TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 6238 ~ 6242
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.602
0
6238
Re
cei
v
ed Ma
rch 2
3
, 2014;
Re
vised Ma
y 18, 2014; Accepted June 1
0
, 2014
Evolution Process of a Broadband Coplanar-
Waveguide-fed Monopole Antenna for Wireless
Customer Premises Eq
uipment
A. Moradikordali
v
and*, T.
A. Rahman,
M. I.
Sabran, A. N. Obadi
a
h
W
i
reless C
o
m
m
unic
a
tion C
e
nter, F
a
cult
y
of
Electrical En
gi
neer
ing, Un
iver
siti T
e
knologi
Mala
ysi
a
,
8131
0, Skuda
i
,
Johor, Mala
ys
ia
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: alimora
d
i
202
0@gma
il.com
A
b
st
r
a
ct
In this pa
per a
desi
gn pr
oces
s of a bro
adb
a
nd
pri
n
ted
mo
nop
ole
ante
n
n
a
usi
ng step
pe
d cut at
four corners (
C
SF
C) techni
que is pr
opos
ed. T
he CS
F
C
is a techni
que that four
corners a p
a
tch
(rectang
ular/sq
uare) of pl
an
ar
mon
o
p
o
le
ant
enn
as ar
e cut i
n
order to e
n
h
ance the i
m
pe
danc
e ba
ndw
id
th.
T
he tech
niq
u
e
can
be
use
d
to
desi
g
n
any
diff
erent typ
e
s
of
pla
nar
mono
po
le a
n
ten
n
a
in
s
pecific fre
q
u
e
n
cy
rang
es. T
herefore, to beco
m
e
more ac
qua
int
ance w
i
th
the CSF
C
techniq
u
e
an evol
utio
n process of sing
l
e
ban
d to
bro
a
d
ban
d
anten
na
is r
epres
ente
d
. How
e
ver,
t
he
prop
ose
d
anten
na
is
de
sign
ed for
w
i
rele
s
s
ind
oor custo
m
er pre
m
is
es e
qui
p
m
ent (CP
E
) usi
ng th
e c
opl
anar w
a
ve
g
u
id
e (CPW
) feedi
ng tech
ni
qu
e.
Moreov
er, the anten
na is si
mulate
d usi
ng C
S
T
softw
are
a
nd als
o
fabric
a
t
ed an
d tested
so as to valid
at
e
the results. T
he simulate
d an
d me
asur
ed -1
0 dB re
flectio
n
bandw
idth is
104
% (850M
H
z
t
o
2.7GH
z
) t
o
cover GSM (900 an
d 18
00M
H
z
), W
i
F
i
(2.4 GH
z
)
an
d LT
E (2.6GH
z
)
ap
pl
icatio
ns. High
efficiency a
nd
gai
n
as w
e
ll as
o
m
nidir
e
ctio
nal
a
nd q
uasi-
o
m
n
i
directi
ona
l
of r
adi
ation
patter
n
at low
e
r
and
upp
er freq
uen
cies
have b
e
e
n
achi
eved
.
Ke
y
w
ords
: co
pla
nar w
a
veg
u
i
de, mono
po
le
ant
en
na, custo
m
er pr
e
m
esis
equ
ip
me
nt
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Given the
fa
ct that a
n
ten
na i
s
a
vital part i
n
cu
rrent, eme
r
gin
g
an
d future
wirele
ss
comm
uni
cati
on system
s. Also, the de
mand for ant
enna
s with wide imped
an
ce band
width
for
use
in m
u
ltifunction
al
wirel
e
ss
comm
uni
cation
sy
st
e
m
s h
a
s
s
p
u
r
r
ed ma
ny
r
e
s
ear
che
r
s t
o
f
o
cu
s
on multiban
d and wid
eba
n
d
antenna
s. T
he CPW-
fed
monop
ole ant
enna have att
r
acte
d so mu
ch
res
e
a
r
c
h
int
e
rest
s,
due
t
o
it
s
low-p
r
ofile
, light weig
ht, ease of fabri
c
ation,
che
a
p
co
st, ease o
f
integration wi
th other
kinds of
microwave integrated circuits
(MI
C
s) and capability of being
deploye
d
for both linea
r
and ci
rcula
r
polari
z
atio
ns.
Therefore,
several meth
ods h
a
ve be
en
repo
rted
ba
sed o
n
the
CPW-fed
mo
n
opole
ante
One
co
mmon
metho
d
i
s
to
etchi
ng
different
sha
ped slot
s on
the ra
diati
ng
p
a
tch or
g
r
oun
d su
ch
a
s
; inve
rted
U-sh
ape
d
slot [
1
, 2], W-sh
ap
ed
slot etched o
n
the ra
diatio
n
patch
and t
he groun
d pl
ane [3], inverted V-shape
d
slot with fold
ed
end
s embe
d
ded on the radiating pat
ch and two sy
mmetrical re
ctang
ular
slot
s on the gro
und
plane [4], a
circul
ar
slot i
s
etche
d
on
th
e ra
di
ating p
a
tch
a
nd re
sonant cell within
the CPW line
[5], two T-sh
aped
sl
ots
b
e
ing
cut from
the p
a
tch
[6
], and
π
-sha
pe a
nd V
-
sh
ape
slot
s o
n
the
radiatin
g el
e
m
ent [7]. Oth
e
r m
a
in
app
roache
s fo
r
thi
s
a
ppli
c
ation
use
resonant
para
s
itic pat
ches
and sl
ot [8] and split rin
g
reso
nator [9].
Wirel
e
ss b
r
o
adba
nd
is
a tech
nolo
g
y that provide
s
compute
r
net
worki
ng
a
c
cess
or high
-
spe
ed wi
rele
ss Internet a
c
cess over a wi
de are
a
. The CPE is a fundamental pa
rt of any wirele
ss
broadband access (WBA).
There ar
e m
any reasons f
o
r utilizi
ng the CPE in WB
A; this includes
s
u
pe
r
i
or
c
o
ve
r
a
ge
, s
i
gn
ific
a
n
t
pe
r
f
orma
n
c
e
bo
ost, redu
ced
servi
c
e tu
rn-up cost
s, fixed
dema
r
cation
point and red
u
ce
d help
d
e
s
k co
sts [10].
2. The Ev
olu
t
ion Proces
s
of the Broa
dband Ante
n
n
a
The p
r
op
ose
d
tech
niqu
e d
ue to the fin
a
l
sh
a
pe
of ra
d
i
ated pat
ch i
s
calle
d “Ste
p
ped
Cut
at Four
Co
rners (S
CF
C)”. As
the n
a
me implie
s,
four corn
ers of the ra
diated ele
m
ent
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Evolution Pro
c
e
ss of a Bro
adba
nd Copl
anar-
Waveg
u
ide-fe
d… (A
. Moradi
korda
livan
d)
6239
(re
ctan
gula
r
/square shap
e) of
a plana
r
monop
ole a
n
t
enna a
r
e
created in the
form of ste
p
p
ed
line in order t
o
obtai
n the
desi
r
ed
operating frequ
ency band [
11]. to beco
me
more familiar with
SCFC techni
que, the
de
si
gn p
r
o
c
e
s
s o
f
pl
ana
r m
o
n
opole
broad
b
and
antenn
a
with frequ
en
cy
rang
e from 0
.
85GHz to 2.7GHz is d
e
si
gned a
nd
si
mulated. Accordin
g to the SCFC techn
i
qu
e
th
e
d
i
men
s
ion
s
o
f
ma
in
pa
tc
h
ar
e
b
e
l
on
g
s
to th
e
low
e
r fr
e
q
u
e
n
cy, th
e
r
e
f
o
r
e th
e
s
i
n
g
l
e
b
and
antenn
a is de
sign
ed at 0.85GHz. Also, the dimen
s
i
o
n
s
patch of the upper fre
que
ncy is sp
ecifi
e
d
in order to cut the corn
ers, whi
c
h
lea
d
s
to
create a
dual
band
a
n
tenna to
co
ver the o
p
e
r
a
t
ing
freque
nci
e
s
at 850M
Hz
and 2.7
G
HZ. To de
sig
n
the triple
ban
d anten
na, g
i
ven the CS
F
C
techni
que, two
step
s sh
ould be
crea
ted in four
corne
r
s of the
main pat
ch.
Therefore, t
he
dimen
s
ion
s
o
f
the third pat
ch; bet
wee
n
the pat
che
s
of
lowe
r freq
ue
ncy an
d upp
e
r
freq
uen
cy e.g.
1.5GHZ, are
calculated. Con
s
e
quently
, by incr
ea
si
ng the numb
e
r of step
s a
t
the corne
r
s a
multiband
an
tenna
re
son
a
t
ing at multi
p
le fre
quen
ci
es i
s
o
b
tain
ed. As di
scu
ss i
n
[11],
n-
1
patch
es
can
be create
d
b
e
twee
n the P
FL
and P
HF
, which
create
n
steps
at four corners of th
e
main p
a
tch.
Hen
c
e, to
full
cove
rag
e
of
the
expe
cted
freque
ncy ba
ndwi
d
th,
the numbe
r of
st
eps
is increa
se
d in orde
r to de
sign the b
r
oa
dban
d
anten
na. Figure 1 depi
cted
the evolution
pro
c
e
s
s
of the propo
sed anten
na from singl
e ba
nd to broa
db
and.
Figure 1. Evolution Pro
c
e
s
s of Single Band to Broa
d
band Anten
n
a
Figure 2
sho
w
s the
sim
u
l
a
ted S1
1 of
the
singl
e b
a
n
d
to
bro
adb
a
nd a
n
tenn
a.
As it
can
be se
en that,
the operatin
g frequ
en
cy of 850M
Hz i
s
cove
re
d using the si
ngl
e band
ante
nna
based on th
e
return l
o
ss b
e
tter than 10
dB. Also, the dual ba
nd a
n
tenna
can
cover freq
uen
cy
band
s of 8
5
0
M
HZ a
nd 2.7
G
Hz. Moreov
er, a
s
expe
ct
ed thre
e op
e
r
ating frequ
e
n
cie
s
for tripl
e
antenn
a, it co
vers
850M
Hz, 1.5GHz a
n
d
2.7G
Hz. In
a
ddition, by in
cre
a
si
ng th
e
numbe
r of
st
eps
and ove
r
lap
p
i
ng prope
rty of resona
nce
freque
nci
e
s,
the multiba
nd ante
nna i
s
covere
d th
e
freque
ncy ra
nge
s of 0.85-1.7GHz an
d 2.3-2.7
G
Hz. Finally, the broad
ban
d ant
enna a
s
a target
of the evolution proces
s
can cove
r the
entire freque
ncy ban
d of 8
50MHz to 2.7
G
HZ. Me
an
while,
the broa
dba
n
d
antenn
a is
descri
bed in
more d
e
tails i
n
the next se
ction.
Single band
Dual band
Triple band
Multi band
Broadband
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 623
8 –
6242
6240
Fr
eq
.
(
G
H
z
)
0.
5
1
.
0
1.
5
2
.
0
2.
5
3
.
0
S
11 (
d
B
)
-3
0
-2
0
-1
0
0
S
i
ngl
e
ba
nd
D
u
a
l
ba
nd
Tri
p
l
e
ba
nd
M
u
lt
ib
a
n
d
B
r
oa
d
b
a
n
d
Figure 2. Simulated S11 of
the Propo
se
d
Antenna
s from Single Ba
nd to Broad
b
and
3. Broadb
an
d Planar Monopole An
te
nna
The Ph
otog
ra
ph of th
e m
a
n
u
factured
p
r
ototy
pe an
d t
he g
eomet
ric
details a
s
wel
l
as the
CPE device
of the broa
db
and CP
W-fe
d
monopol
e a
n
tenna u
s
in
g
CSFC te
chni
que have b
e
e
n
sho
w
n i
n
Fig
u
re
3. The
d
e
sig
n
an
d
si
mulation
of the p
r
op
osed
antenn
a ha
s
been
ca
rri
ed
out
usin
g CST m
i
cro
w
ave
stu
d
io softwa
r
e.
The antenn
a is etche
d
o
n
a FR-4 di
e
l
ectri
c
su
bst
r
ate
with relative permittivity
ε
4
.
3,
t
h
ick
n
e
ss
h
=1.6
mm, Length
Ls
=90 mm and
width
W
S
=125mm.
Both the radi
ating pat
ch
a
nd the
gro
u
n
d
plan
e a
r
e l
o
cate
d on
th
e sa
me
side
of the diel
ect
r
ic
sub
s
trate
due
to the struct
ure bei
ng CP
W-fe
d
and
its mad
e
of co
pper m
a
terial
with s thickn
e
ss
t=0.035m
m a
nd cond
uctivi
ty
σ
=5.96e7
s/m. The grou
nd pla
ne le
ng
th and
width
are
L
G
=1
8.
5
m
m
and
W
G
=86
mm re
sp
ecti
vely. To achieve 5
0
Ω
output imp
e
dan
ce m
a
tch
i
ng
with the
su
b
miniature version A (SMA) conn
ecto
r,
a transmi
ssion
line feed with width
W
F
=3
mm and len
g
th
L
F
=20
mm an
d cou
p
ling g
a
p
g
=
0
.4mm was
us
ed.
(a)
(b)
(c
)
Figure 3. (a)
Photograph o
f
fabr
icated p
r
ototype (b) g
eometri
c
deta
ils of Broad
ba
nd anten
na (c)
CPE with the attache
d
ante
nna
In ord
e
r to va
lidate the
sim
u
lated
re
sults,
the prototyp
e ha
s b
een f
abri
c
ated
and
teste
d
by Roh
de
an
d Sch
w
a
r
z Z
V
L network
analyzer. Fig
u
re
4 sho
w
s a compa
r
i
s
on bet
wee
n
the
simulate
d an
d mea
s
u
r
ed
return lo
ss. T
he re
su
lt
s ex
hibited that, the propo
se
d
antenn
a ha
s
a
cap
able of o
peratin
g at a
broa
d freq
u
ency rang
e
of 850M
Hz
and 2.7
G
Hz based on
T
he
operating fre
quen
cy ra
nge
can
cove
r G
S
M (0.9 a
nd
1.8GHz), WiF
i
(2.4G
H
z), a
nd LTE
(2.6G
H
z)
appli
c
ation
s
the |S11|<-1
0
d
B.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Evolution Pro
c
e
ss of a Bro
adba
nd Copl
anar-
Waveg
u
ide-fe
d… (A
. Moradi
korda
livan
d)
6241
Fr
eq. (G
H
z
)
0.
5
1
.
0
1.
5
2
.
0
2.
5
3
.
0
Ga
i
n
(
d
B
i
)
-1
0
-8
-6
-4
-2
0
2
4
6
E
f
f
i
c
i
en
cy
0
20
40
60
80
100
Ga
i
n
E
f
f
i
ci
en
c
y
Figure 4. Simulated an
d Measure
d
S11
for
Propo
se
d Antenna
Figure 5. Simulated Realize Gain
s and
Radi
ation Efficien
cy
Simulated re
alize
d
gai
n a
nd ra
diation
effici
en
cy of the propo
se
d
antenn
a are
sho
w
n i
n
Figure 5. It i
s
ob
se
rved th
at, the radiati
on effici
en
cy
of more tha
n
90% an
d
gai
ns
of 3
-
5.9dB
i at
the desired d
i
rectio
n (
θ
0
°
and
φ
90
°
) over the expected ba
nd
width have been achieved
.
Figure 6 illust
rates th
e normalize
d
mea
s
ured radiat
i
on pattern in
the x-z (H) pl
ane an
d y-z (E)
plane at 90
0
M
Hz, 1.8
G
Hz, 2.4GHz a
nd 2.6G
Hz.
The H-pla
n
e
evident that omnidirectio
nal
radiatio
n patt
e
rn
s a
r
e
obta
i
ned at
0.9 an
d 1.8G
Hz
whi
l
e qua
si
-omni
d
ire
c
tional
ra
diation p
a
tterns
are a
c
hieve
d
at 2.4 and 2.6
G
Hz.
(a)
(b)
(c
)
(d)
Figure 6. Measu
r
ed
No
rm
alize
d
2D
Ra
diation Patte
rn at (a) 90
0M
Hz
(b) 1.8
G
Hz (c) 2.4G
Hz and
(d) 2.6
G
H
z
0
30
60
90
120
150
180
210
240
270
300
330
-3
0
-2
0
-1
0
0
E_p
l
an
e
H_plane
0
30
60
90
120
150
180
210
240
270
300
330
-3
0
-2
0
-1
0
0
E_plan
e
H_
pla
n
e
0
30
60
90
120
150
180
210
240
270
300
330
-3
0
-
-2
0
-1
0
0
E_
Plan
e
H_Pl
an
e
0
30
60
90
120
150
180
210
240
270
300
330
-3
0
-2
0
-1
0
0
E_p
l
an
e
H_plane
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 623
8 –
6242
6242
4. Conclusio
n
In this a
r
ticl
e a n
e
w techniqu
e is int
r
odu
ce
d to
enha
nce the
band
width
of plana
r
monop
ole
ant
enna
s
ba
sed
on the
CP
W-f
ed meth
od. In
ord
e
r to mo
re familia
r with
the
CSFC,
a
n
evolution p
r
o
c
e
s
s of de
sig
n
a b
r
o
adba
n
d
CP
W-f
e
d
m
onop
ole a
n
te
nna
suitabl
e f
o
r
wirel
e
ss
CPE
appli
c
ation i
s
pre
s
ente
d
. T
he p
r
o
c
e
s
s of
de
sign i
n
cl
ud
es five
stage
s, whi
c
h b
egin
with the
sin
g
l
e
band to the b
r
oad
ban
d ant
enna. The
CST softwa
r
e i
s
employe
d
throu
gho
ut the stage
s an
d
in
orde
r to
valid
ate the
simul
a
ted d
a
ta the
bro
adb
and
a
n
tenna
a
s
a
n
insta
n
t is ma
nufactu
red
a
n
d
measured. The expe
cted band
width
co
vers the GS
M (0.9 and 1.
8GHz),
WiFi (2.4GHz) and
LTE
(2.6G
H
z)
app
lication
s
ba
sed o
n
th
e
ret
u
rn
le
ss mo
re than
1
0dB. The
b
r
oa
db
and
anten
na
has
demon
strated
good perfo
rmance in terms of reflecti
on coeffici
ent
, gain and efficien
cy as wel
l
as
radiatio
n p
a
ttern. T
he
sim
u
lated g
a
in
s
and
radi
atio
n
efficien
cy
were obtain
ed as 3-5.9
d
Bi
a
n
d
more th
an 9
0
%, respe
c
tively. Also omnidirectio
na
l pattern
s at
lowe
r fre
que
ncie
s a
nd ne
arly
omnidi
re
ction
a
l pattern
s at
uppe
r freq
ue
ncie
s a
r
e
a
c
h
i
eved. It is noted that, the SCFC te
chni
que
has m
any ad
vantageo
us f
eature
s
in
clu
d
ing
capa
bility to design
different type
s of the pla
n
a
r
monop
ole ant
enna
s, simpli
city of
the structure, can b
e
use
d
to
design an MIMO
antenn
a, etc.
Referen
ces
[1]
Zhang LN, Zhong SS, Liang XL, Du, CZ. Com
pact Omnidir
e
ctional
B
and-
Notch Ultra-Wideband
Antenn
a.
Elect
r
onic
Letters
. 2009; 45(
13); 65
9-66
0.
[2]
Yuan Y, Z
hen
ghe F
.
A Nove
l Band-
Notch
e
d
Ultra-W
id
eba
nd Microstri
p
-L
ine fed W
i
d
e
-S
lot Anten
n
a
.
Asia-Pas
ific Micro
w
av
e Confe
r
ence (APMC
200
6). 200
6; 1976-
197
8.
[3]
Cai
LY, L
i
Y, Z
eng
G, Yan
g
,
HC. Com
pact
W
i
deb
and
Ant
enn
a
w
i
t
h
D
o
u
b
le-fe
d
Structu
r
e h
a
vin
g
Ba
nd
-
Notche
d Ch
ara
c
teristics.
Electronics L
e
tters.
201
0; 46(2
3
); 1534-
153
6.
[4]
Mohamm
adi S
,
Nouri
n
ia J, G
hob
adi
C, Maji
dz
ad
eh, M. Co
mpact CPW
-
fed Rotate
d Sq
u
a
re-Sh
ape
d
Patch Slot A
n
tenn
a
w
i
t
h
Ba
n
d
-Notch
ed F
u
n
c
tion for UW
B
Appl
icatio
ns.
Electronics Letters.
201
1;
47(2
4
); 130
7-1
308.
[5]
Jing
J, De
ng
HW
, Z
hao YJ.
Co
mpact U
l
tra-W
i
de
ban
d
C
P
W
Mono
pol
e
Anten
n
a
w
i
th Du
al B
a
n
d
-
Notche
d.
Ante
nnas, Pr
op
agat
ion
an
d EM T
heor
y
(ISAPE),
8th Intern
atio
n
a
l S
y
mp
osi
u
m
on. Ku
nmin
g,
200
8; 263-
266.
[6]
W
e
i H, Ji
anh
ua Z
,
F
e
n
gge
H.
Des
i
gn
of
an
Ultra-W
id
eba
nd A
n
ten
n
a
w
i
th Du
al
Band-
Notch
e
d
Char
acteristic
.
Anten
nas, Pr
opa
gati
on
and
EM T
heor
y
(I
SAPE), 19th I
n
ternati
o
n
a
l S
y
mp
osi
u
m on.
201
0; 57-5
9
.
[7]
Ahmad B, F
a
raji-D
a
n
a
R. A Miniaturis
ed
Mono
pol
e Ant
enn
a for Ultra-
W
ideb
and A
p
p
licatio
ns
w
i
th
Band-
Notch F
i
l
t
er.
Microw
aves, Antennas &
Propa
gati
on IET
.
2010; 3(8); 122
4-12
31.
[8]
Jang JW
, H
w
a
ng HY. An Improved Ba
nd-R
e
jectio
n UW
B Antenn
a
w
i
th Re
sona
nt Patche
s and a Slot.
IEEE Antennas
and Wirel
e
ss Propa
gati
on Le
tters
. 2009; 29
9-30
2.
[9]
Li L, Z
h
o
u
Z
L
, Hon
g
JS, W
a
n
g
BZ
. Compact
Dual
Ban
d
-No
t
ched UW
B p
l
a
nar Mo
nop
ol
e
Antenn
a
w
i
t
h
Modifi
ed SRR.
Electron
ics Let
ters
. 2011; 47(
17); 950-
95
1.
[10]
WiMAX: Broadband Wireless
Access.
W
i
-fiplanet.com, Retri
e
ved. 20
08.
[11]
Moradi
Kord
aliv
and
A, Ra
hma
n
T
A
. Broadba
nd M
odi
fi
ed
R
e
ctang
ul
ar Mic
r
ostrip P
a
tch a
n
tenn
a
usin
g
steppe
d cut at four corners M
e
thod.
Pro
g
res
s
in Electro
m
a
gnetics R
e
sear
ch
. 2013; 1
37; 599-
619.
Evaluation Warning : The document was created with Spire.PDF for Python.