Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 1, No. 3,
March 20
16, pp. 490 ~ 5
0
1
DOI: 10.115
9
1
/ijeecs.v1.i3.pp49
0-5
0
1
490
Re
cei
v
ed
De
cem
ber 4, 20
15; Re
vised
Febr
uary 13,
2016; Accept
ed Feb
r
ua
ry
23, 2016
Analysis of a New Reduced Switch Nine Level Inverter
C.R. Balam
u
rugan*, S.P.
Nat
a
rajan, R.
Bensr
a
j
Aruna
i Engi
ne
erin
g Col
l
eg
e
T
i
ruvannama
l
a
i
, India
e-mail: crb
a
la
in
201
0@gm
ail.c
o
m
A
b
st
r
a
ct
The mu
lti leve
l inverter syste
m
is mostly use
d
in ac drives,
when b
o
th reduc
ed har
monic c
ontent
s
and
hi
gh
pow
e
r
are re
qu
ired.
In this p
aper
a
new
topo
logy
o
f
mu
ltilev
e
l i
n
v
e
rter is i
n
trod
u
c
ed. T
h
is typ
e
has
ma
ny steps
w
i
th less
pow
er
el
ectronic sw
itch
es. Due
to
the
l
e
ss nu
mber
of
sw
itches
the c
o
st of the
inver
t
er
is
very less
an
d
a
l
so less inst
allati
on
are
a
is requ
ired.
F
i
rstl
y, w
e
descri
be
briefly t
he stru
ctural
parts of t
h
e
inverter th
en s
w
itching strate
gy an
d o
perati
ona
l pri
n
ci
ples
of the pr
op
os
ed i
n
verter
ar
e exp
l
ai
ne
d a
n
d
oper
ation
a
l to
pol
ogi
es ar
e
give
n. Si
mul
a
ti
on is
perfor
m
ed us
ing MAT
L
AB SIMULIN
K
. Various P
W
M
techni
qu
es are
app
li
ed to t
he
circuit suc
h
as
PDPW
M, PODPW
M
, APODPW
M
, VF
PW
M
and
COPW
M. By
compari
n
g
a
m
ong t
he PW
M
techni
qu
es, PODPW
M
provi
de th
e l
e
ss T
H
D val
ue
an
d C
O
PW
M provid
e
a
hig
her fun
d
a
m
ental RMS o
u
tput voltag
e.
Ke
y
w
ords
: PDPWM, PODPWM, APODPWM
, VFPWM
,
COPWM, THD
1. Introduc
tion
The m
u
ltileve
l inverte
r
[ML
I] is u
s
ed
for
high volta
ge
and
high
po
wer a
ppli
c
ation
s
. Thi
s
inverter p
r
od
uce
stairca
s
e
(stepp
ed
) waveform from
several diffe
rent levels of
DC voltage.
It
have lo
wer voltage
rating
of device
s
, lo
w ha
rmo
n
ic
s
distortio
n
, hig
h
po
we
r qu
al
ity waveform
s,
lowe
r
switchi
ng frequ
en
cy
and l
o
sse
s
, h
i
gher effici
en
cy, re
du
ction
of dv/dt st
re
sse
s
. Be
cau
s
e
of
the above ch
ara
c
teri
stics, it hav
e a possibility of working
with
low spee
d se
micondu
ctors if its
comp
ared wit
h
the two-l
e
vel inverters.
Many num
b
e
r
of MLI topo
logy are avai
lable but mo
st
popul
ar MLI t
opolo
g
y is dio
de cla
m
pe
d, flying cap
a
cito
r and
ca
scad
ed multilevel I
n
verter.
Rada
n
[1] et al developed a
n
eval
uation of carrier-ba
s
ed
p
w
m method
s f
o
r multi-l
e
vel
inverters. Sa
mir
and Le
za
na [2] introdu
ced
a multicarrie
r
pwm
with d
c
-lin
k ri
pple f
eed forwa
r
d
comp
en
satio
n
for
multilevel inverters. Palani
vel and Da
sh
[3] m
ade mu
lticarrier
pulse width mo
d
u
lation metho
d
s
based three
pha
se casca
ded multileve
l inverter in
cl
uding ove
r
m
odulatio
n and
low mod
u
lati
on
indices. Andl
er [4] et al d
eal with
a switch
i
ng lo
ss analysi
s
of
modulatio
n
method
s u
s
e
d
in
neutral point clamp
ed con
v
erters.
Suja
narko
[5]
et al
pro
p
o
s
ed advan
ced ca
rrier ba
sed pu
lse
width mo
dul
ation in asy
mmetric
ca
scad
ed mult
il
evel inverter.
Mukh
erje
e and Podd
ar [6]
sug
g
e
s
ted a seri
es conn
e
c
ted
th
re
e
le
vel
invert
e
r
t
opolo
g
y for
medium
volta
ge
squi
rrel
cage
motor d
r
ive a
pplication
s
. Kavousi a
nd V
ahidi
[7] pre
s
ented an a
p
p
lication of the
bee algo
rithm
for sel
e
ctive
harm
oni
c eli
m
ination st
rat
egy in mult
ilevel inverters. Cou
go et al [8] deal with
PD
modulatio
n
schem
e for three ph
ase p
a
rallel multileve
l inverters. Y
ousefpoo
r et
al [9] introd
uced
a THD
Mini
mization
App
lied
Dire
ctly
on the
Li
n
e
to Lin
e
Vol
t
age of M
u
ltilevel Inverte
r
s.
Distri
buted
control
of a
fa
ult-tolerant m
odula
r
m
u
lt
ile
vel inverte
r
fo
r di
re
ct-d
rive
wind
turbi
n
e
grid
interfaci
n
g
introdu
ce
d by
p
a
rker et al
[1
0]. Y
oung
hoo
n Cho
et al
[1
1] develo
ped
a carrie
r-b
ased
neutral
volta
ge mo
dulatio
n st
rategy fo
r multile
vel
cascad
ed i
n
verters
und
er unb
alan
ce
d
dc
sou
r
ces. Mu
rali et al [12]
made A desi
gn and an
alys
is of voltage
source inve
rter for re
ne
wa
ble
energy appli
c
ation
s
. Jam
a
ludin et al [
13] pro
p
o
s
ed
a multilevel
voltage so
u
r
ce i
n
verte
r
with
optimize
d
u
s
age of bidi
re
ctional switch
e
s
. Gab
r
iel et
al [14] introd
uce
d
a five-le
v
el multiple-p
ole
pwm a
c
– a
c
conve
r
ters with redu
ce
d compon
ent
s
count. Lim et al [15] sug
g
e
s
ted a mo
dul
ar-
cell inverte
r
employing
re
duced flying cap
a
cito
rs
wi
th hybrid ph
ase
-
shifted. Ra
silo et al [16]
prop
osed
a
effect on
mu
ltilevel invert
er
sup
p
ly on
co
re lo
sse
s
in mag
netic material
s
a
n
d
electri
c
al
ma
chin
e.
Redd
y et al [17] d
e
velope
d a
e
m
bedd
ed
co
n
t
rol for a
n -L
evel DC –
DC –
AC Inverte
r
.
Ranjith
a
an
d
Ravivarm
an
[18] made
a
revie
w
on
voltage b
a
lan
c
ing solution
s in
multilevel inverter. Simul
a
tions
are
pe
rforme
d u
s
ing
MATLAB-SIMULINK. Harm
onics a
nalysi
s
and
evaluatio
n of p
e
rfo
r
ma
nce
mea
s
u
r
e
s
fo
r va
ri
ou
s modulatio
n
in
dice
s have b
een ca
rri
ed o
u
t
and presente
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 490 – 501
491
2. Multile
v
e
l
In
v
e
rter
The o
peratio
n of a multil
evel inverte
r
is
con
c
e
r
ne
d
with com
p
arison
of ca
rrier and
referenc
e wave.
R-
LO
A
D
V
1
V
2
V
3
V
4
S
5
S
6
S
7
S
1
S
3
S
4
S
2
R-
LO
A
D
V
1
V
2
V
3
V
4
S
5
S
6
S
7
S
1
S
3
S
4
S
2
R-
LO
A
D
V
1
V
2
V
3
V
4
S
5
S
6
S
7
S
1
S
3
S
4
S
2
Figure 1. Power
Circuit fo
r Three Pha
s
e Nine L
e
vel Inverter
The ba
sic
o
peratio
n can
be
de
scrib
e
d
a
s
a
n
opti
onal
sta
cki
ng
of a
num
be
r of
DC
voltage sou
r
ce stag
es whi
c
h d
epe
nd
s
on certai
n
time of op
eration that o
ne
stage i
s
sta
c
ked
(forward
o
r
re
verse
)
or byp
a
ssed.
M
L
Is also
hav
e
so
me issu
es su
ch
as
re
quiri
n
g
a bi
g n
u
mb
er
of semi
con
d
u
ctor
switch
e
s
which i
n
creases a
s
the
numbe
r of
step
s/levels i
n
crea
se
s. If the
levels of the
step
s in
cre
a
se the de
sig
n
will be
com
p
l
e
x for syn
c
h
r
onou
s g
a
te d
r
ivers fo
r different
levels. The o
r
der of num
be
ring of the switche
s
is S
1
, S
2
, S
3
, S
4
, S
5
, S
6
and S
7
. This
circuit
d
oes
not have a capa
citor an
d
diode. So cost of t
he circuit is lo
w compa
r
ed to the co
nventio
nal
circuit. Th
e voltage level
s
of the outp
u
ts a
r
e
4V
dc
, 3V
dc
, 2V
dc
, V
dc
, 0
, -
V
dc,
-2V
dc
,
-3V
dc
, -4V
dc.
In
prop
osed
circuit semi
con
d
u
ctor switche
s
a
r
e le
ss
when
comp
are
d
to the
conv
entional
circu
i
t.
So the a
d
van
t
ages of the
p
r
opo
se
d
circu
i
t are l
e
ss
co
st and mi
nimu
m switchi
ng l
o
sse
s
. Figu
re
1
sho
w
s a thre
e pha
se nin
e
level Inverter.
Table 1. Co
m
pari
s
on tabl
e betwe
en con
v
entional an
d
propo
se
d ci
rcuit
S.No
Conventional circuit
DCMLI
(9-l
ev
el
)
Conventional circuit
FCMLI
(9-l
ev
el
)
Conventional circuit
CMLI
(9-l
ev
el
)
Proposed circuit
(9-l
ev
el
)
Sw
itches
48
48
48
21
Diode 48
48
48
0
Clamping Diode
168
0
0
0
DC Bus Capacito
r
24
24
12
0
Balancing Capacitor
0
84
0
0
DC Sources
1
1
12
12
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Analysis of a
Ne
w Re
du
ce
d Switch Ni
ne
Level In
verte
r
(C.R. Balamurugan)
492
3. Modulatio
n Strategies
The m
o
st
po
pular PWM
method
s a
r
e
avail
abl
e to
the inve
rter.
For controlling th
e
output voltag
e, one of th
e
method
s i
s
SPWM meth
od
. In this meth
od, a fixed
DC inp
u
t voltage
is ap
plied to t
he inverte
r
a
nd get a
cont
rolled
A
C
o
u
tput voltage b
y
adjustin
g
th
e ON and
OF
F
perio
ds of the inve
rter
power
semi
condu
ctor dev
ice
s
. By this techni
que
i
n
crea
sing
th
e
swit
chin
g fre
quen
cy of th
e PWM p
a
ttern redu
ce
s th
e lower frequ
ency h
a
rm
oni
cs
by moving
the swit
chin
g
freque
ncy carri
er ha
rmo
n
i
cs a
nd a
s
so
ciated
side
ba
nd ha
rmoni
cs further a
w
ay
from the fun
damental f
r
e
quen
cy com
pone
nt. T
he modulatin
g/re
feren
c
e wav
e
of
multilev
e
l
carrie
r ba
sed
PWM strate
gies i
s
sin
u
soidal. The si
nusoidal refe
ren
c
e wave is co
ncern
ed
to
multiple Cont
rol Freed
om
Deg
r
ee i
n
cl
u
d
ing
fre
que
n
c
y, amplitude
, and pha
se
angle of th
e
referen
c
e
wa
ve. The
pri
n
ciple
of SPWM strategy
i
s
to u
s
e
seve
ral carriers
wit
h
three
pha
se
sinu
soi
dal mo
dulating
sign
al. For an m level invert
er,
m-1 carriers
are u
s
ed. All carrie
rs h
a
vin
g
same
freq
ue
ncy f
c
and
same pe
ak-to-pea
k amplitu
de A
c
whi
c
h
are
disp
osed
su
ch that t
h
e
band
s they occupy overl
ap eac
h oth
e
r. The ampl
itude of the referen
c
e wa
ve is A
m
and
freque
ncy is f
m,
which a
r
e
cente
r
ed in th
e middle of th
e ca
rrie
r
si
gn
als. The fre
q
uen
cy ratio m
f
is define
d
in the ca
rri
er ove
r
lappi
ng meth
od as follo
ws:
c
f
m
f
m
f
This p
ape
r focu
se
s on
five SPWM strategi
es.
They are:
PDPWM, PODPWM,
APODPWM,
VFPWM and
COPWM. The above five
strategie
s
a
r
e simulate
d in this wo
rk.
Figure 2. A sample SIMUL
I
NK model de
veloped fo
r
chosen thre
e p
hase seve
n level inverter f
o
r
COP
W
M tech
nique
Table 2. Swit
chin
g table fo
r pro
p
o
s
ed
circuit
Sw
itching Level
S
1
S
2
S
3
S
4
S
5
S
6
S
7
4V
d
c
1
1
0
0
0
0
0
3 V
dc
0
1
0
0
1
0
0
2 V
dc
0
1
0
0
0
1
0
V
dc
0
1
0
0
0
0
1
0 0
0
0
0
0
0
0
-V
dc
0
0
1
0
1
0
0
-2 V
dc
0
0
1
0
0
1
0
-3 V
dc
0
0
1
0
0
0
1
-4V
dc
0
0
1
1
0
0
0
A. PDPWM S
t
rateg
y
This m
e
thod
is on
e of the
PWM techni
que
s. In
this
work, six
ca
rriers a
r
e u
s
e
d
for 9
levels AMLI.
Each
ca
rrie
r
i
s
havin
g amp
litude a
s
1V.
The
sinu
soid
al refe
ren
c
e
wave i
s
pla
c
e
d
at
the middl
e of
the six
ca
rri
ers. In P
D
PWM
tech
ni
qu
e all
ca
rri
ers
are
arrang
ed i
n
a
sa
me m
ann
e
r
.
The ca
rrier a
r
rang
eme
n
t for this strategy
is sho
w
n in F
i
gure 3.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 490 – 501
493
Figure 3. Modulating a
nd
carrie
r
wavef
o
rm
s for PDP
W
M strategy (m
a
=
0
.8 and
m
f
=40
)
B. PODPW
M
Strate
gy
This metho
d
is
sam
e
a
s
PDPWM
but
carri
er
arra
ng
ement i
s
so
m
e
what
different. The
carrie
rs
are
e
qually divide
d into two g
r
oup
s ba
sed
on po
sitive/negative avera
ge levels. In
this
type the two
grou
ps a
r
e o
ppo
site in
ph
ase
with
ea
ch othe
r
while
ke
eping
in
p
hase
within t
he
grou
p. The carri
er a
rra
nge
ment for this
strategy i
s
sh
own in Fig
u
re
4.
Figure 4. Modulating a
nd
carrie
r wavef
o
rm
s for PODPWM strateg
y
(m
a
=0.8 an
d m
f
=40
)
C. APO
D
PW
M Strate
gy
This meth
od
is al
so
sam
e
as P
D
PWM tech
nique
but one
of
the main
different i
n
APODPWM
b
y
comp
arin
g t
o
the PDP
W
M is that th
e
alternate
carri
e
rs are p
h
a
s
e shifted
by 1
8
0
degree with e
a
ch oth
e
r. Th
e carrie
r arra
ngeme
n
t
for this st
rategy a
s
sh
own in Figure 5.
Figure 5. Modulating a
nd
carrie
r wa
vef
o
rm
s for APO
DPWM
strate
gy (m
a
=
0
.8
and
m
f
=40
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Analysis of a
Ne
w Re
du
ce
d Switch Ni
ne
Level In
verte
r
(C.R. Balamurugan)
494
D. VFPWM Strateg
y
This
metho
d
i
s
o
ne of th
e
PWM te
chni
q
ues
and it is
same as PDPWM but intermittent
carrie
r
having
differe
nt fre
q
uen
cy comp
a
r
e to
up
per a
nd lo
we
r
ca
rri
er. Th
e
ca
rri
e
r
a
r
rang
emen
t
for this strate
gy is sho
w
n i
n
Figure 6.
Figure 6. Modulating a
nd
carrie
r wavef
o
rm
s for VFPWM strategy
(m
a
=
0
.8, m
f
=40 for upp
er
and lo
wer
swi
t
che
s
and
m
a
=
0
.8,m
f
=
8
0 for intermediate c
a
rrier)
E. COPWM Strateg
y
This m
e
thod i
s
same
as P
D
PWM
meth
od but e
a
ch
carrie
rs are o
v
erlapp
ed e
a
c
h oth
e
r
and overl
app
ing amplitud
e is 0.8V but each
carri
e
r having a
m
plitude 1.6
V
and the total
amplitude
of
this te
chniq
u
e
is
2.8. The
carrie
r a
r
rang
ement for thi
s
strategy i
s
sho
w
n i
n
Fig
u
re
7.
Figure 7. Modulating a
nd
carrie
r wavef
o
rm
s for COPWM strategy (m
a
=
0
.8 and
m
f
=40
)
4. Simulation Resul
t
s
Simulation
studie
s
are pe
rformed
by using
MATLAB-SIMULINK to
verify the propo
sed
PWM st
rategi
es fo
r cho
s
e
n
thre
e ph
ase propo
sed
n
i
ne level inve
rter fo
r vario
u
s valu
es
of m
a
rangi
ng from
0.6 – 1 and
correspon
ding
%THD va
lue
s
are mea
s
u
r
ed usi
ng FFT
block and th
ey
are sho
w
n in
Table 3. Ta
ble 4 sh
ows the V
RMS
of
fundame
n
tal of inverter outp
u
t for the sa
me
modulatio
n in
dice
s. Tabl
e
5 sh
ows the
form fact
o
r
f
o
r different
modulatio
n in
dice
s
whi
c
h
are
cal
c
ulate
d
u
s
ing rm
s volta
ge an
d DC
compon
ent fro
m
FFT plot
s.
Table
6 sho
w
s
Crest fa
ct
or
values
whi
c
h
are m
e
a
s
ure
d
usi
ng pe
ak
voltage and
rms voltage f
r
om FFT pl
ots. Table 7
sho
w
s
the disto
r
tion
factor fo
r different m
odul
a
t
ion i
ndi
ce
s. This inve
rter
prod
uce 9 lev
e
l up to m
a
=
0
.8.
Figure 8
sho
w
s the
sim
u
l
a
ted o
u
tput v
o
ltage
of
cho
s
en
MLI
and
the corre
s
po
nding
FFT
pl
ots
with differe
nt strategi
es
but
only for one
sampl
e
value
of m
a
=0.8 an
d m
f
=4
0. Figu
re 8
sho
w
s the
nine l
e
vel o
u
tput voltage
g
enerated
by
PDPWM
stra
tegy an
d its F
FT plot
is sho
w
n i
n
Fi
gure
13.
From Fi
gure
13 it is ob
se
rved that the
PDPWM
stra
tegy prod
uce
s
si
gnifica
nt 2
nd
3
rd
, 5
th
, 1
1
th
,
12
th
, 15
th
, 17
th
, 21
st
, 23
rd
, 24
th
, 30
th
, 34
th
, 38
th
and 40
th
h
a
rmo
n
ic
ene
rgy. Figure
9 shows the
nin
e
level output voltage ge
nerated by PODPWM strateg
y
and its FF
T plot is sh
o
w
n in Fig
u
re
14.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 490 – 501
495
From Fig
u
re
14 it is obse
r
ved that the
PODPWM strategy prod
uces si
gnificant
3
rd
, 5
th
, 9
th
, 1
1
th
,
15
th
, 17
th
, 21
st
, 25
th
, 27
th
, 29
th
, 31
st
, 33
rd
, 35
th
, 37
th
and
3
9
th
h
a
rm
o
n
ic
ene
rgy. F
i
gure
10
sho
w
s
the nine leve
l output voltage gen
erate
d
by APODP
WM strategy
and its FFT
plot is sh
own
i
n
Figure 15. From Figu
re 15
it is obse
r
ve
d that
the APODP
WM stra
tegy prod
uce
s
sig
n
ifica
n
t 5
th
,
7
th
, 11
th
, 15
th
, 17
th
, 21
st
, 25
th
, 27
th
, 29
th
, 31
st
, 33
rd
, 35
th
and 3
9
th
harm
oni
c en
ergy
.
Fig
u
re 11
sho
w
s the
ni
ne level
outp
u
t voltage g
e
nerate
d
by
V
F
PWM
strate
gy and it
s FF
T plot i
s
sho
w
n i
n
Figure 16. F
r
om Figu
re 1
6
it is observe
d that
the VF
PWM st
rateg
y
produ
ce
s
si
gnifica
nt 3
rd
, 5
th
,
11
th
, 15
th
, 17
th
, 19
th
, 21
st
, 23
rd
, 25
th
, 27
th
, 29
th
, 31
st
, 33
rd
, 35
th
, 37
th
and
39
th
h
a
rmoni
c
ene
rg
y.
Figure 1
2
sh
ows the
nin
e
level outp
u
t voltage
gen
erated by
COP
W
M
strate
gy
and it
s F
FT p
l
ot
is
sho
w
n
in
Fi
gure
17.
Fro
m
Figu
re
17
i
t
is
o
b
serve
d
that
the COP
W
M pro
d
u
c
e
s
signifi
cant 1
2
th
,
20
th
, 31
st
an
d 40
th
harm
o
nic en
ergy.
The follo
wing
param
eters
are u
s
e
d
for the simulati
on
V
dc
=110V, R=100
Ω
, f
c
=200
0Hz, f
m
=50Hz.
Figure 8. Simulated outp
u
t voltage gen
er
ated by PDPWM techniqu
e for R load
Figure 9. Simulated outp
u
t voltage gen
er
ated by PODPWM tech
niq
ue for R loa
d
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Analysis of a
Ne
w Re
du
ce
d Switch Ni
ne
Level In
verte
r
(C.R. Balamurugan)
496
Figure 10. Simulated outp
u
t voltage ge
nerate
d
by APODPWM techni
que for
R load
Figure 11. Simulated outp
u
t voltage ge
ner
ate
d
by VFPWM techni
que for R lo
a
d
Figure 12. Simulated outp
u
t voltage ge
nerate
d
by COPWM techn
i
que for R lo
a
d
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 490 – 501
497
Figure 13. FF
T spe
c
tru
m
for PDPWM te
chniqu
e
Figure 14. FF
T spe
c
tru
m
for PODP
WM tech
niqu
e
Figure 15. FF
T spe
c
tru
m
for APODPWM
techniq
u
e
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Analysis of a
Ne
w Re
du
ce
d Switch Ni
ne
Level In
verte
r
(C.R. Balamurugan)
498
Figure 16. FF
T spe
c
tru
m
for VFPWM techniqu
e
Figure 17. FF
T spe
c
tru
m
for COP
W
M te
chni
que
Table 3. % THD of outp
u
t voltage of ch
ose
n
MLI for variou
s value
s
of modulati
ng indi
ce
s
%
T
HD
m
a
1.0 0.9
0.8
0.7
0.6
PDPWM
13.51
17.29
18.21
21.84
24.27
PO
DPWM
12.67
17.04
18.34
22.09
23.02
AP
O
D
P
W
M
13.45
17.53
17.08
22.80
24.73
VFPWM
12.88
17.04
17.55
22.26
23.99
COPWM
18.52
21.96
25.16
29.91
35.4
Table 4. % V
RMS
of output
voltage of ch
ose
n
MLI for variou
s value
s
of modulati
ng indi
ce
s
%
V
RM
S
m
a
1.0 0.9
0.8
0.7
0.6
PDPWM
281.7
253.8
222.7
194.3
170.7
PO
DPWM
284.1
256.3
226.4
193.1
168.5
AP
O
D
P
W
M
281.4
250.9
219.3
191.3
166.2
VFPWM
285 255.2
231
194.5
166.4
COPWM
298.3
276.8
251.9
222.5
189
Table 5. Fo
rm Facto
r
of output voltage of cho
s
en ML
I for various v
a
lue
s
of mod
u
lating indi
ce
s
%
V
RM
S
m
a
1.0 0.9
0.8
0.7
0.6
PDPWM
563.4
604.3
281.9
1079.4
275.3
PO
DPWM
INF
INF
INF
INF
INF
AP
O
D
P
W
M
INF
INF
INF
INF
INF
VFPWM
INF
INF
INF
INF
INF
COPWM
505.6
1064.6
179.9
1390.6
67.26
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 3, March 20
16 : 490 – 501
499
Table 6. Cre
s
t Factor of ou
tput voltage of chos
en MLI
for variou
s va
lues of mod
u
l
a
ting indi
ce
s
%
V
RM
S
m
a
1.0 0.9
0.8
0.7
0.6
PDPWM
1.4143
1.4141
1.4141
1.4143
1.4142
PO
DPWM
1.4139
1.4144
1.4143
1.4143
1.4142
AP
O
D
P
W
M
1.4140
1.4145
1.4140
1.4140
1.4139
VFPWM
1.4144
1.4142
1.4143
1.4138
1.4146
COPWM
1.4143
1.4140
1.4141
1.4144
1.4143
Table 7. Di
stortion Fa
ctor
of output voltage of
ch
ose
n
MLI for vari
ous valu
es of
modulating
indices
%
V
RM
S
m
a
1.0 0.9
0.8
0.7
0.6
PDPWM
0.0995
0.3188
0.4374
0.3919
0.496
PO
DPWM
0.033
0.1798
0.2877
0.1413
0.5179
AP
O
D
P
W
M
0.0897
0.2211
0.0737
0.0992
0.4838
VFPWM
0.1131
0.0411
0.2251
0.2738
0.4029
COPWM
0.507
0.394
0.1601
0.666
0.8173
6. Conclusio
n
In this pape
r variou
s n
e
w sche
me
s adopting the con
s
tant
switching frequ
en
cy
multica
rrie
r
CFD con
c
e
p
ts are develo
p
e
d
an
d simula
ted
for a cho
s
en
nin
e
leve
l
asymm
e
trical
inverter. Perf
orma
nce indi
ce
s like %T
HD, V
RMS
(indicating the amount of
DC
bus utilization), CF,
FF and
DF related to po
wer
quality issue
s
have
b
een evalu
a
te
d, pre
s
ente
d
and an
alyze
d
.
By
comp
ari
ng a
m
ong the co
nventional P
W
M techniqu
es, PODP
WM techniq
u
e
s
provide the
less
THD valu
e (t
able 3)
and
COP
W
M pro
v
ide a hi
ghe
r fundamental
RMS output
voltage (table
4).
Table 5
sho
w
s F
F
for all
modulatin
g indices. Ta
ble
6 displ
a
ys
CF for all
ch
ose
n
mod
u
la
ting
indices. T
abl
e 7 di
spl
a
ys DF fo
r all
cho
s
e
n
mo
d
u
lating in
dices. Th
e result indicate t
hat
approp
riate
PWM strateg
i
es have to
be em
ploye
d
depen
ding
on the pe
rformance mea
s
ure
requi
re
d in
a
particula
r ap
plicatio
n of M
L
I ba
sed
on t
he
crite
r
ia of
output voltag
e qu
ality (Pe
a
k
value of the fundam
ental, THD a
nd do
minant ha
rmo
n
ic compo
n
e
n
ts).
Referen
ces
[1]
Rad
an, AH S
hah
irin
ia a
nd
M F
a
lahi. Eva
l
uat
i
on of C
a
rrier-Base
d
PW
M Methods fo
r Multi-lev
e
l
Inverters.
Process. IEEE conf. Re
c. 1-4244-
075
5-9/0
7
/200
7:
389-3
94.
[2]
Samir Kour
o, Pabl
o Leza
na,
Mauricio An
g
u
lo a
nd José
Rodríg
uez. Mu
lticarrier PW
M
w
i
th D
C
-Li
n
k
Ripp
l
e F
e
e
d
fo
r
w
a
r
d Com
p
e
n
s
ation for Multi
l
e
vel Inverters.
Process.IEEE conf. Rec. 088
5-89
93/2
007:
52-5
9
.
[3]
P Pala
nive
l a
n
d
Sub
h
rans
u S
e
khar D
a
sh. M
u
lticarri
er Pu
ls
e W
i
dth Mo
dul
ation M
e
tho
d
s Based T
h
ree
Phase
Casca
ded M
u
ltil
evel
Inverter Incl
udi
ng Over
Modu
latio
n
a
n
d
Lo
w
Mod
u
l
a
tion In
dic
e
s.
Process.IEEE conf. Rec. 978-
1-42
44-4
5
4
7
-9
/09/200
9:
1-6.
[4]
Dani
el
And
l
er,
Samir Ko
uro,
Marcelo
Per
e
z, José
Ro
drígu
e
z a
nd B
i
n W
u
. S
w
itc
h
in
g
Lo
ss Anal
ys
is o
f
Modu
latio
n
M
e
thods
Used
i
n
Ne
utral P
o
int
Clam
p
e
d
C
o
n
v
erters.
Proce
ss. IEEE conf. Rec.
978-
1-
424
4-28
93-
9/0
9
/200
9:
256
5-2
571.
[5]
Bamba
ng Su
j
anark
o
Moch
a
m
ad Ashar
i, Maurid
hi H
e
r
y
Purnomo, Ontosen
o
Pen
a
ngsa
ng a
nd
Soeb
agj
o. Adv
ance
d
Carri
er Based Pu
lse W
i
dt
h Modula
t
ion in As
ymm
e
tric Cascad
e
d Multilev
e
l
Inverter.
Internation
a
l Jo
urna
l of Electrical
&
Com
p
uter Sciences IJECS-IJENS
. 2010; 1
0
(
06): 47-5
1
.
[6]
Suvaj
i
t Mukhe
r
jee a
nd Ga
utam Pod
dar. A Seri
es-C
on
ne
cted T
h
ree-Le
vel Inverter T
opo
log
y
fo
r
Medi
um-Volta
g
e
Sq
uirrel-
Ca
g
e
Motor
Drive
Appl
icatio
ns.
IEEE transactions on
industry
applic
ation
.
201
0; 46(1), 17
9-18
6.
[7]
A
y
o
ub K
a
vous
i
,
Behrooz Va
hi
di, Reza S
a
le
h
i
, Mohamma
d
Kazem Bak
h
sh
izad
eh, Na
eem
F
a
rokhni
a,
and
S. Hami
d
F
a
thi. App
licati
on of th
e B
ee
Algorit
hm
for S
e
lectiv
e H
a
rmo
nic El
imin
atio
n
Strateg
y
i
n
Multilev
e
l Inver
t
ers.
IEEE
Transactions on P
o
wer Electronics.
2012; 27(
4)
: 1689-1
6
9
6
[8]
Bernar
do C
o
u
go, Guil
laum
e
Gateau, T
h
ie
rr
y
Me
yn
ar
d, Malg
orzata Bo
bro
w
sk
a Rafa
l
and M
a
rc
Cousi
n
e
au. PD
Modu
latio
n
Sc
heme for T
h
re
e Phas
e Par
a
ll
el Mu
ltilev
e
l In
verters.
IEEE Transactions
on Industri
a
l El
ectronics
. 20
12
; 59(2): 690-7
0
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.