TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 9, September
2014, pp. 66
9
1
~ 669
8
DOI: 10.115
9
1
/telkomni
ka.
v
12i9.637
3
6691
Re
cei
v
ed
Jun
e
6, 2014; Re
vised J
une 2
3
, 2014; Acce
pted Jul
y
16,
2014
Design and Study on Dynamic Measuring System for
Field Surface Roughness
Lv
Xiao-Ron
g
1
*, Liu Ming-Da
n
2
, L
v
Xia
o
-Lian
3
1,2
Colleg
e
of Machi
ner
y & Ele
c
tronics, Sichu
an Agric
u
ltura
l
Univers
i
t
y
, Sic
hua
n, Yaan, 6
2
501
4, Chi
n
a
3
Colle
ge of Ma
chin
er
y
and El
ectronic En
gin
eeri
ng, Chuz
ho
u Univ
ersit
y
, A
nhu
i, chuzh
ou, 239
00
0, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: lxr
x
j
2
0
08@
1
63.com
A
b
st
r
a
ct
Explor
e the
a
d
aptab
ility
an
d r
e
lati
onsh
i
p
of p
l
anter
to
fie
l
d
s
u
rface r
oug
hn
e
ss. Throug
h fi
e
l
d test
of
the des
igned dynam
i
c te
sting system
of
field
surfac
e r
oughness, the two t
y
pes
of field surface roughness
w
e
re detecte
d
on th
e or
igi
n
a
l
field
surfac
e r
oug
hn
ess
for
m
ed
by the
w
o
rking r
o
tary
and
the fie
l
d s
u
rfac
e
roug
hness
for
m
e
d
after
pla
n
t
ers w
o
rk. T
he transfer f
uncti
ons of th
e sys
tem w
e
re
esta
blish
ed,
and t
h
e
dynamic char
acteristics of the system
wer
e
analy
z
e
d. The results show
that, the system
is
a linear one
w
i
th the typical
first order feat
ure. T
he dy
na
mic c
har
act
e
ristics of the sy
stem
s
suc
h
as
response speed,
freque
ncy b
a
n
d
w
i
dth a
nd th
ic
kness of c
o
ver
i
ng so
il
an
d
oth
e
r perfor
m
anc
e
ind
i
cators
are
abl
e to
meet th
e
requ
ire
m
e
n
ts of agricultur
a
l te
chno
logy.
Ke
y
w
ords
:
fiel
d surface rou
g
hness, dyn
a
m
i
c
meas
ur
i
ng sy
stem, resp
ons
e, transfer function
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The
wo
rki
n
g
quality of t
he pl
anter i
s
directly reflected
with
wheth
e
r soil
cove
ring
thickne
ss of
the see
d
ca
n meet the agri
c
ultu
ra
l requireme
nt [1, 2], while the field su
rface
roug
hne
ss is
the main fact
or to affect the soil
coverin
g
thickne
ss o
f
the planter. The ada
ptabil
i
ty
of the developed tap
ed
type planter
for field
su
rface
roug
hne
ss i
s
one of
main dyna
mic
perfo
rman
ce
indexe
s
of the plante
r
[3, 4]. Cu
rrently, the in-depth
res
earch on
detection an
d
analysi
s
met
hod of the su
rface
rou
ghn
ess of pav
em
ent and farml
and were
ever carried o
u
t [5-
7], but little rese
arch i
s
fo
cu
sed
on th
e
effect of
surface
rou
ghn
e
s
s on
agri
c
ul
tural ma
chi
n
e
r
y
workin
g pe
rfo
r
man
c
e, an
d
most re
se
arches a
r
e in
th
e qualitative
analysi
s
level
[8-10]. In order
to explore th
e ada
ptability of the pl
ant
er fo
r
surfa
c
e ro
ugh
ne
ss
and to i
m
pro
v
e the op
erating
perfo
rman
ce
of the
wo
rki
n
g pa
rts, th
e d
e
sig
ned
d
i
re
ct s
e
ed
in
g mac
h
ine
is
us
ed a
s
th
e
r
e
s
ear
c
h
obje
c
t to explore its
wo
rki
n
g perfo
rma
n
ce in t
he process of ditchi
n
g
, coveri
ng a
nd co
mpa
c
tin
g
.
This
work ca
n provide te
chnical refe
ren
c
e to
improve the adapta
b
ility of
the pl
anter for
su
rface
roug
hne
ss.
2. Design of
the Te
st Sy
s
t
em
2.1. Compos
ition and Str
u
ctur
e
The test sy
st
em, whi
c
h is comp
osed o
f
two parts
o
f
hard
w
are system and
software
system, h
a
s
the fun
c
tion
s of the
strai
n
si
gnal dyn
a
mic acqui
sition,
prep
ro
ce
ssi
ng and d
a
ta
analysi
s
. Accordin
g to the
test objectiv
e
s an
d
re
quirements, a
nd
combi
ned
with the stru
cture
and workin
g situation of t
he direct
see
d
ing ma
chi
n
e, the stru
ct
ure of
the
d
e
sig
ned dyn
a
mic
testing d
e
vice and in
stall
a
tion on the
planter i
s
a
s
sho
w
n in
Fi
gure
1. The
dates
acqui
sition
h
a
r
dw
ar
e
s
yste
m
is
c
o
mpo
s
ed
o
f
th
e
s
e
ns
or
(Tai
wan WDS3
6-V
/
A),
JKU-12
data
a
c
q
u
isiti
o
n
card and a p
o
r
table comp
uter.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
91 – 669
8
6692
1. Compacti
on
w
h
e
e
ls 2. Brac
ket 3. F
i
eld sur
f
ac
e roug
hn
es
s testing devic
e after the compactio
n
4. Rear sens
or
5. Coverin
g
so
il dev
ic
e 6. Opener 7. Anti-b
lo
cking d
e
vice
8. F
i
eld surfac
e roug
hn
ess testing dev
ice of
t
he orig
ina
l
sur
f
ace roug
hn
es
s 9. Before sen
s
or
Figure 1. Test System Structure a
nd Se
nso
r
Layout
2.2. Working
Principle
The fun
c
tion
and
wo
rk flo
w
of the
syst
em is
sh
own
in Figu
re
2. Setting the fiel
d su
rfa
c
e
roug
hne
ss a
s
input, and
the soil co
vering thic
kn
ess as o
u
tp
ut, the
study of the dynamic
simulatio
n
test is ca
rrie
d
o
u
t on the soil
-plante
r
sy
ste
m
. Throug
h e
s
tabli
s
hin
g
the mathemati
c
a
l
model of the
soil coverin
g
thickne
ss of the plante
r
, the soil coverin
g
situation i
s
explore
d
. In the
detectio
n
pro
c
e
ss of the test sy
ste
m
, the test device moves with
the planter. The value
s
of the
origin
al field surfa
c
e
rou
g
hne
ss a
nd fie
l
d surfa
c
e
ro
ughn
ess after the comp
acti
on is turned i
n
to
voltage si
gna
l and i
nputte
d to the
dat
a a
c
qui
sition
system
by t
he
surfa
c
e
rough
ne
ss te
ster,
angle
sen
s
o
r
s and d
a
ta a
c
qui
sition
card, then the d
a
ta is processed
with the
analysi
s
software,
and th
e result is
displayed.
Based
on
the
re
sult
s of th
e
analy
s
is
,
th
e
mathem
atica
l
model
of fiel
d
surfa
c
e
ro
ug
hne
ss
and di
tch bottom
ro
ughn
ess i
s
e
s
tabli
s
he
d. The informatio
n tran
sfer m
o
del
and sig
nal de
tection nod
e of the te
st system is sho
w
n in Figure 2,
the solid pa
rt
s are info
rmat
ion
tr
a
n
s
miss
ion
lin
e
s
o
f
th
e
sys
te
m, d
o
tte
d lin
es
ar
e th
e lin
ks
for
s
i
gna
l d
e
t
ec
tio
n
an
d
pr
oc
ess
i
ng
analysi
s
. In
Figure 2,
y
n
is the
o
r
igin
al
field
su
rface
ro
ugh
ne
ss,
y
1
i
s
the
formed fiel
d
su
rface
roug
hne
ss after the anti-bl
ocking d
e
vice
working,
y
2
is forme
d
ditch bottom rou
ghne
ss after
the
open
er wo
rki
ng,
y
3
is the f
o
rme
d
field
surface roug
h
nes
s afte
r th
e cove
ring
so
il device
wo
rking,
y
4
is the fo
rm
ed field surfa
c
e roug
hne
ss after the co
mpactio
n
wh
eels
wo
rki
ng,
s
1
is the fo
rme
d
depth of the furrow by op
e
ner,
s
2
is
the
s
o
il covering thick
n
ess
after the c
o
mpac
tion.
Figure 2. Information Flo
w
i
ng Model of the System
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign a
nd Study on
Dyna
m
i
c Measu
r
in
g System
for Field Surfa
c
e
Roug
hne
ss (Lv Xiao
-Rong
)
6693
2.3. The Calibration o
f
th
e Test Sy
stem
The data a
c
q
u
isition
syste
m
con
s
i
s
ts of
t
he sen
s
o
r
s
and relevant
measuri
ng in
strum
ent.
In ord
e
r to e
n
su
re
acqui
si
tion a
c
curate
, the pe
rformance of th
e sy
stem m
u
st b
e
kno
w
n in
accuracy
bef
ore
the
date
acq
u
isitio
n, so the
calibration of
the
se
nso
r
s i
s
n
e
e
ded.
Calib
rati
on
usu
a
lly includ
es the stati
c
calib
ration a
n
d
dynam
ic
ca
libration [11
-
14]. Acco
rdin
g to the actual
workin
g co
nd
itions an
d the
requi
reme
nts of the te
st
system, the static calib
rati
on is u
s
ed i
n
the
test. The anal
ysis re
sult
s of
regressio
n
curv
e of the ca
libration a
r
e
shown in Tabl
e 1.
Table 1. Re
gression Analy
s
is
Re
sult
Model Summ
ar
y
Model
R
R Square
A
d
j
u
s
t
ed
R Square
Std. Error of the
Estima
te
1 1.000
a
1.000
1.000
0.01154
2 1.000
a
1.000
1.000
0.02212
ANOVA
b
Model
Sum o
f
sq
uares
df
Mean Sq
uare
F
Sig.
Regression 22.966
1
22.966
172563.8
.000
a
Residual .002
13
.000
Total 22.968
14
Regression 14.949
1
14.949
30563.033
.000
a
Residual .005
11
.000
Total 14.954
12
Coeffici
ents
a
Model
Unsta
ndar
d
ized
Coef
ficie
n
ts
Stand
a
ndize
d C
o
effi
cien
ts
t
Sig.
θ
Stad.
Error
Beta
1 (Constant
)
-.109
.008
-13.377
.000
θ
.057
.000
1.000
415.408
.000
2
(Constant
)
-1.606
.021
-77.567
.000
θ
.057
.000
1.000
174.823
.000
In Table
1,
model
1 is re
gre
ssi
on
equ
ations
of fron
t angle
se
nsor, an
d mo
de
l 2 is t
h
e
reg
r
e
ssi
on
eq
uation
of rea
r
angl
e
sen
s
o
r
. It can
be
o
b
t
ained f
r
om
T
able
1
(Mo
del
Summa
ry)
on
fitting situatio
n of the lin
ea
r re
gr
ession
model
s of two cu
rve, the
correl
ation co
efficient
R were
1.00, the determin
a
tion co
efficient R
2
were 1.00, so t
he model fitting effect is very ideal. Fro
m
the varian
ce
analysi
s
table
(ANOVA
b
), it can b
e
se
en
that the eac
h sum of squa
res of deviatio
n
s
were 22.9
66
and 14.9
49, the ea
ch
sum
of squa
re
d o
f
resid
ual
s were 0.0
02 a
n
d 0.005, an
d
the
each sum
of squ
a
re
s of
re
gre
ssi
on we
re
22.9
68 and
14.95
4. In th
e si
gnificant t
e
st of
re
gre
ssion
equatio
n, statistics are
re
spectively F=1
7256
3.
8 and
F=30
563.0
3
, the corre
s
p
o
n
d
ing confiden
ce
levels are mu
ch le
ss tha
n
the co
nfiden
ce level (0
.05
)
, so the model
of the two cu
rve equatio
ns is
extremely si
g
n
ificant. From
the te
sting
result tabl
e (Coefficient
s
a
), i
t
can b
e
obta
i
ned that T te
st
is use
d
to si
gnifica
nt test of regre
ssi
o
n
coefficie
n
ts, the standardizatio
n
and
not standa
rdi
z
ed
results a
r
e gi
ven to coeffi
cient
of regression e
quati
on, the co
nst
ants of the n
o
t stand
ardi
zed
reg
r
e
ssi
on eq
uation were
-0.109 an
d -1.
606, variabl
e
coeffici
ents
were 0.05
7. In the test re
sult
s
of the regre
s
sion
coefficie
n
t, the confidence leve
ls o
f
the constan
t
and variabl
e coeffici
ent are
much
le
ss than th
e con
f
idence level
(0.05
)
,
so
the con
s
tant
and va
ria
b
l
e
coefficie
n
t is
signifi
cantly.
Therefore, th
e calib
ration
result
s of angl
e sen
s
o
r
s of t
he syste
m
are sho
w
n:
The re
gre
s
sio
n
equatio
n of the before
se
nso
r
ca
n be o
b
tained.
109
.
0
057
.
0
V
(1)
The re
gre
s
sio
n
equatio
n of the rea
r
se
nsor ca
n be obt
ained.
606
.
1
057
.
0
V
(2)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
91 – 669
8
6694
2.4. The Mathematical M
odel of Field
Surface
Ro
ughnes
s
Whe
n
testin
g
surfa
c
e
ro
ug
hne
ss, the te
st wh
eel o
n
the testin
g de
vice is
up a
n
d
do
wn
with the ch
an
ge of field surface, driving t
he lin
k rod an
d link ro
d axis rotation. Two
angle sen
s
ors
are respe
c
tively installed i
n
the two link rod
s
axis, a
nd co
nverted
variable am
ount into voltage.
The voltage
is co
nverted
into analog
amount by
high mag
n
ification, an
d sent to the
data
analysi
s
software to be p
r
ocesse
d. As sho
w
n in Fi
gure
3, the relation
ship of
the field su
rface
roug
hne
ss an
d the rotation
angle
can b
e
obtaine
d.
Figure 3. Sch
e
matic Di
ag
ram of
the Surface Height Chang
es
r
R
H
0
0
sin
(3)
r
R
H
i
i
sin
(4)
The field su
rf
ace vari
ation
amount can b
e
obtaine
d.
)
sin
(sin
0
0
i
i
i
R
H
H
h
(5)
In formula:
0
H
—The
height
of test b
r
a
c
ket
to the o
r
igin
al
field
surf
ace;
i
H
—The
heig
h
t
of test
brac
ket to the field surfac
e
after the
c
o
mpac
tion;
R
—
r
otation
radi
u
s
of the
conn
ecting
ro
d sh
aft;
r
—the ra
diu
s
of the test whe
e
l;
0
—starting angle;
i
—rotation angle;
i
h
—variation v
a
lue of
the field surfa
c
e
。
The relatio
n
ship of the field surfa
c
e rou
ghne
ss and o
u
tput voltage can be d
e
rive
d from
(1), (2), and
(5).
Front
:
)
057
.
0
109
.
0
sin
057
.
0
109
.
0
(sin
0
V
V
R
h
i
qi
(6)
Rea
r
:
)
057
.
0
606
.
1
sin
057
.
0
606
.
1
(sin
0
V
V
R
h
i
hi
(7)
The
cha
nge
of tracto
r vibration an
d soil
re
sista
n
ce o
n
the g
r
ou
nd
has
ce
rtain i
n
fluence
on the field surface ro
ugh
ness after th
e com
p
a
c
tion
and soil
cov
e
ring thi
c
kne
ss. However,
the
hydrauli
c
su
spen
sion syst
em
of
the co
nne
ction
tractors and
i
m
pl
em
ents is i
n
floating state
in
operation, a
n
d
the d
epth o
f
ditching
an
d
cove
ring
so
il
is very
sh
all
o
w
(ab
out 30
mm), in o
r
d
e
r to
simplify the
probl
em, the
two
facto
r
s are ig
no
red
in th
e p
r
o
c
ess of
e
s
tab
lishin
g
syste
m
informatio
n m
odel. T
herefo
r
e, the
ditch
bottom r
oug
h
ness i
s
th
e fi
eld
surfa
c
e
rough
ne
ss bef
ore
the ditchin
g
i
n
the test. T
e
st initial po
sition is
set a
s
the ba
se
surface, the in
itial enterin
g soil
θ
H
i
i
r
R
θ
H
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign a
nd Study on
Dyna
m
i
c Measu
r
in
g System
for Field Surfa
c
e
Roug
hne
ss (Lv Xiao
-Rong
)
6695
depth
of the
open
er i
s
adj
usted
to 30
m
m
, therefo
r
e,
so th
e di
stan
ce
s of the
dit
c
h
bottom to
field
surfa
c
e
can b
e
obtaine
d.
30
)
057
.
0
109
.
0
sin
057
.
0
109
.
0
(sin
30
0
V
V
R
h
h
i
qi
gi
(
8
)
3. Test and
Resul
t
An
aly
s
is of Field Surfac
e Rou
ghnes
s
3.1. Experimental Ma
teria
l
s and Metho
d
s
Test was
ca
rried o
u
t at the soil
bin test
station of
Shenyang Agri
cultural University
laboratory. Rotary cultivator o
peration
s
, with
0.5m
deep
of soil, and
artifici
a
l
smo
o
th fiel
d
surfa
c
e, the
stand
ard
dev
iation of field
surfa
c
e
ro
u
ghne
ss le
ss
than 3
c
m. Artificial wate
ri
ng,
comp
actio
n
, t
he m
o
istu
re
content, comp
actne
s
s a
nd
bulk de
nsity
of the
soil i
s
made
to u
n
iform
with the actu
al situation i
n
field, and meet
the req
u
irem
ents of
soil tillage. The test dev
ice
inclu
de the
dire
ct se
edin
g
machine,
JKU-12 d
a
ta
acqui
sition
card, data receive
r
(p
ort
able
comp
uter), d
y
namic test
appa
ratu
s,
meter,
small
sh
ovel, two
angl
e
sen
s
ors (DS3
6-V
/
A),
stabili
zed p
o
w
er
sup
p
ly a
nd co
nne
ctin
g wire
s, et
c..
The forward
spee
d of
testing vehi
cle
is
0.25~0.30m/s, the sa
mplin
g freq
uen
cy
i
s
50
0Hz, d
e
p
t
h of the O
p
e
ner i
s
3
c
m, a
nd the te
stin
g
length of fiel
d su
rfa
c
e
ro
ughn
ess i
s
1
0
m. In t
he e
x
perime
n
t, JKU-1
2
data
acq
u
isitio
n card i
s
use
d
for d
a
ta acquisitio
n
. The front a
ngle sen
s
o
r
is conn
ected
with chann
el
B, and the rea
r
angle
sen
s
or is conn
ecte
d
with
chan
nel
A. In o
r
de
r t
o
elimi
nate th
e e
rro
rs of
m
anufa
c
ture
a
nd
inst
allat
i
o
n
in
t
e
st
ing
sy
st
e
m
,
t
he sy
st
e
m
is c
a
librate
d. The expe
ri
ment wa
s
rep
eated for
4 times,
experim
ental
data wa
s an
a
l
yzed with SP
SS software [15].
3.2. Results and An
aly
s
is
(1) T
he re
sult
s and a
nalysi
s
of field su
rface roug
hne
ss
4 grou
ps of t
he field su
rfa
c
e rough
ne
ss dat
a before and after dit
c
hing were
col
l
ected.
The first g
r
o
up is an
alyzed. The tran
smitted
data
of front and
rea
r
angl
e sensor ha
s so
me
certai
n time differen
c
e, Chann
el A data are pu
she
d
forwa
r
d by
calculation to make the
m
con
s
i
s
tent wit
h
Cha
nnel B in the time domain. The tim
e
domain
cu
rve was
sho
w
ed in Figu
re 4
.
A. F
i
eld surface roug
hn
ess after the compac
ti
on; B.
T
he origin
al fiel
d surfa
c
e roug
hn
ess
Figure 4. Cha
nge Scal
e of Surface Ro
ug
hne
ss in Tim
e
-do
m
ain
In orde
r to an
alyze the de
si
rability of sa
mpli
ng date
s
,
the statistical
analysi
s
of the dates
is don
e. The result is
sho
w
ed in Table 2.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
91 – 669
8
6696
Table 2. The
Statistical An
alysis of the
Field Surfa
c
e
Roug
hne
ss
Chan
nel A
Chan
nel
B
Average
2.309305
Average
7.66646
Standard e
rro
r
0.023042
Standard e
rro
r
0.096207
Median 2.2494
Median 8.0008
Standard deviati
on
1.45729
Standard deviati
on
6.084638
Coefficient of variation
0.631051
Coefficient of variation
0.79367
Variance 3.088068
Variance 37.02283
Kurtosis 0.037977
Kurtosis -0.19607
Skew
ness
0.151127
Skew
ness
-0.60522
Minimum value
-1.9734
Minimum value
-6.4721
maximum value
6.3661
maximum value
18.7711
observation num
bers
4000
observation num
bers
4000
From
Figu
re
4 it ca
n be
seen: the
su
rf
ac
e flu
c
tuatio
n amplitu
de i
s
-10
~
20m
m
before
ditchin
g
, the surfa
c
e flu
c
tu
ation amplitu
de is onl
y -5
~5mm after the comp
actio
n
, the field surface
roug
hne
ss after the
com
p
a
c
tion i
s
obvio
usly de
crea
s
ed. After anal
ysis of the
sta
t
istical in ta
bl
e 2
it can
be
obt
ained
the
averag
e of th
e
ch
ann
el A
and
ch
annel
B we
re
ea
ch 2.31
an
d
7.67
respe
c
tively,
the standa
rd
deviation we
re
ea
ch 1.
46 a
nd
6.08,
th
e kurtosi
s
we
re each
0.04
an
d
-
0.20, the
ske
w
ne
ss
were
each 0.1
5
an
d -0.6
1, t
he
coefficient
of variation
were
ea
ch 0.6
3
a
n
d
0.79.
The re
sults sh
owed
that
the co
mpactio
n
wh
eel ha
s a g
o
od compa
c
ti
on effect, it can
balan
ce the
seedin
g
depth,
and create a
good e
n
viron
m
ent for the gro
w
th of see
d
s.
(2) Spe
c
tral a
nalysi
s
of field surfa
c
e
rou
ghne
ss
The self-p
ower spe
c
tru
m
of
field
surfa
c
e
ro
ugh
ne
ss
of before a
n
d
after pl
anter
workin
g
can be o
b
tai
ned by the theoreti
c
al an
al
ysis and
so
ftware cal
c
ul
ation, as sh
own in Figure 5
.
It
can b
e
seen
from the g
r
a
ph that the p
o
we
r sp
e
c
tru
m
den
sity cu
rves h
ad two
peaks, an
d the
freque
ncy i
s
t
he
sam
e
. Be
fore
wo
rki
ng
of the
pl
anter,
the maxim
u
m freq
uen
cy (main frequ
en
cy)
is 0.06
25Hz, t
he maximum
amplitude i
s
7.549, fr
eq
ue
ncy ha
s al
so
a ce
rtain di
stribution bet
we
en
1~3
Hz. The f
r
equ
en
cy is
more th
an 3
H
z, amplitud
e tend
s to 0, an
d the cut-off frequ
en
cy of the
system is a
b
o
u
t 1.5Hz. After wo
rki
ng of the
plante
r
, the maximum freque
ncy (m
ain freque
ncy
)
is
0.0625
Hz, the maximum a
m
plitude is 2.
542, frequ
en
cy
is more than 1Hz, ampl
itude tend
s to 0,
the cut-off fre
quen
cy of the system is ab
out 0.
6Hz. From the two powe
r
sp
ectru
m
image, it can
be kno
w
n th
at the two m
a
in freq
uen
cy of field
su
rface roug
hne
ss are
compl
e
tely
con
s
i
s
tent
before a
nd af
ter plante
r
wo
rkin
g. It is indicated
that the
system ha
s
good lin
ear
chara
c
te
risti
c
s.
(a)
(b)
Figure 5.
Self-po
w
e
r
Spect
r
um of field Surface Ro
ugh
ness of the b
e
fore an
d after Planter
Wo
rkin
g
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign a
nd Study on
Dyna
m
i
c Measu
r
in
g System
for Field Surfa
c
e
Roug
hne
ss (Lv Xiao
-Rong
)
6697
(3) T
he effect
of the origina
l
field surfa
c
e
rough
ne
ss to
soil cove
ring
thickne
s
s
Acco
rdi
ng to
the theory of linear sy
stem
s, mathe
m
atical mo
d
e
l betwe
en input and
output can
be e
s
tabli
s
h
ed by the t
r
ansfe
r fu
n
c
ti
on, and
be
use
d
to
stu
d
y the dyna
mic
cha
r
a
c
teri
stics of
the
sy
stem. Throug
h
the
am
plitude-f
r
eq
uen
cy chara
c
teri
stic curve of the
system
and t
he st
ru
cture
cha
r
a
c
teri
stics, the
system
is p
r
elimin
ari
l
y determin
e
d
to be
con
s
i
s
ted
of inertia, freq
uen
cy cha
r
a
c
teristics
can b
e
obtaine
d.
1
1
1
)
(
2
2
2
2
T
T
K
j
T
K
T
j
k
j
G
(9)
The amplitu
d
e
freque
ncy chara
c
te
risti
c
s of the system can be o
b
tained.
1
)
(
)
(
2
T
K
A
(10)
Phase frequ
e
n
cy ch
ara
c
te
ristic can be o
b
tained.
T
arctan
)
(
(11)
The tran
sfe
r
functio
n
of
the system can
be obtain
ed.
1
)
(
Ts
k
s
G
(12)
The re
sult is
obtaine
d by statistical an
al
ysis of data, as sho
w
n in
Table 3.
Table 3.
The
Statistical An
alysis of the
Tran
sfe
r
Fun
c
tion
Parameter Estimates
Parameter
Estima
te
Std. Error
95
%
C
onfide
n
c
e
Inter
v
al
Lo
w
e
r Bound
Upper
Bou
n
d
k 0.566
0.019
0.524
0.607
T 0.106
0.016
0.072
0.140
ANOVA(a)
Source
Sum o
f
Sq
uares
df
Mean Sq
uares
Regression 2.609
2
1.305
Residual 0.025
13
0.002
Uncorrected Tot
a
l
2.634
15
Corrected Total
0.264
14
Dep
end
ent vari
abl
e: z
a R square
d
=
1 - (Residu
a
l
Sum of Squar
e
s
) /(Corrected Sum of Squar
e
s
) =
.907
The stan
da
rd
erro
r, 95% confid
en
ce in
te
rval and th
e relation
shi
p
array between the
para
m
eters
can be seen f
r
om the pa
rameters e
s
timated table
of the Table
3. The estim
a
tion
values of the
param
eters
are
k=
0.57, T
=
0.11.
When
the origin
al
field su
rfa
c
e rough
ne
ss i
s
as
input and the
field surfa
c
e
roug
hne
ss after compa
c
ti
o
n
is as
output
, the transfe
r function of fie
l
d
surfa
c
e
ro
ug
hne
ss
of bef
ore dit
c
hin
g
and after
co
mpactio
n
ca
n be o
b
taine
d
by the ab
ove
analysi
s
.
1
11
.
0
57
.
0
)
(
)
(
)
(
4
s
s
Y
s
Y
s
G
n
(13)
The m
odel
i
s
id
entified
by the vari
a
n
ce
an
alysi
s
table
(ANO
VA
a
). The a
b
sol
u
te
coeffici
ent re
ach
e
s 0.9
1
with the goo
d .fitting degr
ee of model.
Similarly, the origin
al su
rface
roug
hne
ss a
s
input a
nd
soil coveri
ng
thickness a
s
output, the
establi
s
he
d
transfe
r fun
c
t
i
on
model of the system
can b
e
obtaine
d.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
91 – 669
8
6698
1
11
.
0
95
.
0
)
(
)
(
)
(
2
2
s
s
S
s
Y
s
G
n
(14)
Formul
a (13
)
and (14
)
sho
w
that
the
s
e
2
sy
stems are both
co
mp
ose
d
of a
pro
portion
al
seri
es an
d a f
i
rst-ord
e
r
se
ri
es
con
n
e
c
tio
n
. Time
con
s
t
ants of th
e sy
stem a
r
e T
=
0.11s, b
u
t the
i
r
ratio coefficie
n
t is differe
nt. When i
n
itial
depth of the
open
er i
s
a
d
juste
d
to S1
= 30 m
m
, the
averag
e of the soil covering thickne
ss is 28.
36 m
m
, the stand
ard deviatio
n
is 4.84 mm, th
e
coeffici
ent of variation is 1
7
.07%.
4. Conclusio
n
The d
e
sig
n
and d
e
velop
m
ent of the
dynami
c
te
sting
system
, and ba
se
d
on the
correl
ation b
e
twee
n surf
ace
rou
ghn
e
ss, the
se
e
d
s covered soil
d
epth, establi
s
h
ed
t
h
e
mathemati
c
al
function
mod
e
l of the soil thickne
s
s
of covering
se
ed.
By testing th
e syste
m
on t
he
machi
ne in th
e field before
and after
surface roug
hne
ss te
st re
sult
s, the mathe
m
atical fun
c
ti
on
model was
modified. Th
e test results prove that
the mathemat
ical mod
e
l is reliable, and
the
testing sy
ste
m
pre
c
isi
on is higher.
Ackn
o
w
l
e
dg
ements
The study wa
s sup
port
ed
by
th
e Nation
al
Nat
u
ral S
c
ie
nce
Foun
dation
of China
(511
052
61)
a
nd Sichu
an p
r
ovince lead
e
r
s in a
c
ad
emi
c
and te
chni
cal training p
r
o
j
ect fundin
g
.
Referen
ces
[1]
Ding -W
eim
i
n
g
.
Agricultura
l
machi
ner
y stud
y.
Chin
a Agricu
lture Press
. 201
1.
[2]
Nanj
in
g Agricu
l
t
ural Un
iversit
y
.
T
r
ials and sta
t
istical metho
d
in F
i
el
d.
Chin
a Agricult
ure Pre
s
s
. 1988.
[3]
Ren W
e
ntao,
Lü
Xi
aoro
ng, K
ong A
iju. D
e
v
e
lo
pment
of th
e tape
d t
y
pe r
i
ce dir
e
ct see
d
i
ng m
a
chi
ne.
Journ
a
l of She
n
yan
g
Agric
u
ltural U
n
ivers
i
ty
. 2010; 4
0
(1): 6
2
-66.
[4]
Oh Y. Cond
iti
on for pr
ecise
measur
ement
of field s
u
rfa
c
e rou
ghn
ess.
IEEE Transactions
on
Geoscie
n
ces a
nd Re
mote Se
nsin
g.
199
8; 36(2): 691-
69
6.
[5]
Lu Z
h
i-
xi
on
g, W
u
Xi
ao-p
i
n
g
, Perdok
UD. An
al
ysis of til
l
ag
e
soil surfac
e ro
u
ghn
ess.
T
r
ans
actions of
the
Chin
ese Soc
i
et
y for Agricultur
al Mach
inery.
2
004;
35(
1): 112
-116.
[6]
Hou Z
h
a
n
-fen
g, Lu Z
h
i-
xio
n
g
, Z
hao La
n-
ying. F
r
ac
tal b
ehav
ior of till
a
ge soi
l
surfac
e roug
hn
ess.
T
r
ansactio
n
s o
f
the Chines
e
Society for Agri
cultura
l
Machi
n
ery.
2007; 3
8
(4
): 50-53.
[7]
Lu Z
h
i-
xion
g,
Nan
C, Perd
ok
UD. Ch
ar
acter
i
satio
n
of so
il p
r
ofile r
oug
hn
es
s.
Biosyste
m
s Engi
neer
in
g,
200
5; 91(3): 36
9-37
7.
[8]
De T
e
mmerman J, De
prez
K, Anthonis J.
Conc
eptua
l c
ab sus
pens
io
n
s
y
stem for a
self-pro
pel
le
d
agric
ultura
l ma
chin
e, p
a
rt 1:
deve
l
opm
ent
o
f
a l
i
ne
ar m
a
th
ematica
l
mo
de
l.
Biosyste
m
s
Engi
neer
in
g,
200
4; 89(4): 40
9-41
6.
[9]
Hostens I, De
p
r
ez K, Ramo
n
H. An improv
e
d
des
ign
of air
suspe
n
sio
n
for
seats of mob
i
l
e
agr
icultur
a
l
machi
nes.
Jour
nal of Sou
nd a
nd Vibr
atio
n.
2004;
27
6(1
2
): 141-1
56.
[10]
Hostens
I, Ra
mon
H. Descr
i
p
tive
ana
l
y
sis
of comb
ine
ca
bin
vibr
atio
ns
and
their
effect
on
the
hum
an
bod
y.
Jour
na
l of Sound
and
Vibrati
on.,
200
3; 266(3): 4
53-
464.
[11]
Hai T
ao. Mode
rn testing tech
nol
og
y.
Ch
ong
qin
g
Univ
ersity
Press.
2011.
[12]
Z
hao-Qin
g
h
a
i. T
e
sting technol
og
y an
d en
gin
eeri
ng ap
pl
icati
on.
Che
m
ical I
ndustry Press.
200
5.
[13]
João L
o
b
a
to Oliveira, L
u
is Pa
ulo R
e
is, Brigi
d
a M
onic
a
F
a
ria
,
F
abien Gou
y
on. An Empiric
Evalu
a
tion
o
f
a Real-T
ime R
obot Da
ncin
g F
r
ame
w
ork b
a
s
ed on Multi-M
o
dal Eve
n
ts.
T
e
lkomnik
a
Indon
esia
n Journ
a
l
of Electrical En
gin
eeri
ng,
20
1
2
, 10(8): 19
17-
192
8.
[14]
Liu Min
g
-d
an,
Lü Xi
ao-ro
ng
, Qi Xiang-
jun
.
Res
earch o
n
T
r
ipod Gait of Bionic He
xa
po
d Rob
o
t.
T
e
lko
m
nik
a
Ind
ones
ian J
ourn
a
l of Electrica
l
Engi
neer
in
g
. 2014; 1(1
2
): 135
-140.
[15]
Z
hang-W
e
nbo,
Ch
en-H
ong
ya
n. Ana
l
ysis
an
d a
ppl
icati
on
o
f
practica
l d
a
ta
statistics (SP
SS 12.0).
The
Peop
le'
s
Posts and T
e
lec
o
mmu
n
ic
ations Pr
ess.
2006.
Evaluation Warning : The document was created with Spire.PDF for Python.