TELKOM
NIKA
, Vol. 11, No. 8, August 2013, pp. 47
2
9
~4
734
e-ISSN: 2087
-278X
4729
Re
cei
v
ed Fe
brua
ry 16, 20
13; Re
vised
Ma
y 22, 20
13
; Accepte
d
May 31, 20
13
Analysis on Large Deformation Compensation Method
for Grinding Machine
Wang Ya
-jie*
1,2
, Huang Yun
1,2
, Zhang Die
1
, Zhu Den
g
-
w
e
i
3
1
State Ke
y
La
b
o
rator
y
of Mec
han
ical T
r
ansmission,
C
hon
gqi
ng Un
iversit
y
, Ch
ong
qi
ng, 400
04
4, Chin
a
2
Chon
gqi
ng En
gin
eeri
ng R
e
se
arch Ce
nter for Material Surfa
c
e Precisi
on m
a
chi
n
in
g an
d
w
hol
e set
equ
ipme
nts, Chon
gqi
ng, 40
0
021, Ch
in
a
3
Chon
gqi
ng sa
mhid
a grin
din
g
machin
e co., LT
D, Chong
qin
g
,
40002
1, Chi
n
a,
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
w
a
ng
ya
ji
ed
u
ck@16
3.com*, yu
nh
ua
ng@s
a
mhid
a.com,
916
53
663
4@q
q
.com
A
b
st
r
a
ct
T
he positi
oni
n
g
accuracy of
comp
uter nu
mer
i
cal co
ntrol
mach
in
es too
l
s and
ma
nuf
acturin
g
system
s is affected
by
structural def
or
m
a
tions, espec
ially for large s
i
z
ed s
ystem
s. Struct
ural defor
mations
of
the machi
n
e
b
ody are difficult
to mod
e
l and
to
pr
edict.
Rese
archs
for
the
di
rect
me
asure
m
ent of t
h
e
amou
nt of def
ormatio
n
an
d i
t
s comp
ens
ati
on ar
e farl
y l
i
m
ite
d
i
n
do
me
stic and
overs
eas, not i
n
vo
lv
ed to
calcul
ate th
e
amou
nt of d
e
formatio
n
co
mpens
atio
n.
A
new
metho
d
t
o
co
mp
ens
ate
larg
e d
e
for
m
ation
cause
d
by s
e
lf
-w
eight w
a
s pr
esente
d
i
n
the
pap
er. F
i
rs
t of all, the c
o
mp
e
n
satio
n
meth
o
d
is su
mmari
zed.
Then, static force ana
lysis w
a
s taken on th
e larg
e grin
din
g
mac
h
i
ne thr
oug
h APDL (A
NSYS Para
me
ter
Desig
n
L
a
n
gua
ge). It could
au
tomatic
extract
results a
nd
form
data files,
g
e
tting the
N p
o
i
n
ts disp
lace
me
nt
in the w
o
rking
stroke of mech
anic
a
l ar
m. T
hen, the math
e
m
atic
al
mod
e
l
and
corres
p
o
n
d
in
g flat
recta
n
gul
ar
function w
e
r
e
establ
ishe
d. T
he co
nc
l
u
sio
n
that the n
e
w
compe
n
satio
n
meth
od
is feas
ible
w
a
s obta
i
ne
d
throug
h the
a
nalysis
of d
i
sp
lace
ment
of N
poi
nts. F
i
nal
ly
, the MAT
L
AB
as a to
ol is
used to
calc
ul
ate
compe
n
sate
a
m
o
unt a
nd th
e
accuracy
of the pr
opos
ed
meth
od
is prov
ed. Practice s
how
s that the
erro
r
cause
d
by lar
g
e defor
mati
ion
compe
n
satio
n
meth
od ca
n meet the req
u
ire
m
e
n
ts of grind
i
ng.
Ke
y
w
ords
:
dis
p
lac
e
ment, co
mp
ens
ation, A
P
DL
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
As the ab
ra
si
ve belt grindi
ng tech
niqu
e adv
an
ce
s, its application range i
s
expa
nded [1
-
2]; howeve
r
, there a
r
e
still a lot of pro
b
lems
abo
ut the larg
e-sca
l
e NC gri
ndin
g
equi
pment
in
pro
c
e
ssi
ng of
large
wo
rkpi
ece. Th
e la
rg
e NC gri
ndin
g
equi
pment
sho
u
ld h
a
ve a larg
e st
ru
cture
size for machining large workpiec
es, but the larger
structure
size
will cause a large deform
ation
due to its own weight, so t
h
is will ma
ke
it difficu
lt to a
c
hieve p
r
e
c
isi
on co
ntrol for
the NC g
r
indi
ng
equipm
ent, and the machi
n
ing a
c
cura
cy of abrasive
ble grin
ding
machi
ne is
re
duced.
Figure 1. The
Structure of Lar
g
e
-scale NC
G
r
indi
ng Equipme
n
t
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 8, August 2013: 4729 –
4734
4730
The large-si
ze NC e
quipm
ent involved in this
pap
er i
s
a ce
rtain type ra
sp ma
chine, as
sho
w
n in Fi
gure
1, grin
ding 1 he
a
d
, 2 cro
s
sb
eam, 3 cro
ss
slide, 4
base fram
e, 5
parall
e
ltran
s
l
a
tion me
cha
n
ism, 6
Rota
ting Me
chani
sm, 7
su
ctio
n me
chani
sm, 8 the vertical
c
o
lu
mn
. W
h
en
th
e
c
r
oss
b
ea
m mo
ve
fr
om th
e
in
te
r
m
ediate piont to the other e
nd, its own weight
cau
s
e
d
by the large torqu
e
will lead to
a la
rge defo
r
mation of crossbe
a
m du
e to the heavy
weig
ht of hig
h
-po
w
e
r
abra
s
ive b
e
lt gri
n
ding
head
de
vices.
Wh
en
its 2
and
3 i
s
in the
extre
m
e
positio
n, the amount of d
e
f
ormation
rea
c
he
d 34m
m,
so it affect
s seriou
sly the
control a
c
cu
ra
cy
and poli
s
hin
g
preci
s
io
n.
In
the pro
c
e
s
s of
gri
ndi
n
g
, there
a
r
e
the
phen
omen
on
s of
gri
ndin
g
too
much o
r
too li
ttle, grinding
surfa
c
e q
ualit
y poor, and e
v
en burni
ng
workpi
ece.
Structu
r
al def
ormatio
n
s
of the machine
body
are difficult to mod
e
l
and to p
r
edi
ct. The
usu
a
l app
roa
c
h is
a mod
e
l
-ba
s
ed
pre
d
i
c
tion of st
ru
ctural defo
r
ma
tions, whi
c
h i
s
followed by
a
compensation of positio
ning errors. Reference [3-4] illustrate
s a different approach i
n
act
i
ve
error
com
p
e
n
satio
n
, whi
c
h exploits
a
new
me
a
s
u
r
eme
n
t syste
m
able to
p
r
ovide
real
-time
measurement
of the displ
a
cem
ent fiel
d of a
given
stru
ctural compon
ent, without any m
odel
about it
s dyn
a
mic/the
r
mal
stru
ctural b
e
h
a
vior. In
references [5], the
strate
gy of
evaluation
an
d
comp
en
satio
n
metho
d
ut
ilize
coo
r
di
n
a
tes m
e
a
s
u
r
ing ma
chi
n
e
(CMM) as
a ma
ster
ga
uge
becau
se
of its a
c
cu
ra
cy so that m
a
chin
e op
erat
o
r
de
vote him
s
elf t
o
ma
chini
ng
and
estimato
r of
acc
u
rac
y
dedic
a
te in
meas
urem
ent.In
res
p
ec
t of s
t
ruc
t
ural
de
formation forec
a
s
t
ing,
s
u
pport
vector re
gre
ssi
on t
r
aine
d
by pa
rticle
swarm
opt
im
ization
alg
o
ri
thm is ap
plied to
structu
r
al
deform
a
tion
predi
ction in
Refere
nces [6], and the
compa
r
i
s
on
of the forecasting results of
stru
ctural def
ormatio
n
bet
wee
n
PSO-S
VR and SVR
indicate
s tha
t
the foreca
st
ing perfo
rma
n
ce
of stru
ctural
deform
a
tion
of PSO-SVR is bette
r th
an that of SVR. In orde
r to enhan
ce
th
e
positio
ning a
c
cura
cy, a compo
s
ite se
n
s
or h
a
s be
en
design
ed an
d tested, whi
c
h allo
ws di
rect
and continuo
us mea
s
u
r
e
m
ent of geo
metrical defo
r
mation
s on
machi
ne st
ru
ctural el
eme
n
ts in
Referenc
es
[7].
Therefore,
re
sea
r
chs fo
r t
he direct m
e
asu
r
em
ent of
the amou
nt
of deform
a
tio
n
and its
comp
en
satio
n
are farly lim
ited in dome
s
tic and over
seas, not invol
v
ed to calcula
t
e the amount
o
f
deform
a
tion
comp
en
satio
n
[8-16]. This paper p
r
e
s
e
n
ts a ne
w m
e
thod for the
compe
n
satio
n
of
large d
e
form
ation in ord
e
r
to achieve p
r
eci
s
e po
sition
ing.
2. Present
th
e Large
-
de
fo
rmation Co
mpensa
tion Metho
d
As Figu
re 2 i
s
sho
w
n, A1
for A point b
e
fore the
def
ormatio
n
of the po
sition,
A2 for A
point after def
ormatio
n
po
si
tion. Therefo
r
e, if make
A point to A2 point position, A1 point po
sition
is the only on
e.
Figure 2
.
Th
e Location of the Before an
d After Deformation
T
o
r
e
a
liz
e
th
is
me
th
od
, s
t
ep
s
ar
e
as
fo
llo
w
s
:
First of all, the deformations
of the grin
ding
machi
ne in
space N different positio
ns and po
sture
are comput
ed, taking
compute
r
ing t
h
e
deform
a
tion
of the grindin
g
machi
ne in
the
plane in
this pape
r a
s
an exampl
e, and then the
sha
pe fun
c
tion is e
s
tabli
s
he
d, to Cal
c
ulate
the a
m
ount of co
mpen
sation
by interpolati
o
n
method. Fin
a
l
l
y, the amoun
t of comp
en
sation is i
n
tr
od
uce
d
into the
control p
r
og
ram, so th
at the
comp
en
satio
n
of large def
ormatio
n
ca
n be reali
z
e
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Analysis o
n
L
a
rge
Defo
rm
ation Com
pen
sation Meth
o
d
for Grin
ding
Machin
e (Wang Ya-ji
e
)
4731
3. The Displ
acemen
t Am
ount Solv
ing
and Da
ta An
aly
s
is
ANSYS orders is organi
zed by Ansys Param
e
tric Design
Language
(APDL) to compile
para
m
eteri
z
e
d
user p
r
og
ram,to re
alize param
ete
r
i
z
ation m
odel
ing, apply p
a
ram
e
tric l
o
ad
acq
u
irin
g sol
u
tion, solve
the displ
a
ce
ment am
ou
n
t, automatic extract solv
ing re
sult, a
n
d
gene
rate dat
a files as
well
as re
sult
s display after parametri
c pro
c
e
ss [17
-
20].
The emp
h
a
s
i
s
of this pap
er is to intro
duce the method for the
compen
satio
n
of large
deform
a
tion, so the mo
del
ing proc
ess
and si
mplification in ANS
YS is not discu
s
sed in d
e
t
ail.
The mod
e
l of grindi
ng ma
chine in ANSY
S, is sho
w
in Figure 3
:
Figure 3. The
Simplified Di
agra
m
of in FEM
The solvin
g
p
r
ocedu
re
:
Fi
rst step, ma
ke
the cro
s
s sli
de 3 in the ex
treme po
sitio
n
of the
above, and th
e cro
s
sbe
a
m
in the leftmost position.
Th
e se
con
d
ste
p
, the cro
s
sb
eam move
s ri
gh
t
every 0.2m
u
n
til the rig
h
tmost p
o
sitio
n
.
The
third st
ep, ma
ke the
cr
ossb
eam and cross sli
de
move down 0
.
2m, then cal
c
ulate the di
splacement a
m
ount of the point A in this position by st
atic
analysi
s
. The
fourth step, the crossb
ea
m move
left (the
negative
dire
ction
of x-axis) 0.2m e
a
c
h
time until the
limit position
of the left. The fifth
step, the crossbeam and
cross
slide m
o
ve down
0.2m; the la
st
step, it r
epe
a
t
the first
step
to the fifth st
ep unt
il th
e cross
slide i
n
th
e limit po
sitio
n
.
Mean
while, A
n
sys software do
static an
alysis i
n
eve
r
y move, and t
he value
of th
e point A i
n
t
he
X and Z dire
ction displ
a
ce
ment are
cal
c
ulated.
The m
obile process of point A in
Figure 3.
Figure 4. The
Mobile Pro
c
e
ss of Point A
The d
a
ta obt
ained
by Ansys sh
ows: (1) the di
spla
ce
ment data
of the nod
e in
e
a
ch
ro
w
(or
colum
n
) i
s
de
cre
a
si
ng
in Figure 4,
as sh
own in Figure 5 a
nd 6 ("X-coo
r
dinate" a
nd
"Z
coo
r
din
a
te" a
r
e same
as t
he coordinate
s
in Fig
u
re 2); (2) Th
e a
rra
y obtained
by
subtra
cting t
h
e
Z-directio
n di
spla
cem
ent a
m
ounts
of two adja
c
e
n
t no
des i
n
any ro
w or
col
u
mn i
s
de
crea
sing,
as
sho
w
n i
n
Fig
u
re
7 an
d 8
(t
he verti
c
al di
rection
re
pre
s
ents th
e valu
es
obtaine
d b
y
subtractin
g
the
displ
a
cement
amount
s of two adj
acent node
s in row
or col
u
mn, the tran
sverse digital n is
the
nth obtai
ned
by
subtracti
ng the
di
spl
a
cem
ent
am
ount of
the
node
in th
e
n+1th from
the
displ
a
cement
amount of the node in t
he nth); (3
)
In any row o
r
column in Fi
gure 4, the a
rray
achi
eved by
subtra
cting the
X-dire
ction
di
spla
cem
ent value of two
a
d
jacent nod
e
s
is n
o
t obvio
us
on deg
re
ssi
o
n
, as a re
sult
of the small d
i
spla
cem
ent amount of the
X-dire
ction (
<
0.165mm
)
.
As sho
w
n, thi
s
(Fig
ure 5, 6
,
7, 8) is
con
s
istent with the
practi
cal exp
e
rien
ce.
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 8, August 2013: 4729 –
4734
4732
Figure 5. The
Displ
a
cemen
t
of the X-dire
ction
(Unit mm
)
Figure 6.
The
Displ
a
cemen
t
of the Z-dire
ction
(unit mm)
Figure 7.
Th
e Value Obtai
ned by Subtracting
the X-dire
ctio
n Displa
ceme
nt of Adjacent
Nodes (Unit
mm)
Figure 8.
Th
e Value Obtai
ned by Subtracting
the Z-di
rectio
n Displa
ceme
nt of Adjacent
Nodes (Unit
mm)
4. Shape Fu
nction
If each p
o
siti
on of the poi
nt A is reg
a
rd
ed a
s
one
no
de an
d the di
spla
cem
ent a
m
ount of
the point A i
s
con
s
ide
r
ed
as the
displ
a
cem
ent am
ount of the
node, the
n
these no
de
s
can
con
s
titute a rectan
gle me
sh cell
s. Re
ctangul
ar
unit
4 Angle point
for node
s, the ce
nter in
the
origin, th
e
sid
e
of the
recta
ngula
r
el
eme
n
t is
pa
rallel
to the X,
Z axi
s
. Ea
ch
nod
e
2 di
spl
a
cem
ent
comp
one
nt, so unit were ei
ght degree
s o
f
freedom. As sho
w
n in Fig
u
re 9, ci
rcl
e
s
are no
de
s.
Figure 9.
Th
e Element Mesh
Assu
me th
at the d
e
form
ation i
s
conti
nuou
s i
n
the
eleme
n
t, then the
di
spl
a
cem
ent
amount
ca
n
be represent
ed by the
displacement
a
m
ount of its
node
(a
s
sho
w
n in
form
ul
a 1),
Displa
ceme
nt ha
s line
a
r
chang
e alo
ng
the unit e
dge
, and the
two fun
c
tion
ch
ange
alon
g t
h
e
other di
re
ctio
n. Its displa
ce
ment model i
s
:
Evaluation Warning : The document was created with Spire.PDF for Python.
TEL
K
refle
c
of c
o
com
m
follo
w
Whe
r
expr
e
5. C
o
rea
c
h
Whe
r
after
X-dir
e
num
e
one
b
com
p
can
b
6. C
o
cal
c
u
and t
less
0.25
m
c
u
tti
n
high;
Pap
e
adhe
base
d
defo
r
K
OM
NIKA
Analysis o
n
Whe
r
e t
h
c
t th
e
rigi
d b
o
o
nve
r
gen
ce;
m
on bo
u
nda
r
Expressi
o
w
s:
r
e
e
ssi
on
s c
an
b
o
mpensat
i
o
n
The poi
n
t
h
the poi
nt A
2
r
e A2_x
x
、
A
deform
a
tion
e
ction a
nd Z
Matlab i
s
e
ric
a
l cal
c
ul
a
b
y o
ne
unit
p
en
satio
n
q
u
b
e solve
d
. T
h
o
ntr
a
s
t
Veri
f
A
rbitra
ri
l
u
late the am
o
he di
spl
a
ce
m
Figure 1
than 0.
15m
m
m.Since th
n
g am
ou
nt, t
h
the carrier
e
r-
b
a
s
ed ma
t
s
i
ve also h
a
d
or
Pa
pe
r
-
b
r
m
a
tion a
m
o
u
n
L
a
rge
Defo
r
h
e co
nstant
t
o
dy di
spl
a
c
e
F
r
om th
e t
h
r
y is
conti
n
u
o
o
n of Unit di
s
are int
b
e obtai
ne
d
n
Fun
cti
on
t
A s
h
ould
b
2
.Thus, the
c
2_zz are
th
e
, that is
S
o
l
v
-direc
tion b
e
s
a
p
o
we
rful
a
tio
n
. Equati
by MAT
L
A
B
u
antity v
of t
h
h
e re
sult
sh
o
f
ication
l
y ch
oose
e
o
un
t o
f
de
f
o
m
ent by Ans
y
0 an
d 11 s
h
m, and t
he
is pap
er
i
s
m
h
e conta
c
tin
g
of the ab
ra
s
t
eri
a
l with
a
a
ve ver
y
go
o
b
a
s
ed mat
e
r
u
nt
sat
i
sf
y
t
h
e-I
r
m
a
tion Co
m
t
er
m an
d
th
e
e
me
nt an
d
c
o
h
eory of fin
o
u
s
too,so t
h
s
pl
ace
m
ent
w
e
r
polati
on
as:
b
e i
n
the po
s
c
om
pen
sa
ti
o
e
c
o
or
d
i
nat
e
v
ed out; and
e
fore deform
a
func
tion m
a
ons 2, Equ
a
B
. Therefo
r
e
h
e z-di
re
ctio
o
ws that the
s
e
ight test p
o
o
rmatio
n b
e
t
w
y
s.
h
ows that
:
t
h
er
ror v
a
lu
e
m
ai
nly stu
d
y
g
pre
s
su
re
b
s
ive g
r
ain o
f
ce
rtain
fl
e
x
o
d el
asti
c ef
f
ial and
cont
a
h
e requi
rem
e
SSN: 2087
-
2
m
pen
sation
M
e
coefficient
o
o
n
s
tant stra
i
ite element,
h
e entire unit
w
hic
h
is thro
func
tions,
s
s
ition of A1
b
o
n function
s
a
e
values of
p
A1_xx
、
A1
_
a
tion, whi
c
h
a
the
m
at
ical t
a
tion 3 and
E
e
, the
c
o
mp
e
n and the
c
o
s
olutio
n is th
o
in
ts
on
a
s
w
ee
n the
c
a
h
e erro
r valu
e
of the Z-d
i
on the
ab
ra
s
b
etwe
en the
the grindin
g
x
ibility. In a
d
f
ec
t; Bec
a
u
s
a
ct wh
eel i
s
e
nts of the g
r
2
78
X
M
e
t
hod
fo
r
G
r
o
f o
ne
d
egr
e
i
n,
so it
can
the dis
p
la
c
plane are c
o
ugh the
ele
m
s
up
po
se t
h
b
efore d
e
for
m
a
re:
p
oint A in t
h
_
zz the coo
r
d
is the unkn
o
ool
s, wh
ich
E
quation 4
a
e
nsation q
u
a
o
or
d
i
na
te
v
a
e only and
e
s
traight line,
a
lcul
ated d
e
f
e
of the X-d
i
i
rectio
n def
o
s
ive belt gri
n
conta
c
t whe
g
belt is co
n
d
dition, the
r
s
e
of the def
o
large, thi
s
m
r
i
nding.
r
in
ding
Mac
h
e
e term
a1,
a
meet the n
e
c
e
m
ent bet
w
o
ntinuou
s.
m
ent no
da
l d
h
at
m
ation if th
e
h
e X-directi
o
d
inate value
o
wn.
can reali
z
e
a
re sy
nt
h
e
si
z
a
ntity u of t
h
a
lues A1
_xx
、
e
ffec
t
ive.
and
the
m
f
ormatio
n
a
m
i
re
ction d
e
fo
o
rmation am
n
der with hig
h
e
l
and
work
p
st
ituted by
t
r
ubbe
r cont
a
o
rmatio
n a
m
m
ethod e
r
ro
r
h
in
e (Wang
Y
a
2, a
3
, a5,
a
e
cess
ar
y c
o
n
w
ee
n the un
ispla
c
em
en
t
e
point A n
e
e
o
n
and Z-dir
s
of
point
A
data an
alys
i
z
ed, then s
o
h
e x-dire
ctio
、
A
2_zz of p
ethodi
cal e
r
m
ount with
M
rmatio
n a
m
o
ount is les
s
h
-spe
ed a
n
d
p
i
e
ce can b
e
t
he cloth-ba
s
a
ct w
h
eel a
n
m
ount of the
r
o
f
calculati
n
Y
a-ji
e)
4733
a
6, a
7
n
dit
i
on
its on
is as
, the
e
ds
to
ec
tio
n
in the
i
s and
o
lve in
n
、
t
he
oi
nt A
r
ror
of
M
atla
b
o
unt is
s
t
h
an
d
la
rg
e
e
qu
ite
s
ed o
r
n
d the
cl
ot
h-
n
g t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 8, August 2013: 4729 –
4734
4734
Figure 10. Th
e Erro
r Value
of the X-dire
ction
Deformation Amount
(unit mm)
Figure 11. Th
e Erro
r Value
of the Z-dire
ction
Deformation Amount
(unit mm)
7. Conclusio
n
Due
to the
la
rge
structu
r
e
size of th
e la
rg
e
-
si
ze
gri
n
ding
equip
m
e
n
t, if the stiffness
of
the gri
ndin
g
equipm
ent in
cre
a
se, its
weight
will
in
crease too, th
e
r
efore, the
e
quipme
n
t will
be
particula
rly p
onde
ro
sity. Throu
gh th
e la
rge
defo
r
mati
on
comp
en
sa
tion metho
d
pre
s
ente
d
in
this
pape
r, cal
c
ul
ate the comp
ensation am
ount in a
certain position
and po
st
ure, and the error is
accepta
b
le, a
nd then
the
compen
satio
n
amount i
s
int
r
odu
ce
d into
the co
ntrol
progra
m
. So thi
s
method
can
b
e
abl
e to
com
pen
sate fo
r th
e defo
r
matio
n
ca
used
by its own
weig
ht.
Ho
wever,
du
e
to the finite element a
nal
ysis h
a
s
ce
rtain erro
r, an
d nee
ds a
n
u
mbe
r
of me
sured
sam
p
l
e
s to
ensure the
correct result
s of finite element anal
ysi
s
, so this p
a
per p
r
op
oses the comp
en
sation
method is
sui
t
able for the large d
e
form
a
t
ion.
Ackn
o
w
l
e
dg
ements
The wo
rk
i
n
t
h
is pape
r
i
s
suppo
rted by
the
n
a
tional n
a
tural scien
c
e
foun
dation of
Chi
na
“Re
s
e
a
rch
on
CNC Ab
ra
si
ve Belt Grin
d
i
ng for A
e
ro
n
autical E
ngin
e
Blade
” (NO
.
51275
545
) a
nd
we are grateful to it.
Referen
ces
[1]
Hua
ng Yu
n, Hua
ng Z
h
i. Moder
n abras
iv
e belt gr
i
ndi
n
g
techno
lo
g
y
and e
ngi
ne
eri
ng ap
plic
atio
n.
Cho
ngq
in
g: Ch
ong
qin
g
un
iver
sit
y
press. 2
0
0
9
.
[2]
Hua
ng Yun, H
uan
g
Z
h
i.
Dev
e
lo
pment an
d ke
y
tech
no
log
i
es of
abr
asive
be
lt
gri
n
d
i
ng.
20
07; (
18)
:
226
3-22
67.
[3]
Bosetti Pa
olo,
Bruschi Stef
ani
a. Enh
anci
ng
posit
i
oni
ng acc
u
rac
y
of CNC machi
ne
to
ols b
y
mea
n
s o
f
direct me
asur
ement of
defo
rmation.
Inter
n
ation
a
l J
ourn
a
l
of Adva
nced
Manufactur
i
ng
T
e
chno
lo
gy.
201
2; 18(5): 65
1-66
2.
[4]
Bosetti Paolo,
Bertol
azzi Enrico, Bira France
sco, De Cecco Mariolino.
A new
direct defor
matio
n
m
e
asur
em
ent
system
to enhance
positi
oning
accur
a
cy of machine tools
. 200
6 ASME
Internati
o
n
a
l
Mecha
n
ica
l
En
gin
eeri
ng C
ong
ress and E
x
p
o
s
ition. 20
06: 76
9-77
7.
[5]
Morimoto Yos
h
itaka, Ichi
da
Yoshi
o
,Ohash
i
T
o
sh
inor
i, Sa
to R
y
unos
uke,
Kato Katsuhi
ko. Stud
y
on
accurac
y
com
p
ensati
on of a machi
n
in
g cent
er bas
e
d
on m
easur
ement re
sults of machin
ed
w
o
rk
piec
e
measur
ement
and c
o
mpe
n
s
a
tion
of ge
ometric an
d
dim
ensi
ona
l error
of three orth
ogo
nal
a
x
e
s
.
Internatio
na
l Journ
a
l of Dig
ita
l
C
onte
n
t T
e
chnol
ogy a
nd its Appl
icatio
ns
. 2
003; 69(
12): 17
18-1
723.
[6]
YIN Z
i
hon
g, LI
y
u
a
n
fu. Structural Deform
a
t
i
on F
o
rec
a
stin
g Base
d On Supp
ort Vecto
r
Regress
i
o
n
T
r
ained B
y
Pa
rticle S
w
a
rm
Optimizatio
n
A
l
gorit
hm.
AISS: Advanc
es in
Informatio
n
S
c
ienc
es a
n
d
Service Sci
enc
es
. 2012; 4(
5): 130 – 1
36.
[7]
Biral F
r
a
n
cesc
o, Bosetti
Pao
l
o,
Oboe
R
ober
to, T
ondini
F
r
a
n
cesco.
A
n
e
w
dir
e
ct def
ormation
se
nso
r
for active c
o
mp
ens
ation
of
positi
oni
ng
e
rrors in
larg
e
mi
lli
ng
machi
nes
. 9th IEEE
Internati
ona
l
W
o
rkshop o
n
Advanc
ed Moti
on Co
ntrol. 20
06: 126-
13
1
[8]
Upa
d
rasta M, Pedd
ieso
n Joh
n
, Bucha
nan G
eorg
e
R.
Elasti
c compens
atio
n simul
a
tion
of elastic/p
l
asti
c
axis
ymmetric c
i
rcular
plate b
end
ing
us
in
g a
deformatio
n
mode
l. Internat
ion
a
l
Jour
na
l o
f
Non-Li
near
Mechanics
. 20
06; 44(3): 3
77-
387.
Evaluation Warning : The document was created with Spire.PDF for Python.