TELKOM
NIKA
, Vol. 11, No. 12, Decem
ber 20
13, pp.
7671
~76
8
1
e-ISSN: 2087
-278X
7671
Re
cei
v
ed
Jun
e
30, 2013; Revi
sed Aug
u
st
21, 2013; Accepted Sept
em
ber 5, 201
3
Cognitive Analysis of Product Form Elements
Shutao Zh
an
g
1
, Jianning Su
1,2
*
, Chibi
ng Hu
1
, Peng Wang
2
1
School of Mec
han
ical & El
ectronic
a
l Eng
i
n
e
e
rin
g
, Lanz
hou
Universit
y
of T
e
chn
o
lo
g
y
, Lan
zhou, Gans
u,
Chin
a
2
School of Des
i
gn Art, Lanzh
o
u
Univ
ersit
y
of T
e
chnolog
y, L
anzh
ou, Gansu
,
China, No. 2
8
7
, Lang
on
gpi
n
g
Roa
d
., Qilihe D
i
strict, Lanzho
u
,
Gansu, PRC. Postal cod
e
: 7
300
50
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: adiu
1
9
84@
1
63.com
A
b
st
r
a
ct
Percepti
on is t
he
most b
a
sic
form of co
gn
iti
on th
i
n
kin
g
acti
vity. Consu
m
er
s'
percepti
on i
m
a
ge to
the pro
duct for
m
is
base
d
o
n
hu
ma
n'
s visua
l
perce
pti
on c
h
aracteristics, w
h
ich c
an b
e
su
mmar
i
z
e
d
as the
overa
ll
org
ani
zation, t
he c
o
n
s
tant
me
mory,
the
si
mp
le r
egu
latin
g
an
d
the
id
entifi
abl
e d
i
scri
m
i
natio
n
accord
ing
to th
e Gestalt
princ
i
ple. F
i
rstly, th
e
study
an
aly
z
e
s
the c
haract
e
r
i
sti
cs of c
onsu
m
ers'
perc
epti
o
n
imag
e to the product form. S
e
con
d
ly, the e
v
alu
a
tion
m
o
d
e
l that is used
to simul
a
te consu
m
ers'
ima
g
e
perce
ived
beh
avior is b
u
il
d u
s
ing gr
ay corre
latio
n
an
alysis
and fu
zz
y
n
eur
al netw
o
rk. F
i
nally, the practic
e
exa
m
p
l
e of car
side pr
ofile d
e
sig
n
is taken,
and the r
e
sult
s show
that the metho
d
is h
e
lpfu
l to prod
u
c
t
form i
m
a
ge i
n
telli
ge
nt desi
gn.
Ke
y
w
ords
:
pr
oduct des
ig
n, gray correl
a
tion
ana
lysis, fu
zz
y
neur
al netw
o
rk
, form cogn
itio
n
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Produ
ct fo
rm
is th
e la
ngu
age
and
intermedia
r
y of th
e de
sig
n
id
e
a
s
and
u
s
e f
unctio
n
.
The p
r
od
uct
desi
gn i
s
not
only to re
alize the u
s
e
fu
n
c
tion, but
also to convey the me
aning
a
n
d
symbol
of th
e spirit a
nd
culture. So, th
e produ
ct
fo
rm is th
e inte
grated
result
of the p
r
od
uct
obje
c
tive factors
su
ch a
s
the function,
stru
ctur
e, m
a
terial an
d tech
nolo
g
y intera
ct with th
e
aesth
etic an
d
value judgm
ent of desig
n
e
rs a
nd con
s
umers [1].
In the
co
nsu
m
e ma
rket,
esp
e
ci
ally to
the
daily produ
cts, the aesth
etic fun
c
tion of
prod
uct h
a
s
become o
ne
of the most i
m
porta
nt
factors th
at influence co
nsum
ers
dee
ply [2].
The
com
p
lexi
ty of mode
rn
techn
o
logy
a
nd the
diffusi
on of te
ch
nol
ogy ma
ke it
impossibl
e th
at
the techni
cal
level of a pro
duct overto
ps others.
In ot
her words, th
e prod
uct
s
which p
a
rtici
p
a
t
e
in the comp
etition in mature market hav
e the same t
e
ch
nical level and appli
c
ati
on functio
n
. In
this case, the perso
nali
z
ation an
d fa
shio
n be
com
e
the de
ci
si
ve factor
wh
en con
s
ume
r
s
purcha
s
e
pro
duct
s
[3], and
the pro
d
u
c
t appe
ara
n
ce i
s
the mo
st di
rect way to ref
l
ect pe
rsonali
t
y
[4]. Theref
ore, the
excell
ent p
r
od
uct
s
must
not
o
n
l
y
have
good
functio
n
, int
e
rface, o
pera
t
ion
mode a
nd te
chni
cal
cha
r
a
c
teri
stics, but
also
n
eed t
o
have wond
erful ap
pea
ra
nce a
nd eve
n
emotional
factors in
ord
e
r
to meet th
e
psychol
o
g
ical
nee
ds of
co
nsum
ers. Pe
rceptio
n i
s
th
e
mos
t
bas
i
c
form of
c
o
gnition think
i
ng ac
tivity.
Consum
ers' pe
rceptio
n imag
e to th
e produ
ct form
is b
a
sed
on
h
u
man'
s vi
sual
pe
rception
chara
c
te
ri
sti
c
s, whi
c
h
can
b
e
summa
ri
ze
d a
s
th
e ove
r
all
orga
nization,
the co
nsta
nt memory, th
e simpl
e
reg
u
lating a
nd t
he ide
n
tifiable discri
minati
on
according to
the Gestalt p
r
inci
ple [5]. Produ
ct form i
m
age d
e
sig
n
is ba
sed o
n
human visu
al
perceptio
n, a
nd it develo
p
s
de
sig
n
p
r
o
g
ram
with
th
e form fa
ctors a
s
obj
ect
a
nd the i
rratio
nal
Kansei co
gnit
i
on
informatio
n
as startin
g
point
[6
]. Its main theo
ry is Kan
s
ei Engi
neeri
ng [7], a
nd
one
of the
difficult and
ho
t resea
r
ch of
Kansei En
gineeri
ng i
s
ho
w to
enh
an
ce the Ka
nsei
Enginee
ring
system
with
artificial intell
igen
ce [8-10]
. Based
on
thinkin
g
scie
nce [1
1], the
resea
r
ch o
n
Con
s
um
ers' i
m
age
pe
rcep
tion thin
king
[12, 13] i
s
a
n
effective
way to solve t
he
probl
em. Th
e related re
sea
r
che
s
focus on the transfe
r tech
n
o
logy of Co
nsum
ers' im
age
perceptio
n [14, 15], an
d are l
a
cki
ng in
co
n
s
i
derin
g Con
s
umers' Ka
n
s
ei
cog
n
itio
n
cha
r
a
c
teri
stics. The predi
ction ac
cu
ra
cy of the model is low.
The stu
d
y an
alyze
s
the
ch
ara
c
teri
stics
of
Con
s
um
ers' pe
rceptio
n
image to the
prod
uct
form firstly. Secon
d
ly, the evaluation
model
that
is used to
simulate
Co
nsum
ers' im
age
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 12, Dece
mb
er 201
3: 767
1 – 7681
7672
perceived behavior is
built
using gray relational
anal
ysis and fuzzy neural network. Finally,
a
pra
c
tical exa
m
ple of ca
r si
de profile d
e
sign is taken.
2. The Char
a
c
teris
t
ics of
Cognitio
n
The human cognition processe
s is fuzzy and has l
earni
ng
abilit
y. And the
research
methods
used in this
s
t
udy
foc
u
s
on
th
es
e
tw
o
c
h
ar
ac
te
r
i
s
t
ics
.
Knowle
dge
is huma
n
'
s
su
bjective im
ag
e to the
obje
c
tive world
a
nd the
hum
a
n
. The
fuz
z
y
c
o
gnition is formed from the think
i
ng of
the
obje
c
tive wo
rld, it reflect
s
the jud
g
me
nt
cha
r
a
c
teri
stics of the hu
man'
s co
gnit
i
on level
to the obje
c
tive world. F
r
o
m
the view of
informatio
n proce
s
sing, the
kno
w
led
ge a
c
qui
siti
on d
e
p
end
s not only
on the rea
s
o
n
ing, but also
on the cognit
i
on thinki
ng
with fuzzy ch
ara
c
teri
st
ics.
The cognitio
n
thinking i
s
hi
era
r
chical. And
there
are
re
cessive of varying deg
ree
s
and fu
zzi
ne
ss
of different
levels in
co
g
n
ition thin
kin
g
.
The ima
ge t
h
inki
ng p
r
o
c
e
ss i
s
n
o
t line
a
r, it's th
ree
-
dimen
s
ion
a
l
and
wide, a
n
d
ha
s a
stro
ng
imaginatio
n.
Some a
b
stra
ct imagi
natio
n only
can
be
se
nsed by th
em, and
is dif
f
icult to exp
r
e
s
s
to others. Th
ere i
s
a cert
ain am
biguity
. In intuitive thinkin
g
an
d
cre
a
tive thin
king, it's full
o
f
human
's fu
zzy image thinking of intuition, inspir
ation,
epipha
ny, and also full of sen
s
e thin
kin
g
of "can only b
e
felt, not exp
l
ained" [16].
Learning i
s
a
behavio
r to
gain exp
e
rie
n
c
e o
r
a
rel
a
tively long-la
sti
ng ad
aptive chang
e
of beh
avior
potential
of
human
an
d
animal i
n
th
e life
cou
r
se
. Animal a
n
d
hu
man
are
inse
parable f
r
om lea
r
nin
g
, and learning
make
s them
exist, develop and mai
n
tain a balan
ce
with environ
ment. In other word
s, le
arnin
g
is th
e mean
s to
adapt to e
n
vironm
ent for
them.Lea
rnin
g a
c
tivities, e
v
en the
simp
lest le
arni
ng,
is
not the
a
c
tivity of a si
ngle
cell,
but
a
comp
re
hen
si
ve activity of
a l
a
rg
e n
u
m
ber of n
e
u
r
o
n
s. T
h
e
s
e
n
euro
n
s
con
s
ti
tute a
com
p
l
e
x
netwo
rk.
3. Product Design Param
e
ter
s
Identifi
cation Te
ch
nolog
y
In this study,
the prod
uct
param
eters
are id
entified
with gray relational g
r
a
de, the
importa
nt attributes that af
fect
the
syste
m
develo
p
me
nt trend
s
are
define
d
a
c
cordin
g to
gra
y
relation
al gra
de. The d
e
si
gner
ca
n an
a
l
yze the mutu
al influen
ce b
e
twee
n vario
u
s d
e
termi
n
in
g
factors an
d m
easure th
e co
ntribution
of the fact
o
r
s to
behavio
r a
c
cordin
g to the
microsco
pic
o
r
macro
s
copi
c geomet
ric
p
r
oximity of factor
se
qu
e
n
c
e
s
. In the field of produ
ct form ima
g
e
desi
gn, it hel
ps d
e
si
gne
rs
unde
rsta
nd t
he correl
atio
n
betwe
en the
desi
gn el
eme
n
ts an
d imag
e,
and sort out the form featu
r
es that me
et the
Kansei d
e
m
and to defin
e the key de
sign eleme
n
ts.
Produ
ct form
eleme
n
ts
a
nd
catego
rie
s
a
r
e
cla
s
sified a
nd n
u
m
bere
d
a
c
cord
ing to
morp
holo
g
ica
l
analysi
s
. Kansei imag
e
vocab
u
lari
e
s
a
r
e
colle
cted, and th
e
rep
r
e
s
entati
v
e
vocab
u
lari
es
are
sele
cted
according to
clu
s
ter a
naly
s
is. Ba
sed
o
n
the se
man
t
ic differential
method, a 5-level SD que
stionn
aire fo
r each pai
r of Kansei voca
bulari
e
s an
d
n
sampl
e
s i
s
desi
gne
d to survey the con
s
ume
r
s' Kan
s
ei evaluation
to sample
s.
(1)
The de
cisi
on
matrix
D
is de
fined.
(2)
And the elem
ents of de
cisi
on matrix is
x
i
(k
)
.
Therefore, th
e deci
s
io
n matrix can be e
x
presse
d as:
))
(
,
),
2
(
),
1
(
(
)
(
0
0
0
0
n
x
x
x
k
x
ik
i
k
x
D
)
(
))
(
,
),
2
(
),
1
(
(
)
(
n
x
x
x
k
x
i
i
i
i
)
(
)
2
(
)
1
(
)
(
)
2
(
)
1
(
)
(
)
2
(
)
1
(
1
1
1
0
0
0
n
x
x
x
n
x
x
x
n
x
x
x
D
m
m
m
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Cog
n
itive An
alysis of Pro
d
u
ct Form
Elem
ents (Shuta
o
Zhang
)
7673
Whe
r
e,
i=0, 1, 2, ..., m, k=1, 2, ..., n,
N
k
i
,
.
x
0
(n
)
is refe
ren
c
e
sequ
e
n
ce, the ot
her
m
grou
ps sequ
en
ce are
comp
arative
seq
uen
ce
s, a
nd every se
q
uen
ce contai
n
n
fac
t
ors
.
In this
s
t
udy
, the Kansei evaluation
x
0
(k
)
of
n
sample
s i
s
refe
ren
c
e
seque
nce, the
other
m
gro
ups compa
r
a
t
ive seq
uen
ce re
present t
he
variou
s de
sig
n
eleme
n
ts a
nd catego
rie
s
. The
seq
u
e
n
ce
s a
r
e n
o
rmalize
d
, and
a normalize
d
matrix
S
is de
fined as:
.
(3)
Whe
r
e,
Acco
rdi
ng to
distan
ce m
e
thod, the
m
seq
uen
ce
s
are p
r
o
c
e
s
se
d to form a
n
m×
n
norm
a
lized m
a
trix
x
i
*(k)
. E
v
ery element
s of ea
ch
col
u
mn in no
rm
alize
d
matrix
minus
x
0
(k
)
, and
the absolute
values
con
s
titute a differen
c
e sequ
en
ce
matrix
∆
.
(4)
Gray rel
a
tion
al coeffici
ent is define
d
as:
(5)
Whe
r
e,
;
;
.
ξ
is i
dentification coefficie
n
t, it's use
d
to
adju
s
t the co
ntrast
betwee
n
the o
r
igin
al
obje
c
t
and th
e o
b
je
ct to be
mea
s
u
r
ed, a
n
d
]
1
,
0
[
. If the identific
a
tion coeffi
c
i
ent is
s
m
aller, then the
correl
ation
i
s
stronge
r. Gray relatio
nal coe
ffici
e
n
t is th
e
correlation
be
tween
refe
re
nce
seq
uen
ce a
n
d
comp
are se
quen
ce level,
and
0
≤
r(
x
0
(k
), x
i
(k
))
≤
1.
Gray rel
a
tion
al grad
e is de
fined as the a
v
erage of the
gray co
rrelati
on co
efficient
.
(6)
i
i
k
x
S
)
(
*
n
k
i
i
i
k
x
n
k
x
k
x
1
*
)
(
1
)
(
)
(
)
(
)
(
)
2
(
)
2
(
)
1
(
)
1
(
)
(
)
(
)
2
(
)
2
(
)
1
(
)
1
(
)
(
)
(
)
2
(
)
2
(
)
1
(
)
1
(
0
*
0
*
0
*
0
*
2
0
*
2
0
*
2
0
*
1
0
*
1
0
*
1
n
x
n
x
x
x
x
x
n
x
n
x
x
x
x
x
n
x
n
x
x
x
x
x
m
m
m
max
0
max
min
0
)
(
))
(
),
(
(
k
k
x
k
x
r
i
i
)
(
)
(
)
(
*
*
0
0
k
x
k
x
k
i
i
)
(
)
(
min
min
*
*
0
min
k
x
k
x
i
k
i
)
(
)
(
max
max
*
*
0
min
k
x
k
x
i
k
i
n
k
i
i
k
x
k
x
r
n
x
x
r
1
0
0
))
(
),
(
(
1
)
,
(
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 12, Dece
mb
er 201
3: 767
1 – 7681
7674
Acco
rdi
ng to sorting g
r
ay
relational g
r
ade,
it's able
to asse
ss t
he influen
ce
of the
desi
gn el
eme
n
ts to Ka
nsei
image,
and
then id
entify the individu
al
paramete
r
s
and
platform
para
m
eters.
4. Kansei Image Predic
tion Model
Fuzzy ne
ural
netwo
rk
com
b
ine
s
the
adv
antage
s of fu
zzy
system
a
nd ne
ural net
work,
and ab
and
o
n
s the di
sa
dvantage
s of
them. It h
a
s the u
n
ce
rtain informa
t
ion pro
c
e
s
si
ng
capability of t
he fuzzy
sy
stem
and self-l
earni
ng abilit
y
of
the neu
ral net
work.
T
here i
s
a very
broa
d a
ppli
c
a
t
ion prospe
cts in
the fiel
d
of co
nt
rol
foreca
st. Fu
zzy
neural n
e
two
r
k
can
be
u
s
e
d
to verify the corre
c
tne
s
s o
f
the individu
al
paramete
r
s an
d platform paramete
r
s ba
se
d on t
h
e
gray rel
a
tiona
l analysi
s
. The human b
r
ai
n has the
a
b
i
lity to learn and fuzzy cog
n
ition feature
s
in the
perce
ptual p
r
o
c
e
s
s, an
d the
chara
c
te
ri
sti
c
s of ne
ural
n
e
tworks a
n
d
fuzzy sy
ste
m
correspond with them.
Neural
net
work
has a
strong ability to ad
apt and learn, but it can
not
deal
with fu
zzy informatio
n. Fuzzy
rule
s, mem
bersh
ip fun
c
tion a
nd oth
e
r
de
si
gn p
a
ra
meters
rely heavily on experie
nce,
so fuzzy sy
stem la
cks the ability of s
e
lf-lea
rning a
nd adaptatio
n.
Fuzzy neu
ral
netwo
rk a
c
h
i
eves the co
mpleme
ntar
it
y of neural n
e
twork a
nd fuzzy system;
it
applie
s n
eura
l
netwo
rks to
con
s
tru
c
t fu
zzy sy
stem
. Accordi
ng to th
e input
and
o
u
tput sa
mple
s,
the sy
stem a
u
tomatically
adju
s
t the
de
sign
pa
ram
e
ters in
order to sim
u
late th
e an
alysi
s
be
tte
r
and fore
ca
sti
ng pro
c
e
s
s of human b
r
ain
[17].
The e
s
tabli
s
h
m
ent of the
n
eural
net
work i
nput l
a
yer i
s
determine
d
by the
study
obje
c
t,
it compri
se
s the input layer nodes a
nd the input dat
a. In this study, the input layer nodes i
s
the
total numbe
r of coo
r
dinate
of the key point wh
e
n
sa
mple co
ntou
r is quanti
z
ed,
and the inpu
t
data i
s
the
coordi
nate
s
of
the
respe
c
tive key poi
nt. Fuzzificatio
n
mean
s to t
r
a
n
sform the
cl
ea
r
sign
al into
a
fuzzy
set d
e
scrib
ed
by the
membe
r
ship
gra
de. Th
e
pro
c
e
s
s is
used to te
st th
e
exact valu
e
o
f
variabl
es an
d tra
n
sfo
r
m t
hem i
n
to a
p
p
r
op
riate
wo
rd
s a
n
d
ph
ra
se
s a
c
co
rdin
g t
o
its ambig
u
ity and mem
b
e
r
shi
p
fun
c
tio
n
. In this
stu
d
y, the neural netwo
rk o
u
tput the fuzzy
Kansei eval
u
a
tion in the form of ambigui
ty function membe
r
ship grade.
In this study,
triangula
r
fu
zzy nu
mbe
r
is us
ed to re
p
r
esent the Ka
nsei eval
uati
on [18,
19]. The tria
ngula
r
fuzzy numbe
r is a
spe
c
ific
ca
se
of fuzzy set
s
. Thre
e ele
m
ents (
t
1
,
t
2
,
t
3
)
express a triangul
ar fuzzy number and represen
t a probability distribution as shown i
n
Figure 1.
Figure 1. Tria
ngula
r
Fu
zzy
Numb
er a
nd
Membe
r
ship
Grad
e
Membe
r
ship
grad
e is exp
r
essed by:
3
3
2
3
2
3
2
1
1
2
1
1
,
0
,
,
,
0
t
x
t
x
t
t
t
t
x
t
x
t
t
t
t
x
t
x
x
i
(7)
It is gene
rall
y believed th
at the increa
se of mi
ddle
layers
ca
n re
duce net
work errors
and imp
r
ove
accuracy, b
u
t it also in
crea
se
s
the n
e
twork
com
p
l
e
xity, training time and th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Cog
n
itive An
alysis of Pro
d
u
ct Form
Elem
ents (Shuta
o
Zhang
)
7675
tenden
cy of
over-fitting.
Horin
k
h
a
s pro
v
ed that
if th
e inp
u
t layer
and
output la
yer ap
ply line
a
r
transfe
r fun
c
ti
on an
d the m
i
ddle laye
r ap
plies Sig
m
oid
tran
sfer fun
c
tion, the MLP
netwo
rk with
a mid
d
le lay
e
r
ca
n a
ppro
a
ch
any
ratio
nal fun
c
tion
with a
r
bitrary
preci
s
ion
[2
0]. So, a 3
-
la
yer
neural netwo
rk is a
dopte
d
in this stu
d
y.
The middle layer no
des a
r
e very important. It
influen
ce
s th
e pe
rform
a
n
c
e
of network for it is
th
e direct
ca
u
s
e
of over-fitting. The
ba
sic
prin
ciple
of t
he mid
d
le la
yer no
de
s i
s
that wh
en t
he a
c
curacy
req
u
ire
m
ent
s i
s
me
et, the
stru
cture of n
e
twork
sho
u
l
d
be a
s
comp
act a
s
po
ssi
bl
e. Typically, the middl
e layer no
de
s are
a
half of the
su
m of the in
pu
t layer an
d o
u
tput
layer
n
ode
s. Defu
zzification m
e
a
n
s to t
r
an
sform
the output fu
zzy valu
es i
n
to cle
a
r val
ues. Me
mbe
r
ship
gra
de
μ
out
(x)
can be
defined as a
polyline
conn
ect to the o
u
t
put node
s in
turn. In or
de
r to get the v
a
lue of Kan
s
ei image, it i
s
necessa
ry to obtain the ce
nter of gr
avity of polyline. It is defined a
s
:
1
0
1
0
)
(
)
(
dx
x
dx
x
x
x
out
out
CG
.
(8)
A fuzzy ne
ural netwo
rk is cre
a
ted, an
d
it
s paramete
r
s
su
ch a
s
weight and
error a
r
e
adju
s
ted in th
e training p
r
o
c
e
ss. It is sho
w
n in Figu
re
2.
Figure 2. Fuzzy Neu
r
al Network
In this study, the level of
Kansei eval
u
a
tion
is divid
ed into five classe
s, and they are
defined
a
s
5
point
s
on t
he axi
s
. Th
e
no
rmali
z
ed
numbe
rs a
r
e
0, 0.2
5
, 0.5
,
0.75
and
1
.
Acco
rdi
ng
to
the
semanti
c
differential m
e
thod,
if
the
value of Ka
n
s
ei
evaluatio
n range
s f
r
o
m
-
0.125 to 0.1
2
5
, it belong
s t
o
the cl
ass
re
pre
s
ent
e
d
by
the point. Fo
r example, the
numbe
r 0.25
rep
r
e
s
ent
s th
e second
cl
a
ss,
as sho
w
n
in Fi
gure 3.
I
f
the Kan
s
ei
evaluation
is
in the
regi
on
of
0.125 to
0.3
75, it is con
s
ide
r
ed
that
the Ka
n
s
ei e
v
aluation bel
ong
s
to
th
e se
con
d
cla
s
s.
Therefore, when the erro
r absolute valu
e betwe
en th
e forecast
val
ue of neural netwo
rk a
nd the
evaluation of
subj
ect
s
is le
ss tha
n
0.125
, the predicte
d
result is acceptable.
125
.
0
25
.
0
0.25
x
Figure 3. Rea
s
on
able Erro
r Rang
e
5. Case Stud
y
The rese
arch
ers
coll
ect a l
a
rge
numb
e
r
of lateral vie
w
imag
es of
car, a
nd
cho
o
se 5
0
image
s as th
e experim
ent
al sampl
e
s a
s
sho
w
n in Ta
ble 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 12, Dece
mb
er 201
3: 767
1 – 7681
7676
Table 1. The
Experimental
Sample
s
1 2 3 4 5
6 7 8 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Then,
all
the sampl
e
s are quantified
a
s
sho
w
n
in
Fig
u
re 4. Th
e si
de contou
r is
define
d
by 27 key poi
nts, whi
c
h
directly ch
ang
e
the sid
e
cont
our. At the sa
me time, the
key poi
nts a
r
e
the basi
s
of d
e
sig
n
eleme
n
t
s
and catego
ries of
side contour.
Figure 4. Side Conto
u
r of Car
Acco
rdi
ng to the key point
s, side conto
u
r of
car i
s
divided into followin
g
eleme
n
ts: the
form of head
end (A1
)
, the thickn
ess of head en
d (A
2), the lowe
r se
ction outlin
e of head en
d
(A3), the h
o
o
d
angle
(B1
)
, the hoo
d ra
di
ans
(B2), t
he
form of car
canopy (C), the form of tru
n
k
lid (D), the fo
rm of trail
(E
1), the thi
c
kn
ess of
trail
(E
2), the lo
we
r
se
ction o
u
tlin
e of trail
(E3);
three p
r
op
orti
onal relation
ship: the lengt
h of hood
/the
length of ca
r cano
py (F),
the length of
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Cog
n
itive An
alysis of Pro
d
u
ct Form
Elem
ents (Shuta
o
Zhang
)
7677
trunk lid/the l
ength of
ca
r can
opy (G),
the len
g
th
of ca
r/the he
ight of car
(H). Th
e d
e
si
gn
element
s are descri
bed a
n
d
cla
ssifie
d
b
a
se
d on qu
ali
t
ative methods as
sho
w
n in
Table 2.
Table 2. De
si
gn Element
s and Catego
ri
es
1
2
3
4
5
6
A1 Circular
Semicircular
Bald
Square
Step
w
i
se
Sharp
A2 53~61
61~69
69~77
77~85
85~93
A3
Long and
par
allel
Long and
fastigiate
Short and
par
allel
Short and
fastigiate
B1 0.11~0.14
0.14~0.17
0.17~0.20
0.20~0.23
0.23~0.26
B2 Small
Medium
Large
C
Broken line
Stream line
Oval
D
Long and
par
allel
Long and
fastigiate
Short and
par
allel
Short and
fastigiate
Without
Backw
ard
tilt
E1 Circular
Step
w
i
se
Square
Circular
-square
Sharp
E2 79~87
87~95
95~103
103~111
111~120
E3
Long and
par
allel
Long and
fastigiate
Short and
par
allel
Short and
fastigiate
F 0.32~0.37
0.37~0.42
0.42~0.47
0.47~0.53
0.53~0.58
G Without
0.14~0.17
0.17~0.20
0.20~0.23
0.23~0.26
H 0.24~0.255
0.255~0.27
0.27~0.285
0.285~0.30
0.30~0.315
Finally, the d
e
sig
n
ele
m
e
n
ts of 5
0
q
u
antize
d
sam
p
les are
classified to
en
sure th
at
each ele
m
en
t is de
scrib
e
d
acco
rdi
ng t
o
de
sign
ele
m
ents and categori
e
s
in Table 2.
In
this
study, a surv
ey que
stionn
aire i
s
de
sig
n
ed to su
rvey Con
s
um
ers' Kansei evalu
a
tion
to
vario
u
s
car
s
.
Fir
s
t
l
y
,
t
he re
se
ar
che
r
s
colle
ct
a lo
t
of
Kansei v
o
ca
bula
r
ie
s that de
scribe t
he car
conto
u
r
.
And the
n
the
su
bje
c
ts pi
ck o
u
t
six Kan
s
ei vo
ca
bula
r
ies
(Dynami
c
, stylish,
eleg
ant, flow line
s
,
stationa
ry an
d pe
rsonali
z
e
d
). Fin
a
lly, a
5-level
que
sti
onnai
re i
s
de
sign
ed
acco
rding to
6 Ka
n
s
ei
vocab
u
lari
es
and 50
sa
m
p
les. Th
e re
sea
r
che
r
s
ca
lculate
and o
b
tain the Ka
nsei
evaluati
o
n
averag
e of e
a
ch
sa
mple.
To Kan
s
ei vo
cab
u
lary "dyn
amic", for ex
ample, the
d
e
sig
n
ele
m
en
ts
and Kan
s
ei e
v
aluation ave
r
age of ea
ch
sampl
e
are shown in Tabl
e 3.
Table 3. The
De
sign Elem
ents an
d Kan
s
ei Evaluatio
n Average
Sample
Design elements and categories
Kansei
A1
A2 A3
B1 B2
C
D
E1 E2
E3
F
G
H
Dy
namic
Sample
1
3 3
1 3
1 1
1 2
4 1
4 3
2
2.94
Sample
2
1 5
1 2
1 3
1 2
4 2
4 3
3
3.34
Sample
3
3 3
4 3
3 2
5 1
4 1
5 1
2
3.28
Sample
4
1 4
3 1
1 2
6 3
3 4
5 3
1
4.10
···
···
···
Sample50
1 3
2 5
2 2
2 1
3 2
2 2
2
4.00
Table 4. The
Sort of Desi
g
n
Elements
Element
=0.2
Sort
=0.3
Sort
=0.4
Sort
A1
0.482566
13 0.572746
13 0.634812
13
A2
0.610798
7 0.688212
7
0.73852
7
A3
0.559572
12 0.642855
12 0.698612
12
B1
0.616235
6 0.691085
5 0.740225
4
B2
0.645459
2 0.721222
2 0.769094
2
C
0.577061
9 0.658858
9 0.713201
10
D
0.617059
4 0.690557
6 0.739078
6
E1
0.616775
5 0.693481
3 0.743235
3
E2
0.562895
11 0.645324
11 0.700201
11
E3
0.570193
10 0.656708
10 0.713449
9
F
0.680175
1 0.749672
1 0.793542
1
G
0.617779
3 0.691425
4 0.739754
5
H
0.591595
8
0.66495
8 0.714329
8
Kansei
evalu
a
tion ave
r
a
g
e
of
sampl
e
s a
nd
ca
teg
o
ry numbe
r are
u
s
ed
to co
nstruct
t
h
e
origin
al de
cision matrix to
calculate th
e gray
relatio
nal grade. If the gray rela
tional grade
of
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 12, Dece
mb
er 201
3: 767
1 – 7681
7678
element
s are
too simila
r, it will be difficult
for de
sign
ers to di
stingui
sh p
a
rameters. Th
e
identificatio
n coeffici
ent
ξ
sho
u
ld be
ad
justed
so a
s
to stren
g
then
or we
aken t
he co
ntra
st o
f
gray rel
a
tion
al gra
de. Wh
en the identi
f
ication c
oefficient
s are 0.2, 0.3,
0.4, the cal
c
ul
atio
n
results a
r
e sh
own in Ta
ble
4.
Table 5. The
Coo
r
din
a
tes
of Key Points of Test Samples
Sample 1
Sample 2
Sample 3
Sample 4
. . .
Sample
50
x1
270 264 272
260
265
y1
190 184 178
180
188
x2
220 222 240
232
227
y2
194 190 180
184
195
x3
192 186 204
200
188
y3
208 204 188
192
205
x4
187 181 196
188
183
y4
224 220 204
224
222
x5
186 180 194
186
180
y5
244 242 222
250
237
x6
196 194 198
190
179
y6
260 256 230
258
251
x7
200 196 200
191
192
y7
282 276 258
270
283
x8
210 198 223
192
190
y8
298 298 284
284
296
x9
262 260 278
254
243
y9
300 304 306
284
305
x10
320 324 336
314
302
y10
328 328 322
304
326
x11
372 398 390
374
348
y11
344 346 328
320
339
x12
424 440 434
430
408
y12
347 350 330
324
345
x13
480 490 476
472
478
y13
345 348 330
324
345
x14
527 534 520
516
530
y14
338 340 325
320
338
x15
580 588 566
556
585
y15
312 318 304
302
316
x16
620 632 608
592
638
y16
288 292 280
286
289
x17
680 694 672
660
702
y17
281 284 277
282
281
x18
728 750 733
730
757
y18
274 276 266
273
267
x19
777 784 760
756
782
y19
261 266 252
266
253
x20
791 800 786
778
792
y20
244 253 235
254
236
x21
800 808 786
786
792
y21
230 228 214
226
208
x22
800 809 782
785
790
y22
213 211 200
212
193
x23
800 807 784
784
793
y23
194 190 186
193
189
x24
780 778 761
760
774
y24
186 178 179
182
182
x25
736 738 732
736
735
y25
184 174 176
182
178
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Cog
n
itive An
alysis of Pro
d
u
ct Form
Elem
ents (Shuta
o
Zhang
)
7679
The so
rt
re
su
lt
s sho
w
s t
hat
the contributi
on of desig
n element
s B1, B2, F, G to
Kansei
image "dyna
m
ic" is g
r
eat,
and the ele
m
ents A1, A
3
, E2 have a
small contri
bution to Ka
nsei
image "dyna
m
ic". So, the
element
s B1, B2, F,
G are defined as in
dividual para
m
eters, and the
element
s A1,
A3, E2 are d
e
fined a
s
plat
form p
a
ra
met
e
rs.
The
pa
ra
meter i
dentification
re
sult
s
are cond
uciv
e to the positioning, de
sign
and im
prove
m
ent of desig
n element
s. 50 sampl
e
s
a
r
e
divided into two group
s. T
he 7th,
16th, 26th, 30th an
d 47th sam
p
l
e
s are ran
d
o
m
ly selecte
d
as
test sample
s
to verify the t
r
ainin
g
re
sult
s of fu
zzy ne
ural
network.
The
re
maini
ng 4
5
sampl
e
s
are u
s
ed to train the netwo
rk. The in
put layer nod
es of
network are equal to the total numbe
r o
f
coo
r
din
a
te of
key p
o
ints
o
n
the
sampl
e
outli
ne. Th
ere are 27
poin
t
s on th
e sam
p
le outlin
e, b
u
t
the 26th and
27th point
s a
ffect the form of chas
si
s o
n
ly, so the first 25 point
s are cho
s
en a
s
key poi
nts, a
nd 50
co
ordin
a
tes a
r
e
defin
ed. The
r
efo
r
e
,
the total nu
mber
of input
layer n
ode
s i
s
50, and the in
put data is th
e coo
r
din
a
tes of key points of 45 sample
s as
sho
w
n in
Table 5.
The Kan
s
ei
evaluation i
s
divided into fi
ve levels, an
d the corre
s
p
ondin
g
rel
a
tionship
betwe
en Kan
s
ei evalu
a
tion
hiera
r
chy an
d triangul
ar fu
zzy nu
mbe
r
is sh
own in Table 6.
Table 6. Co
rresp
ondi
ng Relation
ship
Kansei evaluatio
n
Triangular fuzz
y
number
1
0, 0, 0.25
2
0, 0.25, 0.5
3
0.25, 0.5, 0.7
5
4
0.5, 0.75, 1
5
0.75, 1, 1
The output of
network is th
e three ele
m
ents (
t
1
,
t
2
,
t
3
) of triangula
r
fuzzy num
be
r, which
is no
rmali
z
ed
. According t
o
the cha
r
a
c
t
e
risti
cs
of the triangula
r
fu
zzy nu
mbe
r
, 21 nod
es divi
de
the axis 0 to 1 into 20 segments, an
d these
no
de
s are the outp
u
t layer node
s as sho
w
n in
Figure 5.
Figure 5. The
Output Layer Node
s
There is a middle layer in the netwo
rk.
There are 5
0
input node
s a
nd 21 output
node
s
in net
wo
rk,
so the
num
be
r of mid
d
le
layer
nod
es is 3
6
. The
researche
r
s
set the
pa
ramete
rs
of
netwo
rk
su
ch
as refre
s
h freque
ncy, learning ra
te, mo
mentum co
nstant, the number of trainin
g
and conve
r
g
ence erro
r. After r
epe
ate
d
trainin
g
, the network
eventually converg
e
s to
an
accepta
b
le e
rro
r. To co
mpare with
the ac
tual d
a
ta, the output data is deco
ded with
defuzzificatio
n
metho
d
to
get the intuiti
onal a
nalys
i
s
results. T
he a
nalysi
s
results of the
Kan
s
ei
image "dyna
m
ic" is sho
w
n
in Table 7.
Table 7. THE
ANALYSIS
RESULTS of
the Kansei Im
age "dynami
c
"
Actual
data
0.4754
0.3115
0.5574
0.7377
0.1230
Prediction
date
0.5010
0.2024
0.5539
0.7388
0.1555
Error
0.0256
-0.1091
-0.0035
0.0011
0.0325
The re
sult
s show that the
error of five test
sa
mple
s i
s
in a rea
s
on
able e
rro
r ran
ge, and
it is proved th
at the predi
ction method b
a
s
ed o
n
fuzzy neural network is fea
s
ible.
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 12, Dece
mb
er 201
3: 767
1 – 7681
7680
In orde
r to
predi
ct the
Kansei
eval
uati
on of ne
w sample
without the pl
atform
para
m
eters, the re
sea
r
che
r
s excl
ude th
e desi
gn
ele
m
ents A1 an
d A3 accordi
ng to the gra
y
relation
al g
r
a
de
sort
of 6 K
ansei ima
ge.
In actu
al o
peration, the
nod
e that
affe
cts
the individu
a
l
para
m
eter a
nd pl
atform
para
m
eter sh
ould
be
re
tai
ned. Fo
r
exa
m
ple, the
no
de x21
affects
platform
pa
ra
meter A
1
a
n
d
individ
ual
p
a
ram
e
ter H,
so it
is retai
n
ed in
the
foreca
st p
r
o
c
e
s
s.
Acco
rdi
ng to the key point
s on the outli
ne, the node
s that affect platform pa
ra
meters A1 an
d
A3 are sho
w
n
in Table 8.
Table 8. Platform Paramet
e
rs a
nd Asso
ciated
Nod
e
s
Platform param
et
ers
Associated nodes
A1
x22,
x23,
y21,
y22,
y23
A3 x25,
y25
These n
ode
s are
removed
from th
e inp
u
t laye
r
of ne
twork. Th
e re
sea
r
che
r
s adj
ust th
e
middle laye
r, and train the
netwo
rk a
gai
n. And t
he verification
re
su
lts are
sho
w
n
in Table 9.
Table 9. The
Verificatio
n
Result
s
Actual
data
0.4754
0.3115
0.5574
0.7377
0.1230
Prediction
date 0.2916
0.2262
0.5899
0.6717
0.1761
Error
-0.1838
-0.0853
0.0325
-0.0660
0.0531
To the
Kan
s
ei imag
e "dy
namic", th
e
result
s
sho
w
t
hat fou
r
e
r
rors in
the
five
sampl
e
forecast
re
sul
t
s a
r
e in
rea
s
onabl
e rang
e
,
the fore
cast
accu
ra
cy rate is 80%. F
o
r other Kan
s
ei
image
s, the
predi
ction
a
c
curacy
ca
n reach 80%. It
is evid
ent t
hat the
re
sul
t
s of platfo
rm
para
m
eter id
entification a
r
e corre
c
t.
6. Conclusio
n
In this stu
d
y, the re
sea
r
chers calculat
e and
so
rt the gray rel
a
tional g
r
ad
e
betwe
en
desi
gn el
eme
n
ts an
d Kan
s
ei image
with
gray relation
al analy
s
is, a
nalyze th
e Ka
nsei
evaluatio
n
and fo
re
ca
st the Kan
s
ei e
v
aluation of t
he p
r
odu
ct
s
without pl
atform pa
ram
e
te
rs
usi
ng fu
zzy
neural net
wo
rk. Th
e re
sul
t
s sh
ow that
the gray
rel
a
tional an
alysis m
e
thod
can be u
s
e
d
to
identify the platform pa
rameters an
d
indivi
dual p
a
ram
e
ters of
prod
uct, an
d fuzzy neural
netwo
rk i
s
ap
plica
b
le to predict Kan
s
ei
evaluation.
Ackn
o
w
l
e
dg
ement
The autho
rs woul
d like to extend our
si
nce
r
e t
han
ks to all those who co
ntribute
d
to this
study, e
s
pe
ci
ally the p
a
rticipants who to
ok th
e troubl
e to
re
spo
n
d
to the
que
sti
onnai
re
s. Th
e
proje
c
t i
s
spo
n
so
red
by
Na
tional Natural
Scien
c
e
Fou
ndation
of Ch
ina (510
650
1
5
), Fo
und
atio
n
of Postg
r
ad
u
a
te Sup
e
rvisor
of Ga
nsu
Educatio
n
Office in
China
(100
7ZT
C
08
1)
and
Scie
ntific
Re
sea
r
ch Fo
undatio
n for t
he Retu
rn
ed
Oversea
s
Ch
i
nese Sch
o
lars of State Educatio
n Mini
stry
([2010]1
561
).
Referen
ces
[1]
Nie Pi
ng. Cha
n
ges of Prod
uc
t Form
w
i
th Soci
al Dev
e
lo
pme
n
t.
Art and Desi
gn
. 200
9; (3): 166-1
68.
[2]
Osgood C E, Suci C J.
T
annen
ba
um P H.
T
he m
easure
m
ent of meani
ng. Ur
ba
na: U
n
iversit
y
of
Mino
es Press. 195
7.
[3]
Xi
an Gua
ngm
ing, Z
eng B
i
qin
g
, Yun Qi
ao
yu
n, et
al. Non-sp
ecific
perso
n
conti
n
u
ous spe
e
ch
ide
n
tificatio
n
i
n
seco
nd la
n
gua
ge us
in
g BPR.
T
E
LKOMNIKA Indon
esia
n Jour
nal
of Electrica
l
Engi
neer
in
g
. 2012; 10(
7): 160
4-16
09.
[4]
Lia
n
-Yin Z
hai,
Li-Ph
eng
Kho
o
,
Z
hao-W
e
i Z
h
ong. A
domi
n
a
n
ce-b
ased
rou
gh set
ap
proac
h to Ka
ns
e
i
Engi
neer
in
g in
prod
uct deve
l
o
p
ment.
Expert System w
i
th Applic
atio
ns
. 20
09; (36): 39
3-4
02.
[5]
Kurt K. Principl
e of Gestalt psych
o
l
o
g
y
. F
i
rs
t Editio
n. Han
g
z
hou: Z
hej
ia
ng
Educati
on Pres
s. 1997.
Evaluation Warning : The document was created with Spire.PDF for Python.