TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 14, No. 2, May 2015, pp. 199 ~ 20
4
DOI: 10.115
9
1
/telkomni
ka.
v
14i2.760
5
199
Re
cei
v
ed Fe
brua
ry 24, 20
15; Re
vised
April 8, 2015;
Accept
ed Ap
ril 21, 2015
Optimal Placement of Phasor Measurement Unit for
Better Power System Observability
K. Dee
b
iga*
1
, A. Raqib Hussain
2
K.S.Rangas
am
y Co
lle
ge of T
e
chno
log
y
,
KSR Kalvi N
a
g
a
r,
T
i
ruchen
go
de, Namak
a
l-6
37 21
5, T
a
mil
Nad
u
, India
*Corres
p
o
ndi
n
g
Author, e-ma
il: dee
big
a
k@
g
m
ail.com*
1
, raq
i
ba
n
w
ar
@gma
i
l
.com
2
A
b
st
r
a
ct
Secure a
nd r
e
li
abl
e op
ertatio
n
of the grid re
q
u
ires
re
al ti
me
mo
nitori
ng
and
control of e
n
tir
e
pow
er
system. Ph
aso
r
me
asure
m
en
t units (PMU)
are b
e
in
g d
epl
oyed for r
eal ti
me
monit
o
rin
g
and
ana
lysis
of
power system
.
T
he most i
m
po
rtant
factor
to
be
c
onsi
der
ed in
plac
e
m
e
n
t p
r
obl
em is
obs
e
r
vabil
i
ty of
pow
e
r
system w
i
th
mi
ni
mu
m
nu
mber
of PMUs. This
pa
per
prop
ose
d
a
n
Integ
e
r
Li
near
Progr
a
m
mi
ng (IL
P
) b
a
s
e
d
opti
m
i
z
at
ion
a
p
p
roac
h to
min
i
mi
z
e
th
e n
u
m
b
e
r of PM
Us
i
n
t
he
netw
o
rk. T
h
e pr
opos
ed
w
o
rk deter
mi
nes
the
nu
mb
er of PMUs and its
plac
e
m
ent, w
h
ile
maxi
mi
z
i
n
g
the system o
b
serva
b
il
ity in
normal o
per
a
t
ing
cond
ition. In thi
s
paper
mode
li
ng of
z
e
ro-
i
nj
e
c
tion bus
has b
een for
m
u
l
ate
d
to reduce th
e nu
mb
er of PMU
s
further. Sim
u
lations are carried out
in Standard IEEE 14 a
nd IEEE 30 bus system
, the results indicate
the
ILP
ap
pro
a
ch deter
mi
nes
th
e min
i
mu
m n
u
mber
of
PM
Us a
nd
i
m
pro
v
es Observ
abi
ltity of the
Po
w
e
r
System
.
Ke
y
w
ords
: p
h
a
sor
me
asur
e
m
e
n
t u
n
its (PM
U
),
z
e
ro
inj
e
cti
on c
onstrai
nts, opti
m
al
plac
e
m
e
n
t, inte
ger
li
near
progr
a
m
min
g
(ILP)
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Phaso
r
mea
s
urem
ent unit is monitori
ng
device
an
d b
e
ing used effectively in re
al- time
monitori
ng
sy
stem to
a
s
su
re
relia
ble
an
d secure
sup
p
ly to en
d u
s
ers.
In Pha
s
o
r
me
asure
m
e
n
t
unit (PM
U
) all
the ele
c
tri
c
al
paramete
r
s
are m
e
a
s
ure
d
in fre
que
ncy domain
wit
h
both m
agnit
ude
and p
h
a
s
e a
ngle of volta
ge an
d
curre
n
t [1]. Throu
gh Glo
bal Po
sitionin
g
Syst
em (GPS) all
the
measurement
s of PMUs a
r
e time stamp
ed with
com
m
on time ref
e
ren
c
e
sign
al
. Synchroni
za
tion
of po
wer sy
stem me
asure
m
ents i
s
achi
eved by
Glob
al po
sitionin
g
sy
s
t
em with
time of les
s
than
1
μ
s. The P
M
U ha
s rol
e
s for
spe
c
i
f
ic appli
c
atio
ns such as monitorin
g
, prote
c
tion, state
estimation [2
] and co
ntro
l in power
systems
[3]. A rapid d
e
velopme
n
t of pro
c
e
s
sor
an
d
informatio
n t
e
ch
nolo
g
y, compute
r
ai
de
d tool
s
a
nd
data
colle
ctio
n techniq
u
e
s
are b
e
ing
u
s
ed
widely for po
wer pl
ant mo
nitoring a
nd control [4].
The use of PMU has been
increased
worldwide in
el
ectri
c
al
utilities. The maj
o
r i
s
sues of
PMUs a
r
e
sit
e
lo
cation
an
d its
pla
c
em
ent. Du
e
to
the a
s
so
ciatio
n of h
uge
co
sts i
n
volved i
n
PMUs a
nd i
t
s comm
uni
cation infra
s
tructure, It
is not nece
ssary and al
so it will not be
eco
nomi
c
ally
to pl
ace PM
U in
all
bu
se
s of
the
co
nn
ected
net
wo
rk. PMUs in
stalled
on
one
bus
can
able to
measure nea
rby bu
se
s. As re
sult, p
r
obl
em ha
s be
en
raised fo
r nu
mber
of PMUs to
be install
ed i
n
power
syst
em. Optimization of
PMU placement
wi
th compl
e
te observability
of
system
will help the utility to ope
rate t
he net
work
with more
reli
ability. Many investigation
has
been
ca
rrie
d
out by usin
g different m
e
thod
s for
pl
acem
ent p
r
o
b
lem u
s
ing
b
o
th evolution
a
ry
algorith
m
s a
n
d
mathemati
c
al prog
ram
m
ing app
roa
c
h
e
s
[5], such a
s
ca
noni
cal g
enetic al
gorit
hm
[6], non-domi
nated sorting
genetic al
go
rithm [7], simulated an
neal
ing [8], exhaustive se
arch
[9],
Tabu se
arch
[10],optimal
p
l
acem
ent
of PMU (OPP)
i
s
ve
rified
wit
h
topol
ogi
cal
observability
of
the network
by an re
cu
rsive Tab
u
search
(RTS
)
[11] whi
c
h is faster tha
n
tradition
al Ta
bu
sea
r
ch (TS
)
, particl
e swa
r
m optimi
z
ati
on [12
]. Paper inve
stigat
ed full observability of PMU
placement
with Iterated
Local Sea
r
ch (ILS
) [13]
and
tru
n
cat
ed the
nu
m
ber of PM
Us in
config
uratio
n of the netwo
rk. Paper o
u
tlined GA
an
d immune al
gori
t
hm (IA) [14], opted IGA for
optimal pl
ace
m
ent of PM
Us.IGA takes l
onge
r time
fo
r its exe
c
utio
n than
GA
an
d bin
a
ry
sea
r
ch
algorith
m
[15
], OPP solve
d
with
norm
a
l ope
ratin
g
con
d
ition
s
an
d sin
g
le
bra
n
ch
outag
es for
compl
e
te observability of the power
system.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 199 – 204
200
The p
r
e
s
ent
pape
r recom
m
end
s math
ematical
opti
m
ization te
ch
nique
as inte
ger lin
ear
prog
ram
m
ing
to deduce the minimum
numbe
r of PM
Us to be
installed in
the netwo
rk
for
compl
e
te observability. The proposed method
incorporates modeling of zero-inj
ection
con
s
trai
nts
with optimal
place
m
ent
probl
em to
ensure
syste
m
observabil
i
ty with minimum
numbe
r
of p
m
u. Thi
s
me
thod b
r
ing
s
out optimal
solutio
n
com
pare
d
with
o
t
her
evol
utio
nary
algorith
m
s a
n
d
other o
p
timization te
chni
que
s. In
teger
linear
pro
g
ra
mming alg
o
rit
h
m tech
niqu
e
is
impleme
n
ted
in this pa
per,
to dete
r
min
e
the tota
l
nu
mber of PM
Us
requi
re
d m
a
kin
g
the
sy
stem
observabl
e. Simulation re
sults a
r
e a
nal
yzed fo
r th
e stand
ard IEE
E
14-bu
s a
n
d
30-b
u
s
syste
m
s
are p
r
e
s
ente
d
.
The rest of th
e pape
r is
organi
zed a
s
fo
llows
Sectio
n
II will give detailed expla
nation of
optimal pla
c
e
m
ent of PMU and form
ul
ation of Zero
-Injectio
n
Co
nstrai
nts. Simulation re
sult o
f
PMU pla
c
em
ent in Section
III, and the paper
con
c
lu
d
e
s in Sectio
n IV.
2. Optimal Placemen
t of
PMU
Formul
ation
of Optimal pl
acem
ent of
PMU
en
han
ces o
b
servabil
i
ty of power
system.
PMU Ob
serv
ability may b
e
classified a
s
Num
e
ri
cal
Observability and Top
o
logi
cal Ob
se
rvab
ility
[16]. In this paper top
o
logi
cal Ob
se
rvabi
lity is evaluated throu
gh followin
g
rul
e
s.
Rule 1:
Whe
n
a PM
U is
placed
at a bu
s, the
voltage and
curre
n
t pha
sor i
s
kno
w
n
for that
particula
r b
r
a
n
ch. If Volta
g
e
an
d
Cu
rre
n
t
pha
so
r of
o
ne e
nd
of th
e b
r
an
ch
is known, then
t
h
e
other
sid
e
m
a
y be
com
p
u
t
ed ea
sily by
usi
ng
Ohm'
s La
w [17]. T
h
is
sho
w
s if a
PMU
pla
c
ed
at
one bu
s, then
the buse
s
in
cide
nt to PMU
install
ed bu
s also be
com
e
observabl
e.
Rule 2:
Whe
n
the
r
e i
s
no
current i
n
jectio
n at a
bus, the
po
wer flo
w
in a
n
y
one of the
incid
ent
lines can the
o
retically be
calcul
ated
by usin
g Kirc
h
h
o
ff’s cu
rrent la
w (K
CL
), whe
n
the
po
wer flo
w
in the remai
n
i
ng of the con
necte
d line
s
are kno
w
n.
Thus zero
-inj
ection
modeli
ng ap
pro
a
ch
is u
s
ed fo
r m
i
nimizin
g
opti
m
al PMU l
o
cations.
Optimal PM
U placement problem i.e., minimum
PM
U placement
for sy
stem observability, can
be formulate
d
as a com
b
i
natorial o
p
timization p
r
o
b
lem usi
ng a
n
Integer Lin
ear Pro
g
ra
m
m
ing
(ILP) metho
d
.
The PMU pl
acem
ent met
hod ha
s b
e
e
n
pre
s
e
n
ted
in this pa
per serve
s
the f
o
llowin
g
obje
c
tive: It minimizes th
e total n
u
m
ber
of PM
Us
requi
re
d t
o
be
in
stalle
d in th
e
syste
m
con
s
id
ere
d
t
o
ma
ke
it co
mpletely ob
servable.
De
si
gn of
ze
ro
-inj
ection
con
s
traint re
du
ce
s
the
total number
of
PMUs.Th
e
integer line
a
r pr
o
g
rammi
ng method is used to achieve these ma
in
obje
c
tives.
Obje
ctive function for the
minimum PM
U pla
c
eme
n
t probl
em can
be define
d
as follows:
Fm
i
n
∑
C
b
If the PMU placem
ent vect
or having el
e
m
ents def
in
e
s
ch
an
ce of PMUs at a b
u
s, i.e:
b
1,
ifaPMU
isinstalledatbusi
0,
ot
herwise
And if
c
i
i
s
cost
related
t
o
pla
c
em
ent
of PMU at
bus, th
en
su
bject to
the
followin
g
con
s
trai
nts:
Tb
e
Where e is
a unit vec
t
or of length, i.e:
e=
[1 1 1 1...1]
T
b=
[b
1
b
2
....b
n
]
And A is the Network Co
n
nectivity
matrix of the system, i.e:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Optim
a
l Placem
ent of Phasor M
e
a
s
ure
m
ent
Unit for Better Powe
r System
… (K. Deebi
ga)
201
t
,
1,
if
eit
heri
j
a
r
eadja
cent
node
0,
ot
herwise
This
obje
c
tive can b
e
fo
rmulated
as for a
n
n
bu
s system. De
si
gn step
fo
r
a
n
optimal
placement of PMUs.
Step 1
:
By using an
line data of
an bus sy
stem fo
rm an network observability
matri
x
.
Assign
value 1 to variable when two adja
c
ent no
de ar
e
con
n
e
c
ted. Othe
rwi
s
e a
ssi
gn a
s
zero.
t
,
1,
ifeitheri
jar
ead
jacentno
d
e
0,
ot
herwise
Step 2:
Cre
a
te an ob
serva
b
ility co
nstrai
nt matri
x
and obje
c
tive Functio
n
.
Tb
e
Step 3:
Incorpo
r
ate Z
e
ro
-inje
c
tion
con
s
trai
nts al
ong with o
b
servability con
s
traint
s.
Step 4:
Formul
ated
p
r
oble
m
can
b
e
re
solve
d
th
roug
h o
p
timization techniq
ue by Integ
e
r linea
r
prog
ram
m
ing
.
Step 5:
The varia
b
le
x
i
is assi
gn to
one if PMU is install
ed in
at bus i otherwise assig
n
zero.
3. Simulation
Consider standard
IEEE
14 bus sy
stem
the objective func
tion
of optimal placement can
be formul
ated as Equation (1). Observ
ability co
nstraints
can be formulated using line dat
a of
bus
system e
quation
s
are (2)-(15
)
.
-
Figure 1.Single line diagra
m for IEEE-14 bus
s
y
s
t
em
Optimal PMU placement
s
problem are
being
c
a
rried out for the I
EEE 14 bus
s
y
s
t
em
and IEEE 30 bus
system
using MAT
L
AB ILP solver.
In
order to reduce
usage
of PM
Us in
site
locatio
n
in
cl
ude
s mo
delli
ng of
Z
e
ro
injectio
n bu
ses
co
nsi
dere
d
fo vari
ou
s system
s
are
:
Z
14BUS
={7},
Z
30BUS
={6,9,22,25,27,28
}.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 199 – 204
202
Table 1. Line
Data for IEEE-14 bus
s
y
s
t
em
Sendin
g
e
nd b
u
s
Recei
v
i
n
g
En
d
Bus
Recei
v
i
n
g
En
d
Bus
Reacta
n
ce
p.u
Half s
u
scep
tan
c
e p.u
1 2
2
0.05917
0.0264
2 3
3
0.19797
0.0219
2 4
4
0.17632
0.0187
1 5
5
0.22304
0.0246
2 5
5
0.17388
0.017
3 4
4
0.17103
0.0173
4 5
5
0.04211
0.0064
5 6
6
0.25202
0
4 7
7
0.20912
0
7 8
8
0.17615
0
4 9
9
0.55618
0
7 9
9
0.11001
0
9 10
10
0.0845
0
6 11
11
0.1989
0
6 12
12
0.25581
0
6 13
13
0.13027
0
9 14
14
0.27038
0
10 11
11
0.19207
0
12 13
13
0.19988
0
13 14
14
0.34802
0
The objec
tive func
tion for an IEEE-14 bus
s
y
s
t
em:
:
Minb
b
b
…
b
(
1
)
Subject to bu
s ob
serva
b
ility c
onst
r
aints
defined a
s
fol
l
ows:
Bus
1:
b
b
b
1
(
2
)
Bus
2:
1
(
3
)
Bus
3:
1
(
4
)
Bus
4:
b
b
1
(
5
)
Bus
5:
1
(
6
)
Bus
6:
1
(
7
)
Bus
7:
1
(
8
)
Bus
8:
1
(
9
)
Bus
9:
1
(
1
0
)
Bus10:
1
(
1
1
)
Bus 11:
1
(
1
2
)
Bus 12:
1
(
1
3
)
Bus 13:
1
(
1
4
)
Bus 14:
1
(
1
5
)
Zero
-Inje
c
tion
Con
s
traint
s:
Bus
7:
3
(
1
6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Optim
a
l Placem
ent of Phasor M
e
a
s
ure
m
ent
Unit for Better Powe
r System
… (K. Deebi
ga)
203
Revised observability constraint:
Bus
1:
b
b
b
1
(
1
7
)
Bus
2:
1
(
1
8
)
Bus
3:
1
(
1
9
)
Bus
4:
b
b
1
(
2
0
)
Bus
5:
1
(21)
Bus
6:
1
(
2
2
)
Bus
7:
1
(
2
3
)
Bus
8:
1
(24)
Bus
9:
1
(
2
5
)
Bus 10:
1
(
2
6
)
Bus 11:
1
(
2
7
)
Bus 12:
1
(
2
8
)
Bus 13:
1
(
2
9
)
Bus 14:
1
(30)
The o
b
jectiv
e functio
n
in
(1)
re
pre
s
e
n
t
s
the minim
u
m num
ber
of PMUs re
q
u
ired f
o
r
optimal syst
em observability of
buses, General
observability
co
nstraint
s (2)-(15)
provi
des
solutio
n
to the probl
em for optimal syste
m
obse
r
vabili
ty.
Solving the ILP problem (1), (2)-(14
)
we
r
equi
re
d four PMU to place
in buse
s
. Identified
buses
are
3,10,12 in an IEEE 14 bus
.
In order to
reduc
e
the total
number
of PMUs
,
s
o
lving ILP
probl
em
(1)
with mo
delin
g of zero
-inje
c
tion
con
s
tr
ai
nts (16)-(30
).
Therefore, thus the
num
b
e
r of
PMUs to be
i
n
stalle
d is re
duced by
one
. The o
p
ti
mal
system
ob
se
rvability is
attained
with th
ree
PMUs. Identif
ied buses are 3, 10, 12 in an IEEE 14 bus.
Table 2 brings out the
si
mulation result
of IEEE-14 and 30 bus system for optimal
placement of
PMU in
cludin
g
ze
ro inje
cti
ons
usin
g various m
a
them
atical optimi
z
ation algo
rith
ms.
System observability is m
a
intained wit
h
minimu
m
number of PM
Us
by consi
d
ering
modeling o
f
zero-i
nje
c
tion
co
nst
r
aint
s. Optimal pla
c
ement of
PM
U
h
a
s
b
een
a
ttained with minimum nu
mber
of
PMUs and nearest
obse
rvability of buses i
s
shown i
n
Figu
re 2 for IEEE-14
bus system. Three
PMUs are placed at respective bus
to achieve optimal
observability.
Figure 2. Single Line
Diagram for IEEE-14 Bu
s
Sys
t
em with PMU
Plac
ement using ILP
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 199 – 204
204
Table 2. Study on standa
rd IEEE bus system
IEEE bus
sy
st
em
No. o
f
PMUs
w
i
t
h
Zero
-Inje
c
ti
on
bus
No. o
f
PMUs
w
i
t
hou
t Zer
o
-I
njec
tion
bus
Obser
v
a
bili
t
y
%
IEEE 14 bus
3
4
85
IEEE 30 bus
8
9
93
4. Conclusio
n
The propo
se
d techni
que
has b
een im
plemente
d
by using MATL
AB as a prog
rammin
g
tool. Integer
linear prog
ra
mming p
r
ovi
des
feasi
b
le solutio
n
an
d minimizes co
mputing efforts.
Simulation re
sult sh
ows th
at there is a
redu
cti
on in t
he num
ber o
f
PMUs to b
e
placed in t
he
netwo
rk an
d
the num
ber i
s
furth
e
r
re
du
ced
by the i
n
clu
s
ion
of ZI
C in th
e p
r
ob
lem form
ulati
o
n
.
Optimization algorithm shows the effecti
v
eness
in the proposed Standard
s IEEE 14 as shown in
Figure 2. The
future wo
rk
can b
e
don
e with hybr
id te
chni
que
s such as hyb
r
idi
z
i
ng optimization
techni
que
wit
h
evolution
a
ry algorithm
s.
Some ad
ditional
con
s
trai
nts can b
e
combine
d
a
c
count
for reali
s
tic i
m
pleme
n
tatio
n
of optimizat
ion tech
niqu
e
s
.
Referen
ces
[1]
G Phadke. S
y
n
c
hron
ized
ph
as
or
measur
eme
n
ts in p
o
w
e
r s
ystems.
IEEE Comput. Appl. Power
. 1993
;
6(2); 10-1
5
.
[2]
Side
ig A
b
d
e
lrh
m
an
Do
w
i
,
Ge
ng
yi
n L
i
.
Ph
as
or Me
asurem
e
n
t Un
it Bas
ed
on
Rob
u
st D
y
namic
Stat
e
Estimation i
n
Po
w
e
r S
y
stem
s Using M-Estimators.
T
E
LKOMNIKA Indonesi
an Jour
nal
of Electrica
l
Engi
neer
in
g.
2014; 12(
11): 76
31-7
6
3
.
[3]
A Ensha
ee, RA Hoos
hma
nd, F
H
F
e
sha
r
aki.
A ne
w
method for o
p
timal p
l
acem
ent of phas
o
r
measur
ement
units to mainta
in full n
e
t
w
or
k ob-serv
abi
lit
y
und
er
vario
u
s
contin
ge
ncies.
Elect.
Power
Syst. Res.
2012; 89(1); 1-10.
[4]
Ma
yad
e
vi N, V
i
no
dcha
ndr
a S
S
, S Ushakum
ari. A
Revi
e
w
on E
x
p
e
rt S
y
st
em Appl
icati
o
n
s
in Po
w
e
r
Plants.
Internat
ion
a
l Jour
na
l of Electr
ical a
nd
Co
mp
uter Engi
neer
ing.
2
014; 4(1):
116-
12
6
.
[5]
Nikol
aos M Mano
usakis, Ge
orge N Korr
es
, Pavl
os S Georg
ilak
i
s. T
a
xonom
y of PM
U Placem
ent
Method
olo
g
i
e
s.
IEEE Trans. P
o
wer Syst
. 2012; 27(2): 10
70-
107
6.
[6] FJ
Mar
ı
n,
F
Garc
ı
a-
La
gos, G
Jo
ya, F
San
d
o
val. Ge
netic
alg
o
rithms for
optima
l
p
l
ac
em
ent of
ph
asor
measur
ement
units in e
l
ectric
net
w
o
rks.
Elec
tron. Lett
. 2003
; 39(19): 14
03-
140
5.
[7]
Milosev
i
c, M Begov
ic. Non
d
o
min
a
ted sorti
ng ge
netic
al
gorithm for o
p
t
im
al ph
asor
measur
ement
plac
ement.
IEEE Trans. Power Syst
. 2003; 18(1): 69-7
5
.
[8]
T
L
Bald
w
i
n,
L Mil
i
, MB B
o
ise
n
, R
Ada
pa. Po
w
e
r
s
ystem obs
erva
bilit
y
w
i
th
mi
nimal
p
has
o
r
measur
ement plac
ement.
IEEE Trans. Power Syst
. 1993; 8(2): 707-7
15.
[9]
S Azizi, AS Dobakhs
hari, SA
N Sarmad
i
, AM Ranj
bar
. Opti
mal PMU pl
ace
m
ent b
y
an e
q
u
ival
ent li
ne
ar
formulati
on for exha
ustive se
a
r
ch.
IEEE Trans. Sm
art Grid
. 201
2; 3(1): 174
-182.
[10]
J Pen
g
, Y Su
n
,
HF
W
ang. O
p
timal PM
U p
l
aceme
n
t for ful
l
net
w
o
rk
obse
r
vabil
i
t
y
usi
n
g
T
abu searc
h
algorithm.
Elect. Power Syst
.
Res
. 200
6; 28(
4): 223-2
31.
[11]
Nikol
aos
C K
o
utsoukis,
Niko
l
aos M
Man
ous
akis, Pa
v
l
os S
Georg
ilak
i
s, Georg
e
N
Korr
e
s
. Numeric
a
l
observ
abi
lit
y m
e
thod
for o
p
ti
mal p
has
or m
easur
em
ent
un
its plac
eme
n
t usin
g rec
u
rsiv
e T
abu searc
h
method.
IET
Gener. T
r
ans
m. Distrib.
201
2; 7(4); 347-
35
6.
[12]
M Haj
i
a
n
, AM
Ran
j
b
a
r, T
Amraee, B
Moz
a
fari.
Optima
l plac
ement of PMUs
to
ma
in
tain net
w
o
rk
observ
abilit
y
using a mo
di-fied BPSO algorit
hm.
Int. J
.
Elect. Power Energy Syst
. 2011; 33(1): 28-3
4
.
[13]
M Hurtgen, JC
Maun. Optimal
PMU pl
acem
e
n
t using iter
ate
d
loca
l search.
Int. J.
Elect. Power Energy
Syst
. 2010; 32(
8): 875-8
60.
[14]
F
Aminifar, C
Lucas, A Kh
o
dae
i, M F
o
tuhi
-F
ir
uzab
ad. Optimal p
l
ac
em
ent
of ph
asor
measur
ement
units usi
ng im
munit
y
ge
netic
alg
o
rithm.
IEEE Trans. Power Del
. 200
9; 24
(3): 1014-
10
20
.
[15]
S Chakra
barti,
E y
r
iaki
des. Optimal pl
ace
m
ent
of phas
or measur
eme
n
t units for po
w
e
r s
y
ste
m
observ
abi
lit
y
.
I
EEE Trans. Power Syst.
2008
; 23(3): 143
3-1
440.
[16]
Lei H
u
a
ng, Y
uanz
ha
ng Su
n
,
Jian
Xu, W
enzh
o
n
g
Gao,
Jun Z
han
g, Z
i
pin
g
W
u
. Optimal PMU
Placem
ent Co
nsid
erin
g Co
ntrolle
d Islan
d
i
ng
of Po
w
e
r S
y
ste
m
.
IEEE
Trans. Power Syst
. 2
014; 29(
2).
[17]
BKS Roy
,
AK
Sinha, AK
Pr
adhan. A
n
optimal PMU
plac
ement
tec
hnique for pow
e
r s
y
st
em
observ
abi
lit
y
.
I
n
t. J. Elect. Po
wer En ergy Syst.
2012; 42(1):
71-77.
Evaluation Warning : The document was created with Spire.PDF for Python.