Indonesian Journal of
Electrical
Engineer
ing and
Computer Science
V
o
l. 10
, No
. 3, Jun
e
20
18
, pp
. 84
0
~
84
6
ISSN: 2502-4752,
DOI: 10.
11591/ij
eecs.v10
.i3.pp840-846
8
40
Jo
urn
a
l
h
o
me
pa
ge
: http://iaescore.c
om/jo
urnals/index.php/ijeecs
Multiwavelength Fiber
Laser based on Bidire
ctional Lyot Filter
in Conjunction with Intens
ity Dependent Loss Mechanism
A. H. Sulaim
a
n
1
,
N.
M
d
. Yuso
ff
2
, N.
A
.
Ch
olan
3
, M. A.
Ma
hdi
4
1,4
Wireless and
Photonics Netw
orks Resear
ch
C
e
nter
, Faculty
of
Engin
eering
,
U
n
iversiti Putra Malay
s
ia, 43400 S
e
rdang,
Selangor, Malaysia
1
Institute of Pow
e
r Eng
i
neering,
Univ
ersiti
Ten
a
g
a
Nasional, Jal
a
n
IKRAM-
UNIT
E
N, 43000
Kajang, Sel
a
ngor, Malay
s
i
a
2
Razak
School
o
f
Engin
eering
&
Advantaged
T
e
c
hnolog
y
,
Univ
er
siti T
e
knolog
i M
a
la
y
s
i
a
Kual
a
Lu
m
pur, Jalan
Sult
an
Yah
y
a Petr
a, 54
100 Kuala Lump
ur, Malay
s
ia
3
Department of Communication E
ngineering,
Faculty
of Electrical and Electr
oni
c
s
Engine
ering
,
U
n
iversiti
Tun
Hussein
Onn Malay
s
ia, 8
6400 Batu
Pahat, Johor
, Malay
s
ia.
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Ja
n
9, 2018
Rev
i
sed
Mar
10
, 20
18
Accepted
Mar 23, 2018
W
e
experim
e
nt
all
y
dem
onstrat
e a m
u
ltiwave
l
ength fiber
las
e
r (MW
F
L)
based on bidirectional
Ly
ot filter
. A
semiconductor optical
amplifier (SOA)
is used as the
gain m
e
dium
, while
its com
b
ination with
polariz
ation
controllers (PCs) and polarization beam
com
b
iner (P
BC) induces
intens
i
t
y
dependen
t
loss (IDL) mechanis
m. The
IDL m
echanis
m
acts
as
an intens
i
t
y
equal
i
zer
to fl
att
e
n the m
u
lt
iwav
eleng
t
h s
p
ect
ru
m
,
which can
be
obtain
e
d a
t
a
cert
a
in polar
iz
ati
on s
t
ate. Us
ing differen
t
ratio of
optical s
p
li
tter
has
affect
ed
to m
u
ltiwave
l
en
gth fla
t
ness degr
adat
ion. Subseq
uentl
y
,
when we
rem
oved
a
polari
zer in th
e setup, th
e ex
tinc
t
i
on ratio (ER)
is decre
a
sed. Ul
tim
ate
l
y, wit
h
two segm
ents of polari
z
a
tion m
a
intain
i
ng fib
e
r (
P
MF), two chan
nel spacings
can b
e
achieved
due to
splicing s
h
ift of
0°
and 90
°.
K
eyw
ords
:
Bid
i
rectio
n
a
l Lyo
t
filter
In
ten
s
ity d
e
pend
en
t l
o
ss
Mu
ltiwav
elength
fi
b
e
r laser
Sem
i
cond
uct
o
r
o
p
t
i
cal
a
m
p
lifier
Copyright ©
201
8 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
A. H.
S
u
laim
an,
In
stitu
te
o
f
Power Eng
i
n
e
ering
,
Un
i
v
ersiti
Tenag
a
Nasion
al,
Jalan
IK
R
A
M-U
N
I
T
EN
,
4300
0 K
a
j
a
n
g
, Sel
a
n
gor
, Malaysia
Em
ail: abdulha
di@uniten.edu.m
y
1.
INTRODUCTION
M
W
FL
h
a
s
b
e
co
m
e
o
n
e
of th
e m
a
in
attrac
tio
n
s
in
ph
o
t
on
ics research
co
mm
u
n
ities.
Th
e typ
e
of
co
m
b
filters that h
a
v
e
b
een used
for m
u
ltiwav
eleng
t
h g
e
neratio
n are Fab
r
y-p
e
ro
t
filter [1
], Mach Zeh
n
d
e
r
in
terfero
m
e
ter
[2
], Lyo
t
filter [3
, 4
]
and
array wav
e
gu
id
e
g
r
ating
[5
] an
d
two–
stag
e Sag
n
ac loop
filter [6]
.
Lyo
t
filter-b
ased
M
W
FL is an
attractiv
e cho
i
ce for m
u
ltip
le laser g
e
n
e
ratio
n
du
e to
its q
u
a
lities su
ch
as low
o
p
tical lo
ss and
sim
p
le stru
ctu
r
e. Mo
st of
M
W
FL
b
a
sed
o
n
t
h
e Lyo
t
filter h
a
v
e
u
s
ed
an
erb
i
u
m
-d
oped
fib
e
r
a
m
p
lifier (EDFA) as t
h
e g
a
i
n
m
e
d
i
u
m
[7
, 8
]
. Ho
wev
e
r, th
e ex
isten
ce
of h
i
gh
m
o
d
e
co
m
p
etitio
n
in
EDFA-
b
a
sed
M
W
FL l
i
m
i
ts th
e n
u
m
b
e
r of laser lin
es p
r
od
u
c
ed
b
y
th
e syste
m
. Th
e h
i
gh
m
o
d
e
co
m
p
etitio
n
in
EDFA
is d
u
e
to
its gain
m
e
d
i
u
m
c
h
aracteristic of n
a
tu
rally
ho
mo
g
e
n
e
o
u
s th
at lead
s to
un
stab
le lasin
g
lin
es. Th
i
s
co
nd
itio
n should
b
e
ev
ad
ed in M
W
FL system th
at targ
ets
h
i
gh
nu
m
b
er
of lin
es,
un
less
an
ad
d
ition
a
l dev
i
ce is
in
serted in
to th
e co
nfigu
r
ati
o
n setup
to red
u
c
e th
e m
o
d
e
co
m
p
etitio
n
.
Th
e
d
e
v
i
ce to
redu
ce the m
o
d
e
co
m
p
etitio
n
is
p
i
ezo-electric tran
sdu
cer
[9
],
h
i
gh
ly n
o
n
lin
ear fib
e
r [8
], non
lin
ear
p
o
l
arizatio
n
ro
tatio
n
effect
[10
]
o
r
po
larizatio
n
d
e
p
e
nd
ent iso
l
ato
r
[11
,
1
2
]
, wh
ich
inad
v
e
rten
tly in
creased
th
e co
m
p
lex
ity an
d
lo
ss to
th
e
l
a
ser st
ruct
u
r
e.
R
a
m
a
n am
pl
i
f
i
cat
i
on i
s
a vi
abl
e
al
t
e
rnat
i
v
e
due t
o
i
t
s
i
n
h
o
m
ogeneo
u
s b
r
oade
ni
n
g
,
but
a hi
gh
pum
p po
wer i
s
requi
red t
o
i
n
duce t
h
e ef
fect
t
hus l
ead
s to inefficient M
W
FL syste
m
. The MW
FL base
d on
SO
A [
5
]
,
[
1
3]
were
pr
o
v
ed i
n
havi
ng
a st
abl
e
and
fl
at
m
u
l
t
i
w
avel
en
gt
h
sp
ect
rum
due t
o
i
t
s
i
nhom
oge
n
e
no
us
g
a
in
bro
a
d
e
n
i
ng
th
at can
suppress t
h
e m
o
d
e
co
m
p
etitio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Multiwavelength Fiber
L
a
ser
bas
ed
on Bi
dir
ectional
Ly
ot F
ilter in
Conj
unction … (A. H.
Sul
aiman)
84
1
Add
itio
n
a
lly, p
r
ev
iou
s
research
es
o
n
Lyo
t
filter-b
ased
M
W
FL op
erated
so
lely in
un
id
irection
a
l
co
nfigu
r
ation
[3
], [1
4
]
, thu
s
raisin
g
t
h
e opp
ortun
ity to
ex
p
l
o
r
e the po
ten
tial o
f
Lyo
t
filter in
b
i
d
i
rectio
n
a
l
o
p
e
ration
[15
,
1
6
]
. Ev
en
thoug
h, w
e
h
a
v
e
i
n
v
e
stig
ated
an ad
v
a
n
c
ed
m
e
ch
an
ism
o
f
b
i
d
i
rection
a
l Lyo
t
filter
[1
7]
, t
h
e i
nve
s
t
i
g
at
i
on i
s
onl
y
done at
seve
ral
vari
at
i
o
ns of S
OA c
u
r
r
e
n
t
,
com
p
ari
s
on
of
uni
di
rect
i
o
n
a
l
and
b
i
d
i
rection
a
l co
nfigu
r
ation
,
variatio
n
o
f
po
l
a
rizatio
n
an
g
l
e and
laser stabilit
y. In th
is article,
m
o
re d
e
t
a
ils on
sp
ectru
m
v
a
riatio
n
is in
v
e
stigated
for M
W
FL b
a
sed
on
b
i
directio
n
a
l Lyo
t
filter. Th
e
m
u
ltiwav
eleng
t
h
fl
atn
e
ss
is d
e
grad
ed
at d
i
fferen
t
rati
o o
f
o
p
tical sp
l
itter wh
ile
th
e ER v
a
lu
e is d
ecreased
with
po
larizer
rem
o
v
a
l.
Ulti
m
a
tel
y
, with
d
i
fferen
t
sp
li
cin
g
sh
ift i
n
between
t
h
e
two
seg
m
en
ts o
f
PMF, th
e ch
ann
e
l spacing
is
v
a
ried
due
t
o
t
h
e c
h
a
n
ge
of
ef
fect
i
v
e
l
e
ngt
h
.
2.
E
X
PE
RI
MENT
AL SE
TUP
Fig
u
re
1
illu
strates th
e laser stru
ct
u
r
e in
a
ring
cav
ity. Th
e gain
m
e
d
i
u
m
is
an
SOA, driv
en
b
y
a laser
d
i
od
e con
t
ro
ller
f
r
o
m
I
L
X
Lig
h
t
w
a
v
e
, mo
d
e
l LD
C
-
3900
. Th
is Qph
o
t
o
n
i
cs SO
A
(Q
SO
A-
155
0)
h
a
s an
ope
rat
i
n
g m
a
xim
u
m
curre
nt
an
d a ce
nt
er
wa
vel
e
n
g
t
h
of
4
0
0
m
A
and
1
5
30
nm
, res
p
ect
i
v
el
y
.
In
t
h
i
s
expe
ri
m
e
nt
, two t
y
pes
o
f
P
C
s are use
d
.
PC
1 ha
s t
h
ree
pl
at
es whi
c
h
i
s
m
a
de from
a t
y
pe of a
n
i
s
ot
r
opi
c
birefringe
nt material. PC1 ha
s the
di
sa
dva
nt
age
of hi
gh los
s
beca
use
the
l
i
ght propagate
s
in free
s
p
ace whe
n
passing through the
plates. T
h
e hi
gh l
o
ss is
also beca
use
t
h
e plates are e
x
pos
ed t
o
dus
k
,
whic
h can de
grade its
per
f
o
r
m
a
nce.
The e
n
t
i
r
e
pl
at
es o
f
PC
1 ca
n
m
a
nual
l
y
adj
u
st
any
p
o
l
a
ri
z
a
t
i
on a
ngl
e i
n
36
0°
r
o
t
a
t
i
on
wi
t
h
a
m
i
nim
u
m
set
t
i
ng
of
5°. I
n
t
h
e
m
eant
i
m
e
, PC
2 i
s
a fi
ber P
C
wi
t
h
i
t
s
pl
ate i
s
based o
n
l
o
o
p
e
d
fi
be
r. P
C
1 i
s
b
e
tter as co
m
p
ared
to
PC2
in ter
m
s o
f
po
larizatio
n
ad
ju
st
men
t
an
d
wavelen
g
t
h
stab
ility. In
th
is
work
, th
e
qua
rter wa
ve
plates of PCs
are use
d
to change the
po
l
a
r
i
zat
i
on st
at
e of l
i
ght
t
o
either circular, linear or
ellip
tical p
o
l
arizatio
n
.
In
th
e
mean
ti
m
e
, th
e
h
a
lf wav
e
p
l
at
e o
f
th
e PCs wo
rk
to
adju
st th
e po
larizatio
n an
g
l
e,
whi
c
h i
s
t
h
e
a
ngl
e
bet
w
ee
n
pol
a
r
i
zat
i
on
di
rect
i
o
n
o
f
l
i
g
ht
an
d t
h
e
bi
re
fri
nge
nt
a
x
i
s
o
f
t
h
e PM
F
.
At
l
east
t
w
o
PC
s are
nee
d
e
d
i
n
t
h
i
s
SO
A
-
base
d M
W
FL t
o
ac
hi
eve
t
h
e best
m
u
lt
iwav
elen
g
t
h
o
p
eration
d
u
e
to
po
lari
zatio
n
d
e
p
e
nd
en
ce of
th
e SO
A (
a
r
oun
d 0.5 d
B
)
[
18].
Wh
en
t
h
e PC i
s
co
m
b
in
ed
wi
th
th
e
PMF, a
Lyo
t
f
ilter is fo
rm
ed
[8
], wh
i
c
h
can
‘slice’ t
h
e
ASE
of
SOA in
to
m
u
lt
iwav
eleng
t
h
laser. In
th
is
work
, two
PCs
are co
m
b
in
ed
to
fo
rm
a b
i
d
i
rectio
n
a
l Lyo
t
filter. The
bi
di
rect
i
o
nal
L
y
ot
has
t
h
e m
o
st
opt
i
m
u
m
perf
orm
a
nce w
h
en t
h
e
opt
i
cal
po
we
r at
poi
nt
A a
n
d B
a
r
e
equal
.
From
the m
eas
urem
ent, the
optical powe
r at both
poi
nt
s are approxim
a
tely 1 m
W
at SOA c
u
rrent
of 350 m
A
.
A se
gm
ent
of
PM
F i
s
use
d
as a
bi
re
fri
ng
ent
de
vi
ce,
wi
th
its leng
th
fix
e
d
at
53
.2
m
fo
r th
e
en
ti
re
d
a
ta
gat
h
e
r
i
n
g. Thi
s
Pan
d
a
-
t
y
pe P
M
F
has
hi
g
h
b
i
refri
nge
nce va
l
u
e of 4.
5
× 10
-4
, wh
ich is app
r
op
r
i
ate in obtain
i
n
g
a nar
r
o
w
cha
n
nel
sp
aci
n
g
.
A
PB
C
i
s
em
pl
oyed as a
l
i
ght
c
o
m
b
iner a
n
d also as
a polariz
e
r.
No PC is i
n
serte
d
bef
o
re t
h
e PB
C
i
nput
s t
o
si
m
p
li
fy
t
h
e set
up. The PB
C
co
m
b
i
n
at
i
on wi
t
h
SOA i
n
duce
s
t
h
e IDL m
echani
s
m
i
n
pr
o
duci
ng a fl
a
t
m
u
l
t
i
w
avel
en
gt
h sp
ect
rum
wi
t
h
hi
g
h
n
u
mber
of lines as well as
high E
R
. In the m
eantim
e
, a
5
0
/
5
0
op
tical sp
litter is u
s
ed
t
o
ev
en
ly d
i
stri
b
u
t
e the lig
h
t
fro
m
th
e SOA ou
tpu
t
to
th
e
b
i
directio
n
a
l Lyo
t
filter.
The t
w
o
ci
rc
ul
at
ors,
on
t
h
e
o
t
her
ha
nd
are
use
d
as
a
bri
d
ge t
o
r
o
ut
e t
h
e
l
i
ght
fr
om
SO
A t
o
t
h
e
bi
di
re
ct
i
onal
Lyo
t
filter, and rero
u
t
e th
e ligh
t
to
PBC. Ot
her fu
n
c
tion
of th
e circu
l
at
o
r
s i
s
to
p
r
ev
en
t the lig
h
t
fro
m
th
e SOA
in
pu
t to
p
a
ss t
h
roug
h
t
h
e
b
i
d
i
rectio
n
a
l Lyo
t
filter. Ev
en
tu
all
y
, an
ou
tpu
t
splitter o
f
1
0
/
9
0
is u
s
ed
to ex
t
r
act th
e
m
u
ltiwavelength spect
rum
output to
an
OSA. For th
e en
tire d
a
ta acqu
isitio
n
stag
e, th
e
OSA reso
lu
ti
on
an
d
sen
s
itiv
ity setti
n
g
is fi
x
e
d at 0.02
n
m
an
d
h
i
gh
1,
resp
ectiv
el
y.
Fig
u
re
1
.
Th
e stru
ctural v
i
ew
o
f
m
u
ltiwav
elen
g
t
h
laser
setup
b
a
sed
o
n
b
i
d
i
rectio
n
a
l Lyo
t
filter
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
84
0 – 84
6
84
2
3.
P
R
IN
CI
PLE OF O
P
E
RATI
O
N
Th
e
p
r
in
ci
p
l
e
o
f
op
eration
in g
e
n
e
rating
the
m
u
ltiwav
elen
g
t
h
sp
ectru
m
b
a
sed
on
th
e
b
i
d
i
rection
a
l
Lyo
t
filter is d
e
scrib
e
d
as fo
llo
ws.
At first,
th
e lig
h
t
fro
m
SOA is eq
u
a
ll
y sp
litted
v
i
a 5
0
/
5
0
o
p
tical sp
litter.
Sub
s
equ
e
n
tly, th
e sp
litted
lig
h
t
s rou
t
ed
to
Circu
l
ato
r
1
an
d
Circu
l
ato
r
2
b
e
fore m
a
k
i
n
g
a clo
c
kwise an
d
co
un
ter-clo
c
kwise d
i
rectio
ns, resp
ectiv
ely
.
In
the reg
i
on
o
f
b
i
d
i
rectio
n
a
l Lyo
t
filter,
t
h
e
ligh
t
s co
un
ter
propagate
d
to
each ot
her. The polariza
tion
directions of the light are
finely
adjuste
d
by the half wa
ve plates
o
f
PC
1
and
PC
2
to
45
°
with
resp
ect to
th
e
b
i
refring
e
n
t
ax
is o
f
th
e
PMF. It
is worth
no
ting th
at, th
e Lyo
t
filter
req
u
i
r
es
4
5
°
of
pol
a
r
i
zat
i
on a
ngl
e i
n
bet
w
e
e
n
t
h
e
pol
a
r
i
zat
i
on
di
rect
i
o
n
of
l
i
ght
an
d bi
ref
r
i
n
gent
a
x
i
s
o
f
PM
F
so t
h
at
d
o
ubl
e
ref
r
act
i
on
of l
i
ght
ca
n occ
u
r i
n
t
o
t
w
o
ort
h
o
g
onal
l
i
g
ht
s o
f
o
r
di
nary
an
d e
x
t
r
ao
rdi
n
ary
st
at
es. I
n
th
e PMF, th
e lig
h
t
s are trav
ell
e
d
in th
e
fast a
n
d slow a
x
es
of the
PMF at di
ffe
rent s
p
ee
d
due to their re
fractive
i
nde
x di
f
f
ere
n
ce. The
n
, t
h
e com
b
i
n
at
i
on o
f
t
w
o l
i
ght
s cr
eat
es phase di
f
f
ere
n
ces.
Here
, do
u
b
l
e
const
r
uct
i
v
e
in
terferen
c
es occu
r sim
u
ltan
e
o
u
s
ly and
fi
n
a
lly g
e
n
e
rate a sin
e
-lik
e tran
smissio
n
,
bu
t with
cond
itio
n
th
at b
o
t
h
l
i
ght
s i
n
t
h
e
axes
of
t
h
e
P
M
F ha
vi
n
g
t
h
e sam
e
am
pl
itude
an
d
p
o
l
a
r
i
zat
i
on st
at
e o
f
l
i
g
ht
.
Due
t
o
t
h
e
b
i
d
i
rection
a
l Lyo
t
filter,
d
oub
le con
s
tru
c
tive in
terfere
n
ces are
o
ccured
to
resh
ap
e t
h
e
lig
h
t
s and
leads to
a
flatter m
u
ltiwa
v
elength spect
rum
.
Both int
e
rfe
red light
s
from
each ends of
PMF
are
then com
b
ined and
p
o
l
arized
in
PBC.
W
h
en
th
e
lig
h
t
is arri
v
e
d at th
e 1
0
/
9
0
ou
tpu
t
sp
litter,
1
0
% of th
e ligh
t
wen
t
to
OSA,
wh
ile
th
e o
t
h
e
r 90
%
was
fed b
a
ck
i
n
to
t
h
e
ring
cav
ity to
con
tinue th
e laser oscillatio
n
.
4
.
R
E
SU
LTS
AND
D
I
SCU
S
S
I
O
N
S
At first,
we investigated t
h
e perform
a
nce of
m
u
l
t
i
w
avel
e
ngt
h spect
rum
whe
n
t
h
e
50/
50
of
o
p
t
i
cal
sp
litter is rep
l
aced
with
o
t
h
e
r sp
littin
g
ratio
. Figu
re 2
sh
ows t
h
e m
u
ltiwav
eleng
t
h sp
ectra at d
i
fferen
t
op
tical
sp
litter o
f
1
0
/
90
, 30
/70
an
d
50
/50
.
Fro
m
th
e fig
u
re, it is cle
a
rly sh
own
t
h
at th
e wav
e
leng
t
h
reg
i
on
, th
e
nu
m
b
er
o
f
lin
es
and
the
m
u
ltiwav
elen
g
t
h
flatn
e
ss are red
u
c
ed
with
larg
er i
n
ten
s
i
t
y d
i
fferen
ce
between
p
o
i
n
t
A and
B.
Th
e
n
u
m
b
e
r
o
f
lin
es is m
easu
r
ed
at
3
8
,
7
8
an
d
96
with
in
5
d
B
b
a
nd
wi
d
t
h
b
a
sed
on
th
e sp
littin
g
ratio
o
f
1
0
/
9
0
,
3
0
/
7
0
an
d
50
/
5
0, resp
ectiv
ely. Mu
ltiwav
elen
g
t
h
sp
ectrum b
a
sed
o
n
10
/90
o
f
sp
litti
n
g
ratio
h
a
s th
e wo
rst
flatn
e
ss
b
e
tween
th
e
o
t
h
e
r two
sp
litters sin
ce th
e ligh
t
is
trav
elled
at the lo
west in
ten
s
ity at
th
e 1
0
%
o
f
tap
p
o
rt. In
Figu
re
2
(
b
)
an
d
(c), the
m
u
ltiwav
elen
g
t
h
flatn
e
ss an
d
the nu
m
b
er o
f
lin
es is fu
rt
her d
e
g
r
ad
ed
b
e
cau
se
o
f
larg
er i
n
ten
s
ity d
i
fferen
ce i
n
th
e b
i
d
i
rection
a
l Lyo
t
filter.
Fig
u
re
2
.
Th
e
m
u
l
tiwav
elength
sp
ectru
m
at sp
littin
g
rati
o
of (a)
50
/50
,
(b)
3
0
/
7
0
and
(c) 10
/90
Fig
u
re 3
sho
w
s an
o
t
h
e
r ev
al
u
a
tio
n
o
f
flatness p
e
rfo
rm
an
ce o
f
th
e M
W
FL with
v
a
riation
of sp
littin
g
ratio. The eval
uation is obse
rved
by
plotting the ER value against its
center wa
velength of each line from
1
539
n
m
to
1
5
4
0
n
m
. Th
e
v
a
lu
es are tak
e
n
at sp
littin
g
rati
o
o
f
50
/50
,
30
/7
0 and
10
/90
.
Fro
m
th
e lin
es in
the
figu
re,
it
is
clear
th
at sp
littin
g
ratio
of 5
0
/
5
0
p
r
od
u
ces
th
e fl
attest lasin
g
lines fo
llo
wed b
y
30
/70
and
1
0
/
9
0
of
sp
littin
g
ratio
.
Th
e flatn
e
ss
p
e
rfo
r
m
a
n
ce is furth
e
r
d
e
term
in
ed
fro
m
th
e d
i
fferen
ce of th
e h
i
gh
est to
th
e lo
west
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Multiwavelength Fiber
L
a
ser
bas
ed
on Bi
dir
ectional
Ly
ot F
ilter in
Conj
unction … (A. H.
Sul
aiman)
84
3
ER v
a
lu
e. From th
e calcu
lat
i
o
n, sp
littin
g
ratio
o
f
50
/50
,
30
/70
and
10
/90 h
a
s d
i
fferen
c
e o
f
0
.
95
d
B
, 1.8
8
d
B
and
4.
15
dB
,
r
e
spect
i
v
el
y
.
F
r
om
t
h
ese val
u
e
s
,
0.
95
dB
ind
i
cates th
at th
e
m
u
l
tiw
avelength s
p
ectrum
based
on
5
0
/
5
0
sp
litter is th
e
flattest com
p
ared
with the o
t
h
e
r sp
littin
g
ratio
s.
Next
o
b
se
rv
at
i
on i
s
t
h
e m
u
l
t
i
wavel
e
ngt
h pe
rf
orm
a
nce wi
t
h
o
u
t
a p
o
l
a
ri
ze
r i
n
t
h
e set
u
p
by
rem
ovi
ng
th
e
p
o
l
arizer in th
e laser stru
ctu
r
e. In
t
h
is
o
b
serv
atio
n
,
th
e PBC
is
rep
l
aced
with
50
/50
op
tical
cou
p
l
er wh
ich
h
a
s th
e
sam
e
s
p
littin
g
ratio
as th
e PBC.
In
sh
ort,
with
an
d with
ou
t
p
o
l
arizer refers t
o
the setu
p
b
a
sed
o
n
t
h
e
referen
c
e settin
g (m
u
ltiwav
elen
g
t
h
sp
ectrum
o
f
Fig
u
re
2
(
a)) and
th
e 50
/
5
0 coup
ler
rep
l
ace
m
e
n
t
, resp
ectiv
ely.
Fig
u
re 4(a) illu
strates th
e mu
ltiwav
elen
g
t
h sp
ectru
m
wi
t
h
ou
t po
larizer in
th
e setup
.
Th
e m
u
ltiwav
elen
g
t
h
sp
ectru
m
is se
en
flat, with
the n
u
m
b
e
r o
f
lin
es is 9
4
with
in
5
d
B
b
a
ndwid
th
.
Howev
e
r, th
e ER is red
u
ced
to
9
d
B
, wh
ich
is l
o
wer th
an
th
e m
u
ltiwav
elen
g
t
h sp
ectru
m
with
p
o
l
arizer, as can
b
e
seen
in
Fig
u
re 4(b),
wh
i
c
h
is
t
h
e zoom
i
n
versi
o
n of Fi
gu
re
4(a)
.
W
i
t
h
out
t
h
e pol
a
r
i
zer, t
h
e ER
val
u
e i
s
l
o
w beca
use o
f
l
o
we
r ID
L st
r
e
ngt
h
in
th
e cav
ity, sin
ce no
po
larizer is u
s
ed
.
With
po
larizer
rem
o
v
a
l, th
e IDL m
ech
an
is
m
i
s
o
n
l
y indu
ced fro
m
SOA. Fro
m
th
e exp
e
rim
e
n
t
al resu
lt, it is
clearly verified that
the polarizer
is an
im
p
o
r
tan
t
dev
i
ce to
i
n
du
ce th
e
optim
u
m
IDL
strength. T
hus
, the m
u
ltiwavelength s
p
ectrum
without
polar
izer
is not recom
m
e
nde
d due
to
lo
wer ER ev
en th
oug
h th
e m
u
ltiwav
eleng
t
h
flatn
e
ss is
g
r
eat.
Fig
u
re
3
.
Th
e
ER ratio
ag
ainst cen
ter
wav
e
l
e
n
g
t
h
for each
lin
e at d
i
fferent sp
littin
g
ratio
o
f
op
tical sp
litter
Fig
u
re
4
.
(a) Th
e m
u
ltiwav
elen
g
t
h
sp
ectru
m
wh
en
t
h
e PBC
is rep
l
aced
with
5
0
/
5
0
coup
ler,
whi
c
h m
eans n
o
pol
a
r
i
zer i
n
t
h
e set
u
p
.
(
b
) Z
oom
i
n
ve
rsi
o
n
o
f
(a
) at
3
nm
of
wa
vel
e
n
g
t
h
spa
n
Th
is section
in
v
e
stig
ates the
m
u
ltiwav
elen
g
t
h
sp
ectru
m
b
a
sed
on
two
seg
m
en
ts o
f
PMF. Th
e
expe
ri
m
e
nt
al
set
up i
s
exact
l
y
as i
n
Fi
gur
e 1, b
u
t
wi
t
h
an ad
di
t
i
on
of a
not
her se
gm
ent
of PM
F. The
expe
ri
m
e
nt
al
set
up ba
sed
on t
h
e t
w
o se
gm
ent
s
of PM
F i
s
as sho
w
n i
n
Fi
g
u
r
e 5. T
h
e l
e
n
g
t
h
o
f
PM
F1
(L1
)
an
d
P
M
F
2
(
L
2
)
i
s
5
3
.
2
m
a
n
d
1
3
.
1
m
,
r
e
s
p
e
c
t
i
v
e
l
y
.
I
n
t
h
is experim
e
nt, the two se
gm
ents of PMF are spli
ced at
sp
licin
g sh
i
f
t (
θ
) of 0°
an
d 9
0
° usi
ng a
PM
F
spl
i
cer
,
m
o
d
e
l
FSM
-
1
0
0
P
m
a
nufact
ure
d
f
r
om
Fu
ji
k
u
ra.
W
i
t
h
θ
of
0° a
n
d 9
0
°
,
t
h
e ef
fect
i
v
e l
e
ngt
h o
f
t
h
e
PM
F bec
o
m
e
s L1 + L2 (
6
6.
3 m
)
and
L1
– L
2
(
4
0.
1 m
)
, respect
i
v
el
y
.
The
n
, t
h
e formula of c
h
a
nnel
spacing is
use
d
to m
easure t
h
e
cha
nnel a
ccording
to th
e
effectiv
e leng
th
.
Fi
gu
re
6(a
)
de
pi
ct
s t
h
e m
u
l
t
i
wavel
e
ngt
h s
p
ect
rum
at
θ
o
f
0
°
.
W
ith th
is con
d
ition
,
th
e two
PMF
seg
m
en
ts co
mb
in
e i
n
to
a sing
le seg
m
en
t o
f
PMF.
Fro
m
th
e figu
re, th
e effectiv
e leng
th is th
e su
m
o
f
L1
and
L2
(66
.
3
m
)
, resu
ltin
g
i
n
n
a
rro
wer ch
ann
e
l sp
acing
th
an
t
h
e b
e
st m
u
ltiwav
eleng
t
h
sp
ectru
m
as seen
in
Fig
u
re
2
(
a). Th
e m
u
ltiwav
eleng
t
h sp
ectru
m
is flat
with
8
4
nu
mb
er o
f
lin
es with
in
5
d
B
b
a
n
d
wid
t
h
.
Fi
gu
re
6
(
b
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
84
0 – 84
6
84
4
illu
strates th
e
m
u
l
tiwav
elength
sp
ectru
m
at
θ
o
f
90
° t
h
at
r
e
sul
t
e
d i
n
a
n
e
ffect
i
v
e l
e
ngt
h
of
L
1
-
L
2
(
4
0.
1 m
)
.
The c
h
a
nnel
s
p
aci
ng i
s
b
r
oa
de
r, l
e
a
d
i
n
g t
o
l
o
wer
n
u
m
b
er o
f
l
i
n
es,
whi
c
h i
s
45
l
i
n
es
wi
t
h
i
n
5
dB
ba
nd
wi
dt
h.
Fig
u
re 6(c) on th
e o
t
h
e
r h
a
nd
d
e
p
i
cts th
e co
m
p
ariso
n
in a clo
s
e u
p
v
i
ew o
f
th
e m
u
ltiwav
eleng
t
h
spectrum
a
t
θ
of 0° an
d 9
0
°
. In t
h
e fi
gu
r
e
, t
h
e span i
s
m
a
gni
fi
ed t
o
0.5 nm
for a bet
t
e
r obse
r
v
a
t
i
on.
The
o
ret
i
cal
l
y
, base
d o
n
t
h
e e
quat
i
o
n
of c
h
a
nnel
s
p
aci
n
g
, t
h
e cha
n
nel
spa
c
i
ng i
s
cal
cul
a
t
e
d at
0.
0
81
n
m
an
d
0.
13
3
nm
, whe
n
t
h
e
θ
is
0
°
an
d 90
°, r
e
sp
ectiv
ely. H
o
w
e
ver
,
w
h
e
n
t
h
e c
h
annel s
p
acings are m
easure
d
from
t
h
e ex
peri
m
e
nt
al
resul
t
,
t
h
e
c
h
an
nel
s
p
aci
n
g
i
s
0.
08
7
nm
and
0.
1
4
1
nm
at
θ
of 0°
and 90°, res
p
ectivel
y.
The
channel s
p
acing de
viation bet
w
een t
h
e
o
ret
i
c
al
and e
x
peri
m
e
nt
al
res
u
l
t
s
at
θ
o
f
0
°
a
nd
9
0
° i
s
0.
00
6
nm
an
d
0.
00
8
nm
, resp
ect
i
v
el
y
.
These
de
vi
at
i
ons a
r
e
d
u
e t
o
t
h
e
θ
un
certain
ty
d
u
rin
g
th
e
PMF splicin
g
at arou
nd
1
°
,
whic
h is the limita
tion of the
PMF splicer.
Howe
ver, th
e i
n
accuracy of the cha
n
nel spa
c
ing ca
n be
ne
glecte
d
si
nce t
h
e
de
vi
a
t
i
on i
s
very
sm
al
l
.
Fi
gu
re
5.
The
e
xpe
ri
m
e
nt
al
setup
ba
sed
o
n
t
h
e t
w
o
se
gm
ents o
f
PM
F
Fi
gu
re
6.
The
m
u
lt
i
w
avel
en
g
t
h s
p
ect
rum
ba
sed
o
n
t
w
o-
seg
m
ent
of
PM
F a
t
θ
of
(
a
)
0
°
and
(b)
9
0
°.
(c) The ch
an
n
e
l
sp
aci
n
g
co
m
p
arison of m
u
ltiwav
elen
g
t
h
sp
ectru
m at
θ
of 0º
an
d 90
º
5
.
CONC
LU
SION
We
h
a
v
e
exp
e
rim
e
n
t
al
ly p
r
op
o
s
ed
a m
u
lti
wav
e
len
g
t
h
fiber laser b
a
sed
o
n
b
i
d
i
rection
a
l Lyo
t
filter
u
tilizin
g
a g
a
i
n
m
e
d
i
u
m
o
f
SOA. Th
e flatn
e
ss
o
f
m
u
ltiwav
eleng
t
h
sp
ectru
m
is at
trib
u
t
ed
fro
m
th
e in
ten
s
ity
eq
u
a
lizer ob
tain
ed fro
m
th
e IDL m
ech
an
ism
.
Firstly, we
in
v
e
stig
ated
the effect
of sp
littin
g
ratio d
i
fference
towa
rds t
h
e fl
atness pe
rformance. The
degra
d
ation of
m
u
ltiwavelength flatness is
increase
d
wit
h
larger
d
i
fferen
ce o
f
sp
littin
g
ratio. Th
en
, witho
u
t
p
o
l
arizer
in
the
setu
p, th
e ER v
a
lu
e is lower as co
m
p
ared
to with
pola
r
izer.
We
also dem
onstrated the e
ffect
on usin
g t
w
o
segm
ent
s
of
PM
F t
o
st
udy
t
h
e c
h
an
nel
s
p
aci
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Multiwavelength Fiber
L
a
ser
bas
ed
on Bi
dir
ectional
Ly
ot F
ilter in
Conj
unction … (A. H.
Sul
aiman)
84
5
vari
at
i
o
n wi
t
h
di
ffe
re
nt
θ
. T
h
e cha
nnel s
p
ac
ing is m
easure
d
at 0.087
nm
and 0.141 nm
whe
n
t
h
e
θ
is set to
0
°
an
d 90
°,
r
e
sp
ectiv
ely.
ACKNOWLE
DGE
M
ENTS
This
resea
r
c
h
work
was fina
ncially
supported
by Unive
r
siti Teknol
ogi Malaysia under Researc
h
Uni
v
ersi
t
y
Gra
n
t
(V
ot
. N
o
:
1
5
H
3
7) an
d by
M
i
ni
st
ry
of Hi
ghe
r Ed
ucat
i
o
n
un
der F
u
n
d
am
ent
a
l
R
e
search
Grant
Schem
e
(V
ot
. No:
4F
9
3
6
)
.
REFERE
NC
ES
[1] S.
Pan,
et al
., "
M
ultiwavel
engt
h Erbium
-Doped Fiber Laser bas
e
d on Inhom
ogeneous Loss Mechanism
b
y
use of a
Highly
Nonlin
ear Fiber
a
nd
a Fabr
y
-
Perot filter,"
Optic
s Ex
pre
ss,
vol. 14
, pp
. 1113
–1118, Feb
2006
.
[2] Y.
Meng,
et a
l
., "Tunable Double-Clad Ytterb
ium-Doped Fibe
r Laser based o
n
a D
ouble-Pass Mach–Zehnder
Interferometer,"
Optics and Lasers Engineering
,
vol. 50
, pp
. 303–
307, Mar
2012.
[3] A.H.
Sulaiman
,
et al
.,
"Flatness
Investiga
tion of
Multiwavel
engt
h
SOA Fiber La
ser based on In
t
e
nsit
y-Depend
en
t
Trans
m
is
s
i
on M
echan
is
m
,
"
Optics Communications,
vol. 291, pp
. 264–268
, Mar
2013.
[4] S.
Saleh
,
et a
l
.
,
"L
yot-based
M
u
lti-wav
e
leng
th
Fiber L
a
ser,"
In
ternational Jour
nal of
Electrica
l and Computer
Engineering (
I
JECE)
,
vol. 7
,
pp
. 981–985, Apr 2
017.
[5] H.
Ahmad,
et al
., "S
OA-Bas
e
d Quad-W
aveleng
t
h Ring Las
e
r
,
"
Lase
r Phy
s
ic
s L
e
tte
rs,
vol. 5, p
p
. 726–729, Jun
2008.
[6]
N.
A.
B.
Ahmad,
et al
., "Th
e
oreti
cal Anal
ysi
s
of a Two-Stage
Sagnac Loo
p
Filter using Jones Matrices,
"
International Jo
urnal of
Electr
ical and Computer Engin
eering
,
vo
l. 7
,
pp
. 2950–29
57, Dec 2017
.
[7] Z.X.
Zh
ang,
et
al
., "Two Differ
e
nt Operation R
e
gimes of Fiber
Laser based on
Nonlinear Polar
i
zation Rotation
:
Passive Mode-Locking
and Mu
ltiwavelength Emission,"
IEEE Ph
otonics Technology Letters,
vo
l.
20, pp. 979–98
1
,
Jun 2008.
[8] Z.
Zhang
,
et a
l
.
,
"Multiwavel
engt
h Fiber
Laser
wi
th Fine
Adjust
m
e
nt,
based
on No
nline
a
r Polar
i
z
a
t
i
on Rot
a
tion
and
Birefring
ence Fiber Filter
,"
Opti
c
s
Letters,
vo
l. 33
, pp
. 324–326
, F
e
b 2008.
[9] A.P.
Luo,
et
al
., "Chann
el-Sp
acing Switch
a
bl
e Multi-W
a
ve
le
ngth Fiber Rin
g
Laser with
One Segm
ent of
Polariz
a
tion
Mai
n
tain
Fiber,"
Lase
r Phy
s
ic
s Le
tte
r
,
vol. 6
,
pp
. 598–
601, Apr 2009
.
[10] H.
Haris,
et
a
l
.,
"Dual-Waveleng
th Thulium Y
tterbium Co-Doped Fiber Laser,"
Indonesian Jour
nal of
Electrical
Engineering and
Computer Scien
ce,
vol. 8
, pp. 4
57–461, Nov 20
17.
[11] Z.
Luo
,
et
al
., "
T
unable and Switch
a
ble Multiw
avelength Passi
v
e
ly
Mode-Lo
c
ked Fibe
r Laser b
a
sed on SESAM
and In-L
ine
Bire
fringenc
e Com
b
Filter
,
"
IEEE Ph
otonics Journal,
vol. 3
,
pp
. 64–70
, Feb
2011.
[12] Z.
Luo,
et
al
.
,
"Tun
able
Multiwav
eleng
t
h
Passivel
y
Mode
-Lock
e
d Fib
e
r
Ring
Laser
using Intra
cav
i
t
y
Birefring
ence-In
duced Comb Filter,"
I
EEE Pho
t
o
n
ics Journal,
vo
l. 2
,
pp
. 571–577
, Aug 2010.
[13] H.
Ahmad,
et
al
., "SOA-Based
Multi-W
a
vel
e
ng
th L
a
ser using F
i
ber Br
agg Grat
i
ngs,"
Lase
r Physic
s,
vol. 19
, pp.
1002–1005,
May
2009.
[14]
A.
H.
Sulaiman,
et al
.,
"Inv
estiga
tion of Continuo
usly Adjustabl
e Ex
tin
ct
ion Ratio
in a Multiwave
l
ength SOA Fibe
r
Laser based on
Intensity De
p
e
ndent Transmission Effect
," in I
EEE 4th In
tern
a
tional Conf
eren
ce on P
hotonics
,
2013, pp
. 151–1
53.
[15]
A.
H.
Sulaiman,
et
al
.,
"
Multiwavelength SO
A Fib
e
r Ring L
a
ser
based on
Bidirectiona
l Lyot Filter
,
"
in
1
s
t
International Co
nference on
Telematics and
Futur
e
Generation Networks, 2015, pp
. 1–4
.
[16]
A.
H.
Sulaiman,
et al
.,
"
W
avelen
gth-Spacing
Tunable S-
Band Multi-Wavele
ng
th Fiber Laser based
on Lyot
Filter,"
in IEEE 2nd Internation
a
l
Conf
er
ence on Photon
ics,
2011
,
pp
. 6–
8.
[17]
A.
H.
Sulaiman,
et al
., "Investigation of Multiwaveleng
th Perf
orma
nce uti
liz
in
g an Advanced
M
echanis
m
of
Bidire
ction
a
l L
yot
Filt
er,"
IEEE Photonics
Journ
a
l,
vo
l. 5, pp. 71
01008-7101008, Dec 2013.
[18] F.
Wang,
et
al
.,
"82-Channel M
u
lti-W
a
ve
length
Com
b
Ge
nerati
on in a SOA Fi
ber Ring
Laser
,
"
Optic
s &
La
se
r
Technology,
vo
l. 42, pp. 285–288
, Mar
2010.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
84
0 – 84
6
84
6
BIOGRAP
HI
ES
OF AUTH
ORS
Abdul Hadi Sulaiman received
his Bachelo
r
of
Science degr
ee majoring Industrial
Ph
y
s
ics under
Departm
e
nt of
Ph
y
s
ics from
Universiti
Teknol
ogi
Malay
s
ia, Johore in 2007.
He obtained h
i
s
MSc degree at
Universiti Mal
a
y
a
, Mal
a
y
s
ia in
2009, under th
e field of photon
ics devi
ces for
optical communication. In 2015
,
he completed
his PhD degree at
Universiti Putra Malay
s
ia,
under research area of photonics
and fiber optic s
y
st
em engineering. Both research works of his
MSc and PhD
were completed
at Photonics
Re
search C
e
nter and Wireless and Photonics
Networks Research Centre, resp
ect
ively
.
He
also
worked as a research assistan
t from 2012 until
2014 while doing his Ph
D. After comp
leting his PhD, he served as
a senior research officer
and
postdoctoral fellow at Universi
ti
Teknologi Petro
n
as (2015) and I
n
ternational Islamic University
Malay
s
ia (2016)
, respect
ivel
y
.
C
u
rrentl
y
, h
e
is
working at Univer
siti Tenag
a
Nasi
onal as a post
-
doctora
l res
ear
c
h
er. His
res
earc
h
expertis
e in
cl
ude Brillouin o
p
tic
al tim
e dom
ain anal
yz
er,
m
u
ltiwavel
ength
fiber laser, L
y
ot fi
lter
,
nonl
i
n
ear polar
izatio
n rotation and
sem
i
conductor
optic
al am
plifi
e
r
.
Nelid
ya M
d
Yus
o
ff receiv
e
d her Bache
l
or of Engineer
ing degree m
a
jorin
g
in Elec
tric
al-
Tel
ecom
m
unicat
ion from
Univer
siti T
e
knologi
Mala
y
s
i
a
in
2002.
In 2004, she obt
ained
her MSc
in Digital Communication S
y
stems fro
m L
oug
hborough University
, United Kingdom. She
rece
ived h
e
r P
h
D in P
hotonics
and F
i
b
e
r Opti
cs
S
y
s
t
em
Engi
neering
from
Univers
iti
P
u
tra
Malay
s
ia in 20
13. She is now a senior lect
ur
er at UTM Razak School of Engineer
ing and
Advanced
Tech
nolog
y. S
h
e h
a
s
s
e
rved as
a
rev
i
e
w
er for some reputable journ
a
ls
and until now,
she has author
ed and co
author
ed over 12 scientif
ic pap
e
rs in journals and
16 articles
in
conferen
ce proceedings. Her r
e
search
interest
in
cludes d
i
screte
and re
mote
Erbiu
m
doped fiber
am
plifier
,
opt
ica
l
am
plifi
e
rs,
optical sensors and
optical comm
unication s
y
stems.
Currently
, she
is a m
e
m
b
er of Institution of El
e
c
tri
cal and E
l
ec
t
r
onics Engine
ers (IEEE) and Opt
i
ca
l S
o
ciet
y of
Am
erica
as
well
as
the
com
m
itte
e
for I
EEE
P
hoto
n
ic S
o
c
i
et
y M
a
l
a
ys
ia
Chap
ter
.
Noran Azizan C
holan was born
on 31st August 1979
in Segamat, Johor, Ma
lay
s
ia. H
e
receiv
e
d
his bach
elor d
e
gree
in E
l
e
c
tron
ics Engin
eer
ing
from
Universiti
Tenag
a
Nasion
a
l
, Ma
la
ysia
in
2002. Afterward
s
in 2004, he obtain
e
d his master
degree in Electron
i
cs-Teleco
mmunications
Engineering for
m
Universiti T
e
knologi Mal
a
y
s
i
a
, Malay
s
ia. In
2010, h
e
enro
l
l
ed
as a PhD
student in Univ
ersiti Putra Mal
a
y
s
i
a
. During
h
i
s PhD
stud
y
i
n
2012, he went to Swansea
University
, UK and The Hong Kong Poly
technic Univ
ersity
, Hon
g
Kong for research attachment
Since then
, he has served as a senior lec
t
urer
in
Universiti Tun
Hussein Onn
Mala
ysi
a
(UTHM).
He als
o
has
s
e
rv
ed as
a r
e
vi
ewer
for s
o
m
e
reputab
le journ
a
ls. As o
f
now, he h
a
s been authors/co-
authors for
12 jo
urnal
and 19
con
f
erence pro
c
eeding papers
.
Mohd Adzir Mahdi (M’99–SM’03) receiv
e
d th
e B
ache
l
or degr
ee with first cl
ass honors in
Ele
c
tri
cal
, E
l
e
c
t
r
onics and S
y
s
t
em
s Engineerin
g from
the Uni
v
ersiti Keb
a
ngsaan Mal
a
y
s
ia
,
Selangor, Malaysia in 1996.
Later, he r
e
ceived
th
e Master
and
Ph.D. degrees with
distinctions in
Optical Fiber Com
m
unications from
the Univers
iti Malay
a
, Ku
ala Lum
pur, Malay
s
ia in 1999
and 2002, r
e
spectiv
el
y
.
In Januar
y
2003
, he join
ed
the Facul
t
y
o
f
Engineering
,
Universiti Putr
a
Mala
y
s
ia
, Selan
gor, Mala
ysi
a
where he was an
A
ssociate Professor and is now a
full Professor.
Prior to the cur
r
ent appoin
t
men
t
, Adzir was an
optical design
engineer at IOA
Corporation
,
S
unn
y
v
al
e, US
A and a res
earch officer a
t
Research and Developm
ent Division, Telekom
Malay
s
ia Berhad. Since 1996
, h
e
has been invo
lved
in photonics research specializing in op
tical
amplifiers and lasers. He has authored and coau
t
hored over 330 scien
tific pa
pers in journals and
210 articles in conference proceedings. His research
interest includes optical fiber amplifiers and
lasers, op
tical fiber co
mmunications, optical sen
s
ors and non
lin
e
a
r opt
ics
.
Adzir’
s
awards
and
honors include
t
h
e IEE
E
LEOS
Graduate-Stud
e
n
t
Fe
llowship, th
e Australi
a-Mal
a
y
s
i
a
Institu
te
Res
earch F
e
l
l
o
w
s
h
ip, the Le
ading S
c
ien
tis
t
s
and Enginee
r
s
of OIC
Mem
b
er S
t
ates
(COMSTECH), the COMSTEC
H Young Scient
ist,
th
e TWAS
Young
Affiliate Fellow, and
th
e
National Academic Award (You
ng Academ
i
c
ian
Award).
Evaluation Warning : The document was created with Spire.PDF for Python.