y
w
ords
: ind
u
ction h
eati
ng, series res
ona
n
t
inverter,
hysteresis curr
ent control, hi
gh frequ
ency, IGBT
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
To heat con
ductive mate
rials hi
gh fre
quen
cy indu
ction he
ating
is need
ed. To heat
electri
c
ally
co
ndu
ctive material
s hig
h
fre
quen
cy
ele
c
tricity is bei
ng
use
d
. Vast a
m
ount of current
is feed
to the
coil
usi
ng hi
gh fre
que
ncy
elect
r
icity.
It is kno
w
n
as
a wo
rk
coil.
A very forcef
ully
and qui
ckly changi
ng mag
netic field in the spa
c
e
wi
thin the work
coil is ge
nera
t
ed when
current
is fed to thi
s
coil. Th
e work pie
c
e
is to
be he
ated. T
hen
within int
ense alte
rnati
ng ma
gneti
c
field
the he
ated
work pie
c
e
is
kept. A
cu
rre
nt flow i
n
the
co
ndu
ctive
work
pie
c
e i
s
indu
ce
d by t
he
alternatin
g m
agneti
c
field.
It is h
eated
. The
wo
rk
coil
as
well
as th
e
work pie
c
e
can
be
con
s
id
ere
d
of
as a
n
el
ectri
c
al tran
sform
e
r. In this
case it is assum
e
that
work coil is
considered
as p
r
ima
r
y in
whi
c
h el
ect
r
ical ene
rgy i
s
feed in th
e
wo
rk
pie
c
e i
s
like a
single
turn se
co
nda
ry that
is sh
ort-ci
rcui
ted. This sho
r
t circuited
work
pi
e
c
e ind
u
ce
s in
ru
sh
of
cur
r
ent
s t
o
f
l
ow w
h
ich
is
calle
d ed
dy currents. T
he
magneti
c
fiel
d is fo
rmed
around
a coil when the
A
C
current
ente
r
s the
coil. It is calculated a
c
cord
ing to Ampere’s La
w:
..
....
....
....
....
...
....
....
....
(
1
)
...
....
...
....
....
....
....
....
...
....
....
....
(
2
)
Hd
l
N
i
f
HA
Fara
day’s L
a
w
state
s
that
the
cu
rrent that is gen
erate
d
on
the
con
ductive obj
ect has an
inverse rel
a
tionship with th
e curre
n
t on the indu
cting
circuit.
An eddy cu
rrent is gen
era
t
ed from the
curre
n
t on the su
rface of the obje
c
t an
d it is
cal
c
ulate
d
ha
s follows:
.
.
.
...
..
..
...
..
...
..
..
...
(
3
)
dd
EN
dt
dt
As a re
sult, the elect
r
ic e
nergy
cau
s
e
d
by the ind
u
ce
d cu
rrent
and eddy
current is
conve
r
ted to heat ene
rgy:
2
2
.
.
.
.
.
.
.
...
..
..
..
..
...
..
..
..
..
...
..
..
(
4
)
E
Pi
R
R
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Hysteresi
s
Current Co
ntrol
wi
th Input Filter De
sign fo
r High Frequ
e
n
cy… (Deb
ab
rata Ro
y)
7651
In induction
heater in wh
ich re
so
nant
tank is inst
alled, made
of heating coil and
cap
a
cito
r, hig
h
freque
ncy
seri
es
re
son
a
n
t inve
rters a
r
e used. Hig
h
Frequ
en
cy Serie
s
re
so
nan
t
inverters are those in which re
sona
nt compon
ents a
nd swit
chin
g device
s
are in seri
es to the
load. Serie
s
reso
nant loa
d
are fed by vol
t
age fed in
verter [10-2
7
]. It
is oft
en loo
k
e
d
-for to
control
the amo
unt
of po
wer pro
c
e
s
sed by
a
n
indu
ctio
n
h
eating [1
-5].
Powe
r
contro
l is a
c
hi
eved
b
y
variation
of freque
ncy a
n
d
pha
se
shift
control. Bu
t b
y
using
this
method
s
swit
chin
g lo
sses
are
not minimize
d sin
c
e it is impossibl
e to turn on an
d turn off the switche
s
at zero
voltage and zero
curre
n
t at all times. Hystere
s
is
curre
n
t
cont
rol is o
ne su
ch tech
nique u
s
ed t
o
control out
pu
t
power
fo
r
a wide ra
nge b
y
controlling swit
chin
g
si
g
nals
appli
ed t
o
the inve
rter [51-5
3
]. Pha
s
e
locked l
oop
which i
s
u
s
e
d
to match switching fr
e
que
ncy close to resonan
ce frequ
ency to
sup
p
l
y
maximum po
wer to
work p
i
ece [37
-
50].
2. High Freq
uenc
y
Se
r
i
e
s
R
e
s
o
n
a
n
t
I
n
v
e
r
t
e
r
Everybody
known that
d
ue to
eddy
curr
e
n
t, po
wer l
o
ss
ca
n
be
re
pre
s
e
n
ted a
s
2
()
ee
m
Pk
f
B
.
In this prop
ose
d
topolog
y Bm in air is
low. Thus, to generate suf
f
icient eddy
curre
n
t loss
and the
freq
uen
cy
f
is
requ
ired to
be a
s
hig
h
a
s
p
o
ssi
ble. Con
s
eque
ntly, the
freque
ncy
sh
ould be in the
radio fre
que
ncy ra
nge to
maintain the
prod
uct
()
m
f
B
high.
From the
point of view
of saving en
o
r
mou
s
lo
ss
of electri
c
al e
n
e
rgy in differe
nt home ap
pli
ances, it se
e
m
s
better to impl
ement the
hi
gh fre
quen
cy
inverter
to
po
logy [28-3
6
].Serie
s re
so
n
ant inverte
r
s
for
high freq
uen
cy inductio
n
heating an
d melting app
lication
s
are sta
r
ted b
y
themselve
s
. A
resona
nt circuit is needful
for self –
c
om
mutation.
It is desired that the circuit is
unde
r dam
pe
d.
The
cap
a
cito
r req
u
ire
d
for
unde
r da
mpin
g ca
n be
con
necte
d in
se
ri
es o
r
in
pa
rall
el with the
loa
d
.
For
efficient f
o
rced
com
m
u
tation, reve
rse voltag
e m
u
st a
ppea
r
a
c
ro
ss the
SCR in S
C
R ba
sed
system
s,
whi
c
h
ca
n b
e
o
b
tained
from
a
cha
r
gin
g
ci
rcuit con
s
i
s
ting
of an
i
ndu
ctor and
a
cap
a
cito
r, cal
l
ed, the
com
m
utat
ing
co
mpone
nts. T
hey are
con
n
ec
ted
to the
load,
so th
at the
overall ci
rcuit become
s
und
er dam
ped a
nd ze
ro curre
n
t is obtaine
d
[6-10].
Full brid
ge
circuit is n
o
rm
al
ly used fo
r hi
gher
output p
o
we
r. Basi
c circuit i
s
sho
w
n in the
Figure 1. Fo
ur solid state
switche
s
are use
d
an
d two switche
s
are trig
ge
red
simultan
eou
sly.
Anti-parallel
diode
s a
r
e co
nne
cted with
the switch
th
at allows the
curre
n
t to flow wh
en the
main
swit
ch is t
u
rn
ed OFF.
Figure 1. Full Bridge Se
rie
s
Resona
nt Inverter
The ci
rcuit is on wh
en
swi
t
che
s
Q1
an
d Q4 a
r
e trig
gere
d
si
multa
neou
sly. The
curre
n
t
flows fo
r a h
a
lf cycle of th
e re
son
ant freque
ncy an
d
beco
m
e zero whe
n
both
swit
che
s
Q1
and
Q4 are turned off. When
Q1 and Q4
stop conduct
ing and
swit
ch
Q2 and Q3
are not yet turned
ON the
cu
rre
n
t throu
gh th
e load
reve
rses a
nd i
s
no
w carried
by D1 a
nd
D4, t
he anti
-
pa
rall
el
diode
s th
at
are
co
nne
cte
d
with
the
resp
ective
switche
s
. Th
e
voltage d
r
op
s a
c
ross dio
des
appe
ar as a reverse bia
s
across switch
Q1
and
Q
4
.Comm
u
tation ci
rcuit is
not nee
ded
since
duratio
n of the reve
rse b
i
as is mo
re t
han the swit
ch turn
-off time, then swi
t
ch Q1& Q4
ge
t
comm
utated
naturally. Thi
s
method of comm
utatio
n
is called loa
d
commut
a
tion. It is used in
high fre
que
n
c
y inverte
r
for ind
u
ctio
n
heating.
In
ductio
n
heati
ng ge
nerators are reson
ant
inverters which operate at high freq
uen
cy and prod
uc
es maximum
curre
n
t at resonan
ce
which
is
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
50 – 765
8
7652
sufficie
n
t to heat the wo
rk
piece. Re
son
ance oc
cu
rs while the in
d
u
ctor
and
cap
a
citor
exch
an
ge
s
energy. Re
so
nant inve
rters a
r
e
ele
c
tri
c
al invert
e
r
s
b
a
se
d
o
n
re
so
nant cu
rre
nt oscillation
s
[1
2-
16]. To fro
m
an u
nde
r da
mped
circuit i
n
se
rie
s
re
so
nant inve
rter
the re
so
natin
g co
mpo
nent
s
and
switchi
n
g devi
c
e
s
a
r
e kept in
series
with th
e l
oad.
Due
to
natural
cha
r
a
c
teri
stics
of the
circuit th
e
cu
rrent th
rou
g
h
the
swit
chin
g
device
s
fa
ll
to
ze
ro.Sho
rt-ci
r
cuit
o
c
curs
when i
n
voltag
e-
fed inverte
r
s, two
swit
che
s
of th
e sam
e
inverte
r
le
g
is tu
rne
d
o
n
at the
sam
e
time.The tim
e
betwe
en the
turnin
g-
off of
one
of these
swit
che
s
and
the turni
n
g
-
o
n
of the
othe
r is
calle
d d
e
a
d
-
time. In this topolo
g
y, anti-parall
e
l diod
e
s
are ne
ce
ssary to allow i
ndu
ctor'
s
current con
d
u
c
tio
n
when the oppos
ite
switc
h
es
are turned-off. Bas
i
cally s
e
mic
o
nduc
tor switching
devic
es
operat
e
in Ha
rd Swit
ch Mode i
n
va
riou
s types
of Puls
e Width Modulatio
n
(PWM)
DC-DC converte
rs
and
DC-AC inve
rt
er. In this mo
de, swit
chin
g
device
s
turn
on or off at spe
c
ific
cu
rre
nt and spe
c
ific
voltage wh
e
never
swit
chi
ng occu
rs a
nd switch
i
n
g
losses
are
high. When
the frequ
en
cy is
increa
sed
hi
gher,
greate
r
the
switching l
o
ss
,
whi
c
h
re
stri
cts the
rai
s
e
in frequ
en
cy.
Electrom
agn
etic interfe
r
en
ce p
r
oble
m
is also ca
u
s
ed
by switching l
o
ss be
cau
s
e
a large a
m
ou
nt
of
di
d
v
an
d
dt
dt
is generated. Switchin
g loss ca
n be
calculated a
s
:
()
1
....
.......
.......
....(
5
)
2
on
of
f
sw
sw
s
w
s
t
t
PV
I
f
With incre
a
si
ng in switchi
n
g frequ
ency
size of
a tran
sf
orme
r and filt
er is redu
ce
d, which
help
s
build a
smalle
r an
d lighter
conve
r
ter with
hi
gh
power de
nsit
y. But switchi
ng loss redu
ces
the efficien
cy of the pro
c
e
ss, a
s
mo
re l
o
sse
s
are ge
nerate
d
at a
highe
r freq
ue
ncy. Switchi
n
g
loss can b
e
p
a
rtly mitigate
d
by co
nne
cti
ng a
snu
bbe
r circuit pa
rall
el to the swit
chin
g ci
rcuit. Bu
t
the total amo
unt of switching lo
ss
gen
erated in
the
sy
stem remai
n
s the same. T
he lo
ss
avoid
e
d
has be
en mo
ved to the snubbe
r circuit.
At hi
gh switchin
g frequ
e
n
cy, highe
r efficiency ca
n be
obtaine
d by
makin
g
switching d
e
vice t
o
turn
on o
r
off at the ze
ro cro
ssi
ng. T
h
is te
chni
que
is
calle
d “soft switchi
ng,” wh
ich ca
n be subdivided
int
o
two metho
d
s: Zero-Volt
age Switchin
g
(ZVS) an
d Ze
ro-Cu
r
rent Switchi
ng (ZCS). Whe
n
the
swit
chin
g de
vice voltage i
s
set to ze
ro
right
before
turn
o
n
of switch, switchi
ng lo
ss
durin
g turn
o
n
can b
e
eli
m
inate a
nd t
h
is
refers to
ZVS.
ZCS elimin
ates the tu
rn
-of
f
switching l
o
ss
by ma
ki
ng
cu
rre
nt to zero i
n
the
circuit ri
ght bef
ore
turning it off. Resonance condition
whi
c
h is obtai
ned by L-C resonant circ
uit is used
show that
voltage and current in the swit
chin
g circuit is
made to zero. It is named a
s
re
sonant converter
topology. Re
son
ant ci
rcuit absorb
s
th
e
existing in
du
ctance i
n
case
of ZCS a
nd i
t
eliminates the
volt surg
es d
u
ring tu
rn-off con
d
ition. Voltage su
r
ge
d
u
ring tu
rn on
of switching
circuit i
s
ca
used
by an electri
c
discharge of
junction
cap
a
citan
c
e
whi
c
h can
not be
avoided. Thi
s
method cau
s
es
swit
ching loss
2
(0
.
5
)
CV
f
.
ZCS, howe
v
er, is free from this
defe
c
t and ma
ke
s
both the exi
s
ting
indu
ctan
ce a
nd cap
a
cita
n
c
e be ab
so
rb
ed
by
t
he re
sonant
ci
rcuit. This elimin
ates th
e
cha
n
ce of
cau
s
in
g a su
rge in
cu
rren
t at turn-off
(ca
u
sed by i
ndu
ctan
ce)
o
r
turn
- on
(b
y capa
citan
c
e)
conditions. While
substantially
red
u
ci
ng the
probl
em of EMI
a
t
high frequ
e
n
cy ZVS, e
n
ables
swit
chin
g wit
h
loss l
e
ss.Reso
nant inve
rters
mini
mi
ze
s the
switchi
ng lo
ss an
d
provide
s
gre
a
ter
energy conve
r
sio
n
effici
en
cy to t
he p
o
wer
system,
so
it is wi
dely u
s
ed i
n
a va
rie
t
y of industri
e
s.
This i
s
al
so t
he re
ason th
e inverte
r
is
adopte
d
in th
e IH po
we
r system the typical
diag
ram
of
seri
es resona
nt inverte
r
for
inducti
on h
e
a
ting [22-3
1
]. Single phase
AC supply
(
240
,
5
0
)
VH
z
is fed to recti
f
ier which converts AC to DC
and fed toinverter.Inverter generates high
freque
ncy
AC
curre
n
t which
is fed
to
load.
In
o
r
d
e
r to
obtai
n
maximum
po
wer tra
n
sfe
r
f
r
om
sou
r
ce to loa
d
imped
an
ce
matchin
g
is requir
ed
sin
c
e
the load i
m
p
edan
ce
will
chang
e du
ring
the
heating
cycle
which might
nece
s
sitate
retunin
g
or
re matchi
ng to the so
urce.
Output from
the
inverter is co
nne
cted to
im
peda
nce mat
c
hin
g
transf
o
rmer
whi
c
h
m
a
tche
s th
e
so
urce im
ped
an
ce
to the load impeda
nce and
thereby tra
n
sf
ers m
a
ximum
powe
r
from
source to load
[40-50].
The varia
b
le
s of the serie
s
resona
nt circuit are define
d
as follo
ws:
The re
so
nant
frequen
cy
0
1
.
....
....
....
...
....
.(
6
)
LC
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Hysteresi
s
Current Co
ntrol
wi
th Input Filter De
sign fo
r High Frequ
e
n
cy… (Deb
ab
rata Ro
y)
7653
The ch
aracte
ristic im
ped
a
n
ce:
00
0
1
...
...
..
...
...
..
...
...
.(
7
)
ZL
c
The load q
ual
ity factor
00
0
1
..
...
...
...
...
...
...
...
...
...
(
8
)
L
Lz
C
Q
Rc
R
R
R
3. Suggeste
d
Topolog
y
Hysteresi
s
current control
is on
e such
techni
que to
regul
ate the
output po
we
r for a
varied rang
e i.e. 5-55KHz.
Hyster
esi
s
m
ode control was obtai
nabl
e
to
the converter co
ntrolle
r.
It
has be
en
ob
serve
d
a
s
a
good
alternat
ive for
reg
u
la
ting the
cu
rre
n
t or voltage
of a
switchi
ng
conve
r
ter du
e to it
s fa
st d
y
namic chara
c
teri
st
ics
and
ea
sy impl
em
entation. It h
a
s
not
only t
he
excelle
nt loop perfo
rman
ce. It is also the inst
ability can be p
r
eve
n
ted for all duty cycle sin
c
e
hystereti
c
co
ntrol i
s
ba
sically ba
sed
o
n
the
bo
und
ed p
r
o
c
e
s
s b
e
twee
n u
ppe
r a
nd l
o
wer tri
p
point. It controls the
swit
ch
ing sig
nal
s a
pplied to inve
rter
. In this
tec
hnique referenc
e
wave
is co
mpa
r
ed
with Ca
rri
er
wave an
d the swit
chin
g signal
s are a
p
p
lied to the inverter
with the
intersectio
n
o
f
these two
waves. Wh
en t
h
is in
te
rsecte
d wave rea
c
h
e
s the u
ppe
r
band, switch
es
S1 and S
3
a
r
e turn
on.
Wh
en this re
ach
e
s th
e lo
wer
band,
swit
che
s
S2
and S
4
are tu
rn
on.
With
this
cha
nge
s in the
switching
state, o
u
tput vo
ltage
is
co
ntrolle
d an
d
curre
n
t is
within
th
e
hystere
s
i
s
ba
nd and the
r
e
b
y the output power is
reg
u
l
ated for a wi
de ran
ge of h
eating cy
cle.
Hysteresi
s
cu
rre
nt control is a clo
s
e
d
loo
p
contro
l tech
nique. The o
u
t
put current o
f
the inverter is
made to
path
w
ay the
com
m
and
cu
rrent
*I and m
a
in
t
a
in the
error
within the
hysteresi
s
ban
d
()
In the fig 2 when the e
r
ror curre
n
t
*
s
iii
crosse
s the e
rro
r
band, inve
rte
r
s a
r
e
swit
ch
ed to
bring th
e out
put cu
rrent within the erro
r ban
d.
Wh
e
n
the output
curre
n
t su
rpa
s
ses th
e upp
er
band, it’s
ca
rried in to
wit
h
in the b
and
()
by turning
o
n
the lo
wer
switch
and tu
rning off the
uppe
r
swit
ch.
As
a result, the voltage
across th
e lo
ad
chan
ge
s f
r
om Vd
c to
0
and th
e
cu
rrent
decrea
s
e
s
. Also when th
e
output cu
rre
n
t goe
s belo
w
the lo
wer
band, the lo
a
d
is conn
ecte
d to
Vdc
by turni
n
g OFF
the
lo
wer
swit
ch
a
nd tu
rning
O
N
the
up
pe
r
swit
ch. A
s
a
result, the
ou
tpu
t
voltage a
c
ross the l
oad
ch
ange
s from 0
to Vdc
and
the output
cu
rre
nt sta
r
ts t
o
build
up. A
n
optimal valu
e
of
δ
mus
t
b
e
c
h
os
en
to
ma
in
ta
in
a b
a
l
an
c
e
between
the
output cu
rre
nt
rip
p
le
a
n
d
the swit
chin
g losse
s
and th
ereby elimi
n
a
t
e spe
c
ific ha
rmoni
cs.
Figure 2. Hysteresi
s
Ban
d
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
50 – 765
8
7654
Output Powe
r is cal
c
ulate
d
as:
c
o
s
.....................(
9
)
out
e
f
f
e
f
f
PV
I
Effective Inverter voltage i
s
given by:
ma
x
....
...
...
....
...
....
..(
1
0
)
ef
f
e
f
f
To
n
VV
T
Effective inverter current is given by:
ma
x
...
.(
1
1
)
co
s
out
ef
f
e
f
f
ef
f
PT
o
n
II
T
V
To supply m
a
ximum po
wer to th
e
work pi
ece
op
erating fre
que
n
c
y is
match
clo
s
e to
resona
nce freque
ncy
sin
c
e at re
so
nan
ce freque
ncy
cu
rre
nt is m
a
ximum. To
control the
ph
ase
-
shift between
two ele
c
tri
c
v
a
riabl
es
and
reac
hed th
e reso
nant frequ
ency PL
L sy
stems a
r
e
use
d
.
It is mad
e
of
a ph
ase d
e
tector an
d al
so a lo
w-pa
ss filter, and
a
Voltage
Cont
rolled
O
scill
ator
(VCO
).A sig
n
a
l that is prop
ortional to th
e
phase
shift betwee
n
the two inp
u
t sig
n
a
ls is
produ
ced
by the phase
detecto
r. Th
en, this sig
n
a
l
is filt
ered th
roug
h a lo
w-pass filter an
d it obtains a
DC
voltage. It is proportional
to
the phase-shift. VCO generates an
AC si
gnal.
Its frequency is
prop
ortio
nal t
o
its
DC inp
u
t
voltage. Th
e outp
u
t
of the VCO i
s
conne
cted
wit
h
the in
put of
the
pha
se dete
c
t
o
r. The VCO
adjust
s
the frequ
en
cy
until the output signal is mat
c
hed to the in
put
sign
al.
PLL adju
s
t the ope
rating
frequen
cy u
n
til
the phase shift between outp
u
ts
curre
n
t.
Voltage is
ze
ro si
nce i
n
case of voltag
e fed se
rie
s
resona
nt inverter the volt
age an
d cu
rrent
pha
se-shift is near to zero
at reso
nant freque
ncy.
4. Filter Desi
gn at Input S
i
de
The fixed band
cu
rre
n
t
controll
er
gives go
od
dynamic
performan
ce. S
w
itchi
ng
freque
ncy i
s
irre
gula
r
an
d
curre
n
t rippl
e is la
rge. In
this situatio
n within the
sinu
soi
dal ba
nd
curre
n
t controller the rip
p
l
e can be va
ried with
the
current mag
n
itude thereb
y reduci
ng the
curre
n
t ripple
content. In sinusoidal ba
n
d
as co
m
p
a
r
ed to fixed b
and cu
rrent ripple co
ntent
is
less, but still
the load current contain
s
highe
r order harmo
nics t
hat cau
s
e E
M
I proble
m
s
and
device h
eatin
g. These hig
h
orde
r ha
rmo
n
ics are ea
sil
y
filtered out
by
usin
g low
pass filter o
n
the
input sid
e
. The Low p
a
ss filter (L
C)
with pr
op
osed con
f
iguration i
s
shownin the Fi
gure 3.
LC filter de
si
gn for the to
eliminate the
hi
ghe
r order harmo
nics, followin
g
calculation
s
are ma
de.
a)
re
f
I
14.95
A
b) Loa
d Para
meter
1
R
,
97.1
LH
c) F
r
eq
uen
cy=
55
K
Hz
The indu
ctive
reacta
nce for the nth harm
onic voltag
e is followi
ng formula
36
2
5
5
1
0
9
7.
1
1
0
33.
555
L
Xj
n
j
n
The impe
dan
ce for the nth
harm
oni
c voltage is o
b
tain
ed by:
1/
2
22
1
(
33.
555
n
)
n
Z
n
=orde
r
of harmonics.
The
nth a
n
d
hig
h
e
r
o
r
der
ha
rmo
n
i
c
s
w
ould
b
e
redu
ce
d si
gnifi
cantly if the filter
impeda
nce is much
smalle
r than that of l
oad, and a ra
tio of 1:10 is norm
a
lly ade
quate,
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Hysteresi
s
Current Co
ntrol
wi
th Input Filter De
sign fo
r High Frequ
e
n
cy… (Deb
ab
rata Ro
y)
7655
10
nc
Z
X
Whe
r
e the filter impe
dan
ce
is:
1/
2
22
1/
2
2
2
25
0
(
1
/
25
0
)
ei
c
e
XX
X
Xn
L
n
C
Putting L=0,
above eq
uati
on be
come
s:
1/
2
22
1
(
33
.
5
55
n)
1
0
/
c
X
The value of
filter capa
cit
ance C
c
an
be found fro
m
equatio
n b
y
consi
d
e
r
ing
0
L
and the valu
e
of
0.22
Cu
F
.Similarly sub
s
tituting t
he value of
C in Equation
(19) the val
u
e
of
97.1
L
uH
for Singl
e p
hase. Now by
takin
g
differe
nt value
s
of
L
oad
paramet
ers the val
u
e
of L and C va
lues
can b
e
e
a
sily cal
c
ul
ated.
5. Simulation Resul
t
Serie
s
reson
ant inverte
r
with hy
stere
s
is
cu
rrent
control i
s
ana
lyzed
and
si
mulated
usin
g PSIM. Sufficient Current i
s
ge
nerated which is
use
d
to h
eat
the wo
rk pie
c
e
with the lo
ad
resi
stan
ce
of
1ohm. Invert
er
swit
ching
frequ
en
cy is
made
clo
s
e t
o
re
son
a
n
c
e
freque
ncy to
get
the cu
rrent
re
spo
n
se at ma
ximum. Fig 4
s
ho
ws t
he
ou
tput voltage a
nd outp
u
t current at th
e wo
rk
piece.
Figure 3. Low-pa
ss Filte
r
with LC Co
m
p
o
nents
in High Freq
uen
cy
Inverter
Inverter outp
u
t voltage at the work pie
c
e is
450V wit
h
load re
si
stanc
e of 1.Q. Inverter
output cu
rren
t at the work
piece is1
5
A whi
c
h is
sufficient to heat the wo
rk pi
ece.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
50 – 765
8
7656
Figure 4. Output Voltage a
nd Output Cu
rre
nt
6. Conclusio
n
This p
ape
r d
e
scrib
e
s
a hi
gh freq
uen
cy
seri
es
re
so
n
ant inverte
r
for ind
u
ctio
n
heating
appli
c
ation in
domesti
c an
d indust
r
ial a
r
ea. Powe
r c
ontrol is do
n
e
by hyst
ere
s
is cu
rre
nt co
ntrol
method a
n
d
provide
s
go
od re
sp
on
se
for 5–5
5 kHz
ran
ge. Soft switching
techniq
u
e
s
are
employed to minimize swit
chin
g losse
s
. Phase
locke
d
loop whi
c
h
matche
s swit
chin
g frequ
en
cy
to resona
nt freque
ncy in o
r
de
r to achi
e
v
e the maximum re
spo
n
se
at reso
nan
ce. Thus the h
i
gh
freque
ncy se
ries re
son
ant
inverter with
hystere
s
i
s
current co
ntrol
provide
s
be
st re
spo
n
se for
indu
strial
an
d dom
esti
c i
ndu
ction h
e
a
t
ing. Mo
re
over, p
r
ope
r in
put LC filter desi
gn
red
u
c
e
s
harm
oni
c inje
ction in the p
o
we
r su
pply line.
Referen
ces
[1]
Pradi
p Kum
a
r
Sad
hu, D
e
b
abrata
Ro
y,
NItai Pa
l,
So
urish S
a
n
y
a
l
.
Sel
e
ction
of
Appr
opri
a
te
Semico
nductor
S
w
itches
for I
nducti
on
Heat
ed Pi
pe-
Lin
e
u
s
ing
Hig
h F
r
eq
uenc
y F
u
ll Br
i
dge I
n
verter
.
Internatio
na
l Journ
a
l of Pow
e
r Electronics a
nd Driv
e Systems
. 20
14; 5(1):
112-1
18.
[2]
Omar El-Nak
e
eb, Mostafa I
Marei, Ahm
e
d A El-Sattar.
A Hig
h F
r
eq
uenc
y m
o
d
u
la
r Reso
nant
Conv
erter for the Ind
u
ction
Heati
n
g
. Intern
ation
a
l Jo
urna
l
of Emerg
i
n
g
T
e
chno
logy
an
d Advanc
e
d
Engi
neer
in
g
. ISSN 225
0-2
4
5
9
, ISO 9001: 2008 C
e
rt
ified J
ourn
a
l. 20
13; 3
(
2): 2013.
[3]
PK Sadhu, RN Chakr
a
barti, SP Cho
w
dhury
. An im
prove
d
inverter c
i
rc
uit arran
gem
e
n
t. Patent No.
69/Cal/2001, Patent Office
– Government of India.
[4]
PK Sadhu,
RN Chakrabarti,
SP Cho
w
dhur
y
.
A
heat
ing
apparatus
using high
frequenc
y
induction
heating,” Indian Patent No. 2
16361 (68/Cal/
2001), Pa
tent Office- Government of India.
[5]
PK
Sadhu, N Pal,
A Bhattac
har
y
a
.
Ch
oice
of Se
mic
o
n
duc
tor Sw
itches fo
r Ener
gy Effici
ent Ind
u
ctio
n
Heate
d
Pi
pe-l
i
ne
usin
g H. F
.
Mirror Inv
e
rte
r
. Procee
din
g
s
of the Int
e
rna
t
iona
l Mu
lti Co
nferenc
e o
f
Engi
neers and Comp
uter
Scie
ntists.
IM
ECS
201
2, Hon
g
Ko
ng. 201
2; II.
[6]
MK Rahmat, S Jovan
o
vic, KL Lo. Rel
i
ab
ilit
y a
nd
Avai
lab
ilit
y
Mode
lli
ng of U
n
interr
uptib
le P
o
w
e
r Su
ppl
y
S
y
stems Usin
g
Monte-C
a
rl
o Simulati
on,
Int
e
rnati
ona
l
R
e
vi
e
w
of E
l
ectric
a
l
Eng
i
n
eeri
ng (
I
REE). 200
6;
1(3): 374 –
380
.
[7]
PK
Sadhu, N Pal,
D Sinha, A
Bandy
opadhy
ay
.
E
ner
gy Ef
ficient In
ducti
o
n
H
eated
C
o
o
k
ing
–
Ran
g
e
usin
g MCT
ba
esd Hybr
id R
e
sona
nt Conv
er
ter
. IEEE Proceed
ing
of the 2nd
Inter
natio
n
a
l Co
nfere
n
ce
on Com
puter a
nd Automati
on
Engi
neer
in
g (ICCAE 20
10). 2
010; 5: 63
7-64
1.
[8]
PK Sad
hu,
N P
a
l, R
Ch
akrab
a
r
ti, DK Mittra.
A d
y
n
a
mic m
o
del
for the
sim
u
lati
on
of i
nduc
tion c
ookto
p,”
J. Industrial En
gin
eeri
ng. 20
0
6
; XXXV(6): 37
-41.
[9]
N Pal, PK Sa
d
hu, RN C
hakr
abarti. A C
o
m
parativ
e St
ud
y of HF
Mirror Inverter for Ind
u
ction
Cook
e
r
throug
h Re
al-ti
m
e and PSPIC
E
Simulati
on.
J. Institution of Engi
neers (I).
200
6; 86: 268-
274.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Hysteresi
s
Current Co
ntrol
wi
th Input Filter De
sign fo
r High Frequ
e
n
cy… (Deb
ab
rata Ro
y)
7657
[10]
PK Sadh
u, N Jana, RN C
hakr
abarti, DK Mittra. A
Uniqu
e
In
ductio
n
He
ated
Cooki
ng Ap
pli
ances R
a
n
g
e
Using
H
y
br
id
R
e
son
ant C
onv
e
r
ter.
Int. J. of Circuits, Systems and
Co
mput
ers, W
o
rld Sci
entific
. 2
005;
14(3): 61
9-6
3
0
.
[11]
PK Sad
hu, R
N
Chakr
a
b
a
rti, S
P
Ch
o
w
d
hur
y.
A ne
w
g
ener
ati
on fl
uid
he
atin
g in
n
on–m
etal
lic p
i
p
e–l
in
e
usin
g BJT
and IGBT
.
J.
Institution of Engi
ne
e
r
s (I).
2002; 82: 273-2
80.
[12]
PK Sadh
u, RN Ch
akrab
a
r
ti, K Mukherjee,
SP C
how
dhu
ry
, BM
Ka
ra
n
.
A n
e
w
ge
ne
ra
tio
n
microproc
esso
r based ra
dio-f
r
equ
enc
y op
er
ated in
duc
ti
on
heati
ng for sterilizati
on a
nd b
o
iler p
l
a
n
t.
J.
IEEMA.
2002; XXII(2): 36 – 4
8
.
[13]
PK Sad
hu,
RN
Chakr
abarti, K
Mukherj
ee, SP
Ch
o
w
d
hur
y, B
M
Kara
n. Hi
gh
efficient c
onta
m
inati
on fr
e
e
clea
n he
at pr
oducti
on.
Ind
i
a
n
Jour
nal
of
Engi
neer
in
g &
Materi
a
l
s Sci
ences, N
a
tio
n
al Institute
of
Scienc
e Co
mmunic
a
tion
, N
e
w
Delhi. 2
0
0
2
; 9: 172-1
76.
[14]
PK Sadh
u, RN
Chakra
barti,
K Mukherj
ee,
SP Ch
o
w
d
h
u
r
y
, BM Karan. Microproc
essor-
base
d
en
erg
y
efficient ster
iliz
ation
for s
u
rgic
al i
n
strume
nt
u
s
ing
a ne
w
g
e
nerati
on inv
e
rter
top
o
lo
g
y
.
J. Energy, He
a
t
& Mass Transfer
. 2001; 2
3
(1)
:
39-53.
[15]
MD Sin
gh, KB
Khanc
ha
nda
ni.
Po
w
e
r
Electro
n
ics. 2n
d. Editi
on, T
a
ta-McGra
w
-Hi
ll E
dn. Pv
t. Ltd., ISBN:
978-
0-07-
05
83
89-
[16]
A F
e
w
s
o
n
. Introducti
on to Po
w
e
r Electro
n
ics
.
1998, Oxford
Univers
i
t
y
Pr
es
s Inc., Ne
w
Yor
k
.
[17]
PC Sen. Po
w
e
r Electronics. 1
6
th. Repr
i
n
t, 2001, T
a
ta-McGra
w
-Hi
ll, ISBN: 0-07-
462
40
0-8
[18]
BD Bedford, RG Hoft. Principle of Invert
er Circuits. Ne
w
Y
o
r
k
, John Wiley
& sons, 1964.
[19]
MH Ras
h
id. P
o
w
e
r E
l
ectro
n
i
cs Cir
cuits, Devices, and A
p
p
licatio
ns. T
h
ird
Editio
n, D
o
rli
n
g Kin
ders
l
e
y
Pvt. Ltd.
[20]
RC Du
ga
n, MF
McGranag
ha
n
,
S S
antoso, H
W
Beat
y
.
El
ectrical P
o
w
e
r S
ystems Qualit. 2
nd. Editi
o
n
,
T
a
ta-McGra
w
-
Hill, ISBN: 978
-0-07-
026
46
2-
5
[21]
VK Khan
na. Insul
a
ted Gate
Bipol
ar T
r
ansisto
r (IGB
T
)
: T
heor
y
An
d
Desig
n
. IEEE Press, Wile
y
-
Interscienc
e.
[22]
PK Sadh
u, N
Pal, A Ban
d
y
o
pad
h
y
a
y
, D Si
nha.
R
e
view
of
Inductio
n
Co
o
k
ing –
a He
alth
Ha
z
a
rds F
r
e
e
T
ool to I
m
pr
ov
e Ener
gy Effici
ency as
Co
mp
ared to
Micro
w
ave Oven.
IEEE Proceeding of the 2nd
Internatio
na
l C
onfere
n
ce o
n
Comp
uter and
Automa
tio
n
En
gin
eeri
ng (ICC
AE 2010). 2
0
1
0
; 5: 650-6
54.
[23]
PK Sadh
u, N
Pal, RN C
hakr
abarti, T
K
Chatterjee.
Perfor
ma
nce
ana
lysi
s of HF
mirr
or inverter f
o
r
ener
gy effici
en
t inducti
on c
o
oker a
ppl
ia
nce
rang
e.
Int. Conf. on M
ode
ll
ing
an
d simu
l
a
tion MS
’0
7,
Univers
i
t
y
of Calcutta. 20
07: 444-
448.
[24]
S Llor
ente, F
Monter
de, JM Burdio, J Acer
o.
A compar
ati
v
e study of res
ona
nt
invert
er topo
log
i
es
used
in in
ductio
n
co
oker
. IEEE Applied Po
w
e
r Electronics C
onf. (APEC) Rec.,
2002: 1168-1174.
[25]
Iran Azim, H
a
b
i
bur, R
ahm
an.
Anal
ys
is & Sim
u
lati
onof
T
o
tal Harmon
i
c
D
i
stortion in H
y
ster
esis
Inverter
.
Internatio
na
l J
ourn
a
l
of Adva
nced
Res
earch
in
Co
mp
uter E
ngi
neer
in
g& T
e
chno
logy
(IJAR
C
ET
)
. 201
3;
2(3): 574-
57
8.
[26]
MM Inallou, J
Nanosci. Inter
natio
nal
jo
urna
l of Mech
atron
i
cs.
Electrical and Co
mp
uter
T
e
chno
logy
.
201
2; 3(6): 63-
75.
[27] Alireza
N
am
ad
mala
n,
Javad
S
hokro
lla
hiMo
gha
ni.
Self-Os
c
illati
ng S
w
i
t
c
h
in
g T
e
chniq
u
e
for Curre
nt
Source Par
a
ll
el
Reson
ant
Indu
ction He
atin
g Systems.
Jour
na
l of Pow
e
r Electronics
. 201
2; 12(6).
[28] AJ
Onah.
Har
m
onics:
Ge
ner
ation
an
d S
u
p
p
ressi
on
in A
C
S
y
stem N
e
tw
o
r
ks.
Ni
geri
a
n Jo
urna
l o
f
T
e
chno
logy
. 2
012; 31(
3): 293
-299.
[29]
Dieg
o
Pu
ya
l, Carlos Ber
n
a
l
, José M Burdío,
JesúsAcero,
Ignacio Mil
l
án
, Versatile. Hig
h-F
r
equ
enc
y
Inverter Modu
l
e
for Larg
e
-Si
gna
l Inductiv
e
Loa
ds Ch
aract
e
rizati
on Up to
1.5 MHz and
7 kW
IEEE
T
r
ansactio
n
s On Pow
e
r Electronics
. 20
08; 23
(1): 75-86.
[30]
GP Sanat, Edit
or. Introducti
on
of Mech
atroni
cs", Un
iv
ersal Scientific
Org
a
n
izat
i
on P
ubl
is
hers, Austria
,
Enns. 201
3: 16
3-27
5.
[31]
Imran Azim, Habi
bur R
ahma
n
. Harmon
i
csR
educti
on
of a Singl
e Ph
ase H
a
lf Bridg
e
Inve
rter.
Gl
o
bal
Journ
a
l of Res
earch i
n
Eng
i
n
eeri
ng.
20
13; 1
3
(4)1: 9-1
2
.
[32]
LA Barr
aga
n, J
M
Burdi
o
, JI Ar
tigas, D
Nav
a
rro, J
Acer
o, D P
u
yal. Effici
enc
y optimiz
atio
n i
n
Z
VS serie
s
reson
ant i
n
ver
t
ers
w
i
th
as
ymmetrical v
o
lt
age-c
ance
l
l
a
tio
n
contr
o
l.
IEEE Trans. Power Elec-tron
.,
200
5; 20(5): 10
36–
10
44.
[33]
Y Sozer, DA
T
o
rrey
,
S
Rev
a
. Ne
w
inv
e
rter
out
put filter
topo
log
y
f
o
r
PW
M motor d
r
ives.
Power
Electronics, IEEE Transactions
. 2000; 1
5
(6)
:
1007–
10
17.
[34]
A Suresh, S Rama Reddy
.
Series an
d Parall
el R
e
so
nant Inverter
F
ed F
e
rromag
netic Lo
ad-
A
Co
mp
arative Analys
is.
Internatio
nal
Conf
erenc
e on E
m
ergin
g
T
r
ends in Com
put
er and Ima
g
e
Processi
ng (IC
E
T
C
IP'
2011) B
angk
ok. 201
1.
[35]
DE Steep
er, RP Stratford. R
eactive C
o
mp
e
n
satio
n
an
d H
a
rmonic S
u
p
p
ressio
n
for Ind
u
strial Po
w
e
r
S
y
stems Usi
n
g
T
h
y
r
istor Co
nv
erters.
IEEE Transacti
ons o
n
Industry App
lic
ations
. 19
76; 1
2
: 232-2
54.
[36]
Dieg
o
Pu
ya
l, Carlos Ber
n
a
l
, José M. Burdío
, JesúsAcero
, Ignacio Mill
á
n
, Versatile Hi
gh-F
r
eq
uenc
y
Inverter Modu
l
e
for Larg
e
-Si
gna
l Inductiv
e
Loa
ds Ch
aract
e
rizati
on Up to
1.5 MHz and
7 kW
.
IEEE
T
r
ansactio
n
s On Pow
e
r Electronics
. 20
08; 23
(1): 75-86
[37]
J Kim, J Choi,
H Hon
g
. Outpu
t
LC filter des
ig
n
of volta
ge so
urce inv
e
rter c
onsi
deri
ng th
e performa
nc
e
of controll
er.
Power System
Technology
.,
Procee
din
g
s.
200
0; 3: 1659
–16
6
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
50 – 765
8
7658
[38]
Jose M B
u
rd
io,
F
e
rna
ndo
Mo
n
t
erde, Jos
e
R
Garcia
, L
u
is A
Barrag
an, A
bel
ardo
Martin
ez.
A t
w
o
-
o
u
tput
series-res
o
n
a
n
t
inverter for in
ductio
n
-he
a
tin
g
cooki
ng
app
li
ances.
IEEE Trans. Power Electron.,
2
0
05;
20(4): 81
5-8
2
2
.
[39]
W
K
C
h
e
n
.
Li
n
ear
Netw
orks
and
Systems.
B
e
l
m
o
n
t
,
CA
:
W
a
d
s
w
o
r
t
h
.
1
9
93
:
12
3
–
13
5.
[4
0
]
GH Bode, DG
Holmes.
Loa
d
Indep
en
dent H
ysteresis C
u
rre
nt C
ontro
l of a
T
h
ree L
e
vel
S
i
ngl
e Ph
as
e
Inverter w
i
th
Consta
nt Sw
itchin
g F
r
eque
n
cy.
Conf. Rec. IEEE Pow
e
r
Elec
tronics Specialists Conf.
200
1; 14-1
9
.
[41]
Cala
is,
VG
Agelid
is, LJ
Bor
l
e
,
MS D
y
mo
nd.
A T
r
ansf
o
rmer
less
F
i
ve
Lev
el
Casca
de
d In
verter Bas
e
d
Sing
le P
hase
Photovo
l
taic
System
. Conf
. Rec. IEEE Po
w
e
r
Electr
onics S
pecialis
t
s Conf. 2000;
117
3-11
78.
[42]
GH Bode, DG
Holmes.
I
m
pl
ementati
on
of T
h
ree L
e
vel
H
ysteresis C
u
rrent Co
ntrol for
Sing
le Ph
a
s
e
Voltag
e Sourc
e
Inverter
. Conf. Rec. IEEE P
o
w
e
r Electronics
Specialists Conf. 2000; 33-38.
[43]
M Lafoz, IJ I
g
lesi
as, C
Veg
anzo
nes, M V
i
siers.
A N
o
ve
l
Dou
b
le
Hyster
esis-Ba
nd
Con
t
rol for Thre
e-
Leve
l
Volta
ge
Source Inverte
r
. Conf. Rec. IEEE Po
w
e
r El
ectronics Sp
eci
a
lists Co
nf. 2000; 21-2
6
.
[44]
KA Corzi
ne. A
H
y
steres
is C
u
rrent–R
egu
late
d C
ontrol
for
Multi-
Leve
l
Dr
ives.
IEEE Transactions
on
Energy C
onver
sion
. 20
00; 15(
2): 169-1
75.
[45]
G Sinha, T
A
Lipo.
Rectifier C
u
rrent Re
gul
ati
on in F
o
ur Lev
el Driv
es
. Conf
. Rec. IEEE A
pplied P
o
w
e
r
Electron
ics Co
nf. and Expos
ition. 19
97; 32
0
–32
6.
[46]
T
Ishida, K M
a
tsuse, K Sug
i
ta, L H
uan
g, K
Sasa
g
a
w
a
.
DC
Voltag
e C
ontr
o
l Strate
g
y
for
a F
i
ve-L
eve
l
Conv
erter.
IEEE Transactions
on Power Elec
tronics
. 200
0; 15(3): 50
8-5
1
5
.
[47]
NJ Park, DY Lee, DS H
y
u
n
.
A po
w
e
r-cont
rolsch
em
e
w
i
t
h
constant s
w
i
t
ching freq
ue
n
c
y
in cl
ass-D
inverterfor i
ndu
ction-h
eatin
g ja
r appl
icatio
n.
IEEE Trans. Ind.Electron
., 200
7; 54(3): 12
52–
126
0.
[48]
S F
aucher, F
F
o
rest, JY Gaspard, JJ H
u
s
e
lste
i
n
, C Jo
u
bert, D Montl
o
up. F
r
equ
enc
y-s
y
nc
hro
n
ize
d
reson
ant co
nv
erters for the s
upp
l
y
of mult
i
windi
ng c
o
ils
in i
nducti
on co
oki
ng a
ppl
ia
nces.
IEEE Trans.
Ind. Electron.,
200
7; 54(1): 44
1–4
52.
[49]
JM Espí, EJ D
ede, R García-
G
il, J Castelló.
Desig
n
of the L
–LC res
o
n
ant i
n
verter for ind
u
c
tion he
atin
g
base
d
on its eq
uival
ent SRI
. IEEE Trans. Ind. Electron
., 200
7; 54(6): 31
78–
318
7.
[50]
Z
M
Ye, PK Jain, PC Sen. F
u
ll
-bridg
e res
ona
nt in
verter
w
i
t
h
modifi
ed PSM for HF
AC po
w
e
r distributi
o
n
s
y
stems.
IEEE Trans. Ind. Electron.,
2007; 5
4
(5): 283
1–
284
5.
[51]
Han
Yan
g
. A
Ped
a
g
ogic
a
l
Appr
oach
for
Mod
e
li
ng an
d
Sim
u
lati
on of
S
w
itch
ing
Mode
DC-D
C
Conv
erters for Po
w
e
r El
ectron
ics Course.
T
E
LKOMNIKA Indon
esia
n Jour
nal
of Electric
al
Engin
eeri
n
g
.
201
2; 10(6): 13
19-1
326.
[52]
T
Sutikno, A Jidi
n, N
RN.
Idris. Ne
w
Ap
pr
oac
h F
P
GA-Based
Implem
ent
atio
n of
Di
scontin
uo
u
s
SVPWM.
Turk
J Elec Eng & Comp Sci.
201
0;
18(4): 499-
51
4.
[53] T
o
le
Sutikno
,
Nik Rumzi Nik I
d
ris, Aiman Zak
w
an J
i
din, Au
zani J
i
di
n. A M
ode
l of F
P
GA-base
d
Dir
ect
T
o
rque Control
l
er.
T
E
LKOMNIKA Indon
esia
n Journ
a
l
of Elec
trical Eng
i
ne
eri
n
g
. 201
3; 11(2)
: 747-75
3.
Evaluation Warning : The document was created with Spire.PDF for Python.