TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 15, No. 2, August 201
5, pp. 197 ~
208
DOI: 10.115
9
1
/telkomni
ka.
v
15i2.825
8
197
Re
cei
v
ed Ma
y 2, 2015; Re
vised July 5,
2015; Accept
ed Jul
y
20, 2
015
Distributed MPP Tracking of PV through Buck
Converter Using Fuzzy
Chan
dani Sharma*, Anam
ika Jain
Dep
a
rtment of Electron
ics an
d Commu
nicati
on Eng
i
n
eeri
n
g
,
Graphic Era Univers
i
t
y
, D
e
h
r
adu
n, India
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: chand
an
i19
n
o
v@gma
il.com
A
b
st
r
a
ct
Photovo
l
taics (
PV) are the
most abu
nd
ant, pere
nni
al, e
n
vi
ron
m
e
n
t friend
l
y
and
distrib
u
t
ed so
urc
e
of ener
gy al
l o
v
er the gl
ob
e. In this pa
per, th
e me
tho
d
to in
crease PV extr
action
efficienc
y for 60W
pan
e
l
w
i
th impr
oved
DMPP (Distrib
uted Maxi
mu
m Pow
e
r Po
int) even o
n
ch
ang
ing te
mp
eratur
e and
irrad
i
a
n
c
e
h
a
v
e
b
e
e
n
m
a
p
p
e
d
a
n
d
d
i
scu
sse
d
.
In
o
r
d
e
r to
a
c
h
i
e
v
e
th
is, th
e
co
mp
one
n
t
s a
n
d
su
b
s
yste
m
s ha
ve
been
ana
ly
z
e
d
an
d
valid
ated. T
h
e
valid
ated
mod
e
ls ar
e us
ed
t
o
maxi
mi
z
e
the
pow
er o
u
tput u
s
ing tw
o d
i
fferen
t
mo
de
ls of DC-DC Conv
erters
in MAT
L
AB/SIMULINK env
ir
o
n
ment. Clos
ed
loo
p
Buck conv
erter usin
g state
space
n
onl
ine
a
r
differe
ntial
e
q
uatio
ns
and
d
i
rect co
mp
on
ent
mod
e
l
are
co
mp
are
d
to r
e
v
eal
best
resu
lts at
Standar
d T
e
st Conditi
ons (S
T
C
). MPPT mode
l deve
l
o
p
e
d
can be use
d
for obtaini
ng
maxi
mu
m po
w
e
r
output fro
m
P
V
eve
n
i
n
p
a
rtial
pres
ence
o
f
sun us
i
n
g
Fuzz
y
L
o
g
i
c Co
ntro
l
l
e
r. Th
e C
o
n
t
ro
l
l
e
r
de
si
gned
tracks hig
hest
pow
er o
u
tput
for the
buck
converte
r. Th
e
mode
l d
e
ve
lo
ped,
usin
g tes
t
ed
me
mb
ersh
i
p
functions i
n
F
L
C, can serve a
platfor
m
for var
i
ous re
al ti
me a
pplic
atio
ns usi
ng PV.
Ke
y
w
ords
: Ph
otovolta
ics, MAT
L
AB/SIMULINK, Buck conv
erter, ST
C
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Solar ene
rgy
maintains all
life on earth. Solar is an emerging su
staina
ble technolo
g
y
with immen
s
e potential to contrib
u
te large
s
t in
vestm
ent in Green
techn
o
logy a
pplication
s
. Due
to sho
r
tage
and envi
r
on
mental impa
ct of convent
i
onal fuel
s, solar p
o
were
d
system
s a
s
sume
importa
nce to
overcom
e
h
u
rdle
s
and
p
r
omote
econo
mic
advantag
es. Ea
sy impl
ementation
a
n
d
desi
gn dem
a
nds in el
ectri
c
ity secto
r
are makin
g
PV use
signifi
can
t
in electricity
generation a
nd
distrib
u
tion p
u
rpo
s
e
s
. Glo
bally 1.5 billio
n peopl
e
with
no acce
ss to
electri
c
ity ca
n be develo
p
e
d
throug
h wid
e
s
pread a
dopti
on in PV inno
vative busine
ss [1].
PV module
s
are
con
s
truct
ed u
s
ing
sola
r cell
s. Sola
r
cell
s wo
rk on
photoele
c
tri
c
effect
conve
r
ting
su
nlight into ele
c
tri
c
ity. Since
the output
a
v
ailable fro
m
singl
e solar
cell is very
sm
all,
seri
es o
r
pa
rallel com
b
ina
t
ion is prefe
r
red to obtain
higher o
u
tp
ut from pane
l. Even under
cha
ngin
g
env
ironm
ental co
ndition
s, efficiency of pan
e
l
need
s to be
streamli
ned.
For this, sol
a
r
panel i
s
unde
r distri
buted
condition
s ne
e
d
to be
opera
t
ed at MPP (maximum po
wer p
o
int). M
PP
descri
b
e
s
a
fi
xed op
eratin
g
point
on
IV (Curre
nt
-Volta
ge) and
PV
(Powe
r-Volta
g
e
)
ch
ara
c
te
ristic
curve
s
of sol
a
r cell. STC (stan
dard test con
d
ition
s
) are de
sired
with temperature of 25
°C
(298.1
5
K) an
d an irradia
n
ce of 1000 W/
m
2
to maintain MPP in all c
a
s
e
s
[2].
(a)
(b)
Figure 1. PV
panel
stru
ctures; (a
) Crysta
lline, (b) Thi
n
Film
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 197 –
208
198
To obtain MP
P in distrib
u
ted co
ndition
s of
chan
ging
temperature
and irradi
an
ce, MPPT
is desi
gne
d. PV panels a
v
ailable in market inclu
d
e
Crystallin
e (mono or p
o
ly) and Thin Fi
lm
structures. T
he advantages
of us
ing fi
xed crystalline panels are
t
hat they use chemical
sili
con
while thin film stru
cture
s
use am
orp
h
o
u
s s
ili
con b
a
s
ed on vap
o
u
r dep
ositio
n. Figure 1 sh
ows
both pan
el structures.
2.
Res
earc
h
Method
In this re
sea
r
ch
pap
er, firstly a syste
m
atic an
alysi
s
of sol
a
r p
a
nel mod
u
le b
a
se
d on
mathemati
c
al
modeli
ng in
Simulink-MA
TLAB is
per
f
o
rme
d
[3]. T
here
a
fter, its investigatio
n
is
perfo
rmed fo
r variable te
m
peratu
r
e
and
irra
dian
ce. M
PP is su
cce
s
sfully obtain
e
d
[4]. The M
PP
tracking
syst
em for chan
g
i
ng co
ndition
s is impl
eme
n
ted usi
ng DC/DC Buck Converte
r follo
wed
by an
FL
C t
o
mo
nitor
ou
tput of
Conv
erter. A
n
e
s
t
i
mation of
two different m
odel
s of
bu
ck
conve
r
ter i
s
d
one u
s
ing diff
erent temp
erature an
d irra
dian
ce conditi
ons.
PV panel mo
deling fo
r sol
a
r cells
wa
s
done in SIM
U
LINK
-MATL
AB using
sol
a
r pa
nel
equatio
ns ex
pre
s
sed a
s
:
Therm
a
l Voltage Equatio
n
V
T
= k
B
T
OPT
/
q
(
1
)
Diod
e Cu
rren
t Equation
I
D
= N
p
I
S
[e
(V/
N
s) + (IRs
/Ns)/N
V
T
C
-
1
]
(
2
)
Load Curre
n
t
Equation
I
L
= I
Ph
N
p
- I
D
-I
S
H
(3)
Photocu
r
rent Equation
I
ph
= [
k
i
(T
OPT
-T
REF
) +I
SC
] I
R
R
(4)
Shunt Cu
rre
n
t
Equation
I
SH
= (I
R
S
+V
)/
R
S
H
(5)
Reverse Satu
ration Current
I
S
= [
I
RS
(T
OPT
/T
REF
)
3
*q
2
Eg/N k
B
* e
(1/T
OPT
-1/T
REF
)
(6)
Reverse Cu
rrent
Equation
I
RS
= I
SC
/ [e
(q
V
OC
/k
i
CT
OPT
)
-
1
]
(
7
)
Output Powe
r
P
=
V
I
(
8
)
Whe
r
e,
Table 1. Te
rminology for
con
s
tru
c
ting
sola
r pan
el
V
T
Thermal
Voltage
V Oper
ating
Voltag
e
V
OC
Open ckt voltage
I
SC
Short circuit curr
ent
I
S
Reverse Saturati
on Cur
r
ent of Dio
de
I
p
h
Photocurrent
I
Cell Output Cu
rr
ent
T
REF
Reference Temp
erature of
cell
T
OP
T
Oper
ating
Temp
erature
R
SH
Shunt Resistance of Cell
R
S
Series Resistance of Cell
Eg Energ
y
B
and
Ga
p
N Ideality
Factor
kB Boltzmann
constant
ki
Curre
nt Propo
rtio
nality
constant
q Electron
charge
G Irradiance
Ns
No. of cells in ser
i
es
C
No. of Cells in module
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Distri
buted M
PP Tracking
of PV through
Buck
Con
v
e
r
ter Using Fu
zzy
(Ch
and
ani
Sharm
a
)
199
Solar pa
nel
modele
d
is te
sted for ST
C with sp
ecifi
c
a
t
ions given b
e
low,
Table 2. Spe
c
ificatio
ns of
model
Characteristics at STC
w
i
th
G=
1K
W
/
m
2
an
d
T
=
25°C
P
MP
P
59.39
W
V
MP
16.64
V
I
MP
3.567
A
I
SC
3.7981
A
V
OC
21.07
V
Figure 2 sh
o
w
s
compl
e
te sub
s
ystem d
e
sig
ned.
Figure 2. Solar Panel Sub
s
ystem
Whe
n
m
odel
is
simul
a
ted i
n
MATLAB,
Simout value
s
avail
able
at
PV sub
s
yste
m outp
u
t
appe
ar a
s
sh
own in Ta
ble
3 for variabl
e temperature
and Tabl
e 4 for varia
b
le irradian
ce.
Table 3. Simout variable
s
for cha
ngin
g
Tempe
r
atu
r
e
T
°C
V
OC
I
SC
V
MP
P
I
MP
P
P
MP
P
5
21.31
3.754
18.06
3.317
59.92
10
21.25
3.765
16.69
3.578
59.75
15
21.19
3.776
16.68
3.575
59.65
20
21.13
3.787
16.66
3.571
59.53
25
21.07
3.798
16.64
3.567
59.39
30
21.01
3.809
16.62
3.563
59.23
35
20.95
3.820
16.60
3.557
59.06
40
20.89
3.831
16.57
3.552
58.87
45
20.83
3.842
16.54
3.545
58.67
Table 4. Simout variable f
o
r ch
angi
ng Irradia
n
ce
Irradiance
V
OC
I
SC
V
MP
P
I
MP
P
P
MP
P
Step 20.41
2.278
16.40
2.109
34.61
Constant
21.07
3.798
16.64
3.567
59.39
Trapezoidal
20.78
3.038
17.12
2.752
47.12
The exp
e
rim
ent highli
ghts that re
adin
g
of Op
en
circuit voltage
V
OC
and Sho
r
t ci
rcuit
cur
r
e
n
t
I
SC
are
more se
nsit
ive to irradia
n
ce va
riation
s
as
com
pared to temperature. The
O
pen
circuit voltage
V
OC
decrea
s
es sharply with increa
se in
Short ci
rcuit
current I
SC.
The ch
aracte
ristic
cu
rves o
b
tained fr
o
m
Simout are shown in Figu
re 3.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 197 –
208
200
Figure 3. IV and PV Chara
c
teri
stic
curve
s
T
h
e
ch
ar
ac
ter
i
s
t
ics
o
f
pa
ne
l va
r
y
in
a
cco
r
d
a
n
ce with
varying temp
eratu
r
e an
d irradia
n
ce
whe
n
its outp
u
t is
obtain
e
d
acro
ss a
re
sistive
loa
d
.
T
he cha
nge o
b
se
rved
i
s
gi
ven
by Dyna
mic
Impedan
ce of
source give
n
by expressio
n
:
I
V
-
dI
dV
(9)
Thus, to
mon
i
tor MPP in
di
stribute
d
con
d
itions, MPP
T
is m
odel
ed
as i
n
Fig
u
re
4, usin
g
B
u
ck Conv
e
r
t
e
r.
Figure 4. Blocks u
s
ed in M
PP Tracke
r ci
rcuit
3.
Design O
f
Buck Co
nv
erter
The outp
u
t current, voltag
e or p
o
wer
chara
c
te
risti
c
s of PV panel
vary acro
ss l
oad
with
cha
nge
in te
mperature
an
d irradi
an
ce.
Ho
weve
r, re
d
u
ce
d
a
nd
mi
smat
ch powe
r
o
u
tput can
be
comp
en
sated
by use
of Conve
r
ters a
nd Controll
ers [5, 6]. Buck converte
rs
are
used
to
decrea
s
e volt
age at o
u
tput
. Basically, compon
ents
u
s
ed i
n
cl
ude
MOSFET, dio
de, and i
ndu
ctor
followe
d by filter cap
a
cito
r and load at output. A
control ci
rcuit is used to de
termine for h
o
w
much volta
g
e
is re
qui
red
a
c
ro
ss loa
d
by
conve
r
ter
usi
ng controll
er
set poi
nt. For this, MOSFE
T
is switch
ed O
N
and O
FF b
y
Controlle
r p
u
lse
s
on G
a
te. Figure 5
sh
ows Buck co
nverter.
Figure 5. Basic circuit of Buck co
nverte
r
The p
u
lses
obtaine
d at
Gate of M
O
SFET
depi
ct conve
r
ter o
peratin
g fre
q
uen
cy. A
variation in
converte
r ope
rating freq
uen
cy ch
ang
es
d
u
ty cycle of
converte
r.
Dut
y
cycle i
s
defi
ned
operation fo
r whi
c
h
ci
rcuit wo
rks i
n
O
N
state to
d
u
ration
for
which
it is
ON and
OFF. T
w
o
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Distri
buted M
PP Tracking
of PV through
Buck
Con
v
e
r
ter Using Fu
zzy
(Ch
and
ani
Sharm
a
)
201
different mo
dels
are stu
d
ied b
a
sed
on state
sp
ace mod
e
l equatio
ns an
d
use
of
di
rect
comp
one
nts
available in M
A
TLAB-SIMU
LINK. These are de
scri
bed
below.
3.1. Model-A
State spa
c
e
model i
s
d
e
termin
ed
con
s
iderin
g
bin
a
ry
values
of in
ducto
r a
nd
capa
citor.
Discrete or
continuo
us G
U
I model is
selecte
d
. MOSFET is cate
g
o
rized a
s
ON and OFF ba
sed
on o
peration
a
l inp
u
t pul
se
at gate.
With
this
wh
en
M
O
SFET is
co
nsid
ere
d
O
N
,
indu
ctor
current
i
L
(t) and the capa
citor volta
ge v
C
(t) appe
ar:
1
()
,0
,
:
1
()
L
in
o
oo
L
di
Vv
dt
L
td
T
Q
O
N
dv
v
i
dt
C
R
(
1
0
)
And whe
n
the
switch is OF
F are p
r
e
s
ent
ed by:
1
()
,,
:
1
()
L
o
oo
L
di
v
dt
L
dT
t
T
Q
O
FF
dv
v
i
dt
C
R
(
1
1
)
Usi
ng ab
ove equatio
ns, m
odel is
con
s
tructed a
s
in Fi
gure 6.
Figure 6. Buck Co
nverte
r u
s
ing
state sp
ace vari
able
s
3.2. Model-B
Instead
of using
ON a
n
d
OFF vari
a
b
les, thi
s
m
odel u
s
e
s
di
rect
com
pon
ents to
determi
ne ou
tput using
pul
se g
ene
rator
at gate.
Figure 7 and Fi
gu
re 8 sh
ows m
odelin
g of Buck
Conve
r
ter
with and with
out
control p
u
lse
generator.
Figure 7. Buck Co
nverte
r u
s
ing Pul
s
e G
enerator at g
a
te
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 197 –
208
202
Figure 8. Buck Co
nverte
r u
s
ing
controlle
d Pulse Ge
ne
rator at gate
Based
on m
odel
s discu
s
sed
above, compa
r
ison is framed
prio
r to outputs o
b
taine
d
across Conve
r
ter 1, 2 and
3 for va
riabl
e temperature
and irradi
ance.
3.3. Variable Tempera
t
ure
The mea
s
u
r
e
m
ents for va
ri
able tempe
r
a
t
ure
are expressed u
s
in
g three m
odel
s
of Buck
Conve
r
ter in
Table
5. V
CONV
sho
w
s co
ntrol
fun
c
tion
usi
ng
Controlle
r to
obtain
voltage
stabili
zation. V
CONV1
uses stea
dy
spa
c
e mo
del
out
put follo
wed
by V
CONV2
th
at uses n
o
rmal
pulse given from Pulse G
e
nerato
r
. He
re
irradi
an
ce G
is ke
pt con
s
ta
nt at 1000 W/
m
2
.
Table 5. Simout Rea
d
ing
s
using Bu
ck
converte
r for T
°C
T
°C
V
OC
desired
V
CONV
With
Controller
V
CONV 1
With state
space
V
CONV2
With Pulse
Gene
rator
5 21.31
21.27
7.243
.01065
10 21.25
21.25
7.223
.01062
15 21.19
21.20
7.204
.01059
20 21.13
21.14
7.184
.01056
25 21.07
21.08
7.164
.01053
30 21.01
21.02
7.143
.01050
35 20.95
20.96
7.122
.01047
40 20.89
20.90
7.101
.01044
45 20.83
20.83
7.08
.01041
3.4. Variable Irradiance
To sho
w
vari
ation of irradi
ance G, the model
s are analyze
d
for three different irra
dian
ce
function
s
with co
nsta
nt temperature
at 25°
C.
The
s
e
are
step, co
nstant a
nd trape
zoid
al types.
Table 6 list
s
value
s
of Mod
e
l A and B for three differe
nt irradi
an
ce types.
Table 6. Pan
e
l and Conve
r
ter outp
u
t for variable tem
peratu
r
e a
nd
Irradi
an
ce G
T
°C
V
CONV
Converter output
(V
CONV 1
and V
CO
NV2
)
Constant G
Step G
Trapezoidal G
15 21.20
0.01082
0.01078
0.01080
20 21.14
0.01086
0.01082
0.01084
25 21.08
0.01092
0.01088
0.01090
30 21.02
0.01098
0.01094
0.01092
3.5. Variable Tempera
t
ure
and Irradian
ce
Since chan
gi
ng temperatu
r
e and irradi
ance par
ame
t
ers ma
nually
is time consuming,
automatic tun
e
blo
c
k i
s
int
r
odu
ced.
On
modelin
g va
ri
able
blo
c
k by
Simulin
k for t
e
mpe
r
ature a
n
d
irra
dian
ce pa
nel gives Ta
b
l
e 7.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Distri
buted M
PP Tracking
of PV through
Buck
Con
v
e
r
ter Using Fu
zzy
(Ch
and
ani
Sharm
a
)
203
Table 7. Pan
e
l output for variabl
e tempe
r
ature and Irradian
ce G
T
°C
Fixed Mod
e
l
Variable model
15 21.19
21.57
20 21.13
21.77
25 21.07
21.86
30 21.01
21.95
Thus,
to tra
c
e out fittest
solutio
n
for
MPP, voltage
nee
ds to b
e
stabili
ze
d fo
r results
clo
s
er to ST
C. Th
us Mod
e
l B giving
superi
o
r re
sult
s ove
r
A i
s
u
s
ed
for set p
o
int tra
c
king.
The
impleme
n
tation of controllers impro
v
es
perfo
rm
ance of Buck
Conve
r
te
r. Desi
gn a
nd
impleme
n
tation of FLC i
s
descri
bed b
e
l
o
w.
4.
Fuzz
y
Logic
Con
t
roller
A Cont
rolle
r
is u
s
ed
to e
s
tabli
s
h
cont
rol fun
c
tion
s for
conve
r
te
r to mo
nitor
desi
r
ed
curre
n
t, voltage or po
we
r at output o
f
panel.
Fig
u
r
e
9 sh
ows basi
c
bl
ock diagram
u
s
in
g
Controlle
r, PV and Conve
r
ter sub
s
y
s
te
m.
Figure 9. Block di
agram of
Controll
er
A fuzzy sy
stem is a
kno
w
led
ge-ba
se
d syst
em
wh
ich utilizes f
u
zzy if-then
rule
s an
d
fuzzy l
ogi
c in
ord
e
r to o
b
tain the
outp
u
t
of t
he
syste
m
. The
Fu
zzy logic contro
ller u
s
e
d
a
d
ju
sts
the converte
r duty cy
cle.
FLC can b
e
e
a
sily tun
ed
a
nd effici
ently
use
d
to
monit
o
r voltag
e o
u
tput
from p
anel
e
v
en und
er time varying
p
r
ocesse
s [7,
8]. The d
e
si
red o
u
tput is o
b
tained
by va
rying
the de
sig
n
p
a
ram
e
ters a
s
ea
ch
memb
ership fu
nc
tio
n
for tempe
r
ature, voltag
e an
d d
u
ty cycle.
The differe
nt pro
c
e
s
ses in
obtainin
g
co
n
t
rolled outp
u
ts from FL
C are given in Fig
u
re 10.
Figure 10. Proce
s
se
s used
in FLC
A two-i
nput
single-output f
u
zzy logi
c
co
ntrolle
r is de
sign
ed
with t
he inp
u
t vari
able
s
a
s
:
the error (E
) and chan
ge i
n
error (
∆
E)
scale
d
for voltage given by
Equation (12) and (13
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 197 –
208
204
E (n) =
1)
-
I(n
-
I(n)
1)
-
P(n
-
P(n)
(
1
2
)
∆
E (n
) = E (n
) – E (n-1
)
(13
)
The output va
riable i
s
duty cycle (D) of
the co
nverte
r given by Equation (14
)
.
D =
Vin
Vout
(
1
4
)
Variou
s process used in d
e
sig
n
ing
of F
L
C are de
scri
bed a
s
follows.
a) P
r
ocess
of Fu
zzifi
cation
: The i
nput v
a
ri
abl
es
in a fuzzy co
nt
rol
system
are mappe
d
into s
e
t
s
of membership func
tions
termed "fuzz
y
sets"
.
The p
r
o
c
e
s
s, of conve
r
ting a
crisp
inp
u
t
value to a fu
zzy valu
e, is calle
d "fuzzi
fication"
. The
input-o
utput
variable
s
u
s
ed, are given
in
Figure 11.
Figure 11. Input-Out
put variable
s
of the FLC
(a)
(-8 to 8
)
(b)
(-1
0 to 10)
(c
) (-
8 to 8)
Figure 12. Membe
r
ship fu
nction
s (a
) Error Inp
u
t (E) (b) ch
ang
e in error (
∆
E) a
n
d
(c
) Output (
D
)
The input vo
ltage value
s
are scal
ed
and no
rmali
z
ed into valu
es cl
oser to
21.07V.
Thro
ugh th
e membe
r
ship
function, the
related fu
zzy values
(0
~1) can
be e
s
timated for
ea
ch
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Distri
buted M
PP Tracking
of PV through
Buck
Con
v
e
r
ter Using Fu
zzy
(Ch
and
ani
Sharm
a
)
205
fuzzy de
scrip
t
or: NB, NS, Z, PS, and PB namely,
NB negative big, NS negati
v
e small, Z zero,
PS positive small and
PB positive bi
g. Gau
ssi
an me
mbershi
p
fun
c
tion
s with
0.5 cro
s
sovers
are
use
d
a
s
th
ey
appe
ar
sm
oot
h an
d n
on-ze
ro
at a
ll
point
s p
r
ovidin
g le
ss ove
r
shoot
and
und
ersho
o
t
with faste
r
Ri
se time. The
s
e are sho
w
n i
n
Figure 12.
The "map
pin
g
s" of input variabl
es into
membe
r
ship functio
n
s a
nd
truth value
s
help the
controlle
r to make d
e
ci
sio
n
s for
what a
c
tion is to be
taken b
a
sed
on a set of "rules".
b) Fu
zzy Rul
e
s: The di
stin
guishing ma
rk of Fuzzy Logic in “rule
-
based”. Th
e rule ba
se
impleme
n
ts the expert kno
w
led
ge in a form of IF-T
HEN rule
stru
ct
ure.
Table 8 sho
w
s the fuzzy logic rul
e
s fo
rm
ulated.
Table 8. Fu
zzy Rules
∆
E
E
NB NS Z
PS
PB
NB
Z Z NB
NB
NB
NS
Z Z NS
NS
NS
Z
NS
Z Z Z
PS
PS
PS PS PS Z
Z
PB
PB PB PB Z
Z
The 5
5-rule
matrix may be redefin
ed in
25 rule
s:
If E (n) is NB and
∆
E (n) NB, then D is Z.
If E (n) is NB and
∆
E (n) NS, then D is Z.
If E (n) is NB and
∆
E (n) Z,
then D is NB
.
If E (n) is NB and
∆
E (n) P
S
, then D is NB.
If E (n) is NB and
∆
E (n) P
B
, then D is NB.
If E (n) is NS and
∆
E (n) NB, then D is Z.
If E (n) is NS and
∆
E (n) NS, then D is Z.
If E (n) is NS and
∆
E (n) Z,
then D is NS
.
If E (n) is NS and
∆
E (n) P
S
, then D is NS.
If E (n) is NS and
∆
E (n) P
B
, then D is NS.
If E (n) is Z and
∆
E (n
) NB
, then D is NS.
If E (n) is Z and
∆
E (n
) NS
, then D is Z.
If E (n) is Z and
∆
E (n
) Z, then D i
s
Z.
If E (n) is Z and
∆
E (n
) PS, then D is Z.
If E (n) is Z and
∆
E (n
) PB, then D is PS.
If E (n) is PS
and
∆
E (n) NB, then D is PS.
If E (n) is PS
and
∆
E (n) NS, then D is PS.
If E (n) is PS
and
∆
E (n) Z,
then D is PS.
If E (n) is PS
and
∆
E (n) P
S
, then D is Z.
If E (n) is PS
and
∆
E (n) P
B
, then D is Z.
If E (n) is PB
and
∆
E (n) NB, then D is PB.
If E (n) is PB
and
∆
E (n) NS, then D is PB.
If E (n) is PB
and
∆
E (n) Z,
then D is PB.
If E (n) is PB
and
∆
E (n) P
S
, then D is Z.
If E (n) is PB
and
∆
E (n) P
B
, then D is Z.
Con
s
id
erin
g
any sp
ecifi
c
rule a
s
for exa
m
ple, (1
) whe
n
E is NB
an
d
∆
E is
NB, it means
that E is high
er than th
e voltage a
r
ou
n
d
MPP with a
small
∆
E in
voltage; we d
i
rectly a
ssi
gn
the
duty cycle
D to be Z fo
r the drive. B
y
using
su
ch
a medi
um
D, it is e
nou
gh to ma
ke
the
excee
ded E
decrea
s
in
g a
little back to a suita
b
le val
ue. (2
) When
E is Z and
∆
E is Z, it means
that E and
∆
E are
at the
medium
valu
es i
n
the
full
rang
e, i.e. E
is lo
we
r tha
n
the voltag
e
on
MPP. Then, we have to a
ssi
gn the dut
y cycl
e D to b
e
Z for the medium d
r
ive.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 197 –
208
206
c)
Defu
zzifica
t
ion metho
d
:
Defu
zzifi
catio
n
is th
e a
ggregation
of th
e D f
r
om
all rules, i.e.
the duty cy
cl
es from 2
5
rules mu
st be
com
puted
a
nd
combi
ned
for a
specifi
ed
cri
s
p valu
e of
output. Defu
zzifi
cation
m
e
thod
gives a qu
antitat
ive sum
m
ary, i.e. given the po
ssibi
lity
distrib
u
tion o
f
the fuzzy o
u
tput, defuzzification
am
o
unts to
sele
cting a sin
g
le
rep
r
e
s
entati
v
e
value that ca
pture
s
the
essential
meani
ng of the
given di
stributio
n. The
Defu
zzificatio
n met
hod
use
d
for the
pre
s
ent
ca
se
is the
centro
id met
hod
as this is th
e m
o
st prevalent
and p
h
ysi
c
al
ly
appe
aling of
all the defuzzi
fication meth
ods. It
is given by the alge
brai
c expression:
D =
(Dj)
Dj
-
(Dj)
1
1
n
j
n
j
(
1
5
)
Whe
r
e
D is t
he defu
z
zified value, Uni
on of t
he m
e
mbe
r
ship fu
nction
s i
s
found by the
MAX
aggregatio
n method an
d µ (Dj) i
s
the de
gree of the m
e
mbe
r
ship fu
nction.
The entire proce
s
s of Implication, Agg
r
egati
on a
nd
Defu
zzifi
catio
n
of the system is
shown in the
Rule View wi
ndow of Fuzzy Logi
c Tool
box as described by Figure 13 and 14.
Figure 13. Fu
zzy Rule Vie
w
er
Figure 14. Fu
zzy Rule Wi
zard
Figure 15 Fu
zzy Lo
gic
Co
ntrolle
r co
rrecting Conve
r
te
r output
Evaluation Warning : The document was created with Spire.PDF for Python.