TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.6, Jun
e
201
4, pp. 4215 ~ 4
2
2
1
DOI: 10.115
9
1
/telkomni
ka.
v
12i6.527
7
4215
Re
cei
v
ed
No
vem
ber 3, 20
13; Re
vised
De
cem
ber 2
6
,
2013; Accep
t
ed Jan
uary 2
0
, 2014
Design and Implementation of Probe Driver
Teleoperative F
o
rce Feedback System
Amjad Ali S
y
ed
1
, Xing-guang Du
an*
2
, Arbab
Nigha
t Khizer
3
,
Mengli
4
, Xiangzhan Kon
g
5
,
Qiang Hu
an
g
6
1,2,
4,5,
6
Intellige
n
t
Robotics Insti
t
ute, Ke
y
L
abor
ator
y
of Biomi
m
etic Rob
o
ts and S
y
stems,
Ministr
y
of Edu
c
ation, Scho
ol
of Mechatron
i
c
a
l Eng
i
ne
eri
ng,
Beiji
ng In
stitute of
T
e
chnol
og
y,
Beiji
ng 1
0
0
081
, P. R. China
3
School of Aut
o
matio
n
, Beiji
n
g
Institute of
T
e
chn
o
lo
g
y
, Beij
ing 1
0
0
81, P. R. Chin
a
1,3
Mehran Univ
ersit
y
of En
gin
eeri
ng an
d T
e
chno
log
y
, Jams
horo, Sin
dh, P
a
kistan
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: duanstar
@
bit
.
edu.cn
A
b
st
r
a
ct
T
he bas
ic n
e
e
d
of n
euros
urg
e
ry is to i
n
sert
t
he pro
be
into
the key
hol
e l
i
ne
arly for p
e
rf
ormin
g
function
al n
eur
osurg
e
ry, trige
m
i
nal
neur
al
gi
a surger
y, bi
o
p
sies, de
ep br
ain sti
m
u
l
atio
n, and stere
o
-E
EG.
Rece
ntly, tele-
r
obotic syste
m
s have
be
en
i
n
troduc
ed to
assist surg
eo
n
duri
ng
invas
i
ve proc
ed
ures
to
obtain des
ired results. In
this paper, a linear probe driv
ing tele-o
per
ativ
e system
with
force feedback
is
prop
osed. Th
e
prop
ose
d
syst
em is h
i
g
h
ly
a
ccurate,
stab
le
, and s
a
fe a
n
d
provi
des
ha
pti
c
transpar
ency
to
the surge
on d
u
rin
g
its oper
a
t
ion.
The master slave arc
h
it
ecture, c
ontrol
system an
d s
o
ftw
are appl
ic
atio
n
are d
e
sig
n
e
d
to inj
e
ct an
d e
j
ect prob
e driv
i
ng tria
ls
. T
he e
x
peri
m
e
n
ts are
perfor
m
e
d
on
a pi
ecew
ise l
i
n
e
a
r
Plastici
ne
mo
d
e
l. The acc
u
ra
cy, stab
ility, re
peata
b
il
ity of the syste
m
a
n
d
haptic forc
e fe
edb
ack fid
e
lity
ar
e
discuss
ed in the results.
Ke
y
w
ords
: T
r
ige
m
i
nal n
eur
al
gia sur
gery, Ha
ptic, T
e
le-Ro
b
o
t
ic Surgery, force feedb
ack fid
e
lity
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
In su
rgical p
r
oce
dures,
small probe
o
r
ele
c
tro
d
e
s
are d
r
iven i
n
to the key ho
le of the
skull. (i.e. functio
nal ne
uro
s
u
r
ge
ry, trigem
in
al n
eural
gia
surgery, biop
si
es, de
ep b
r
ain
stimulation, a
nd ste
r
e
o
-EE
G
). Te
le
-robo
tic syste
m
prov
ides
assi
stance to pe
rfo
r
m such surgi
c
al
task. T
r
a
d
itional ne
uro
s
u
r
g
i
cal p
r
o
c
ed
ure wa
s
ba
sed
on ma
nual i
n
sertio
n of the
needl
e by u
s
i
ng
rigid
stere
o
ta
ctile frame [1]
.
The above
syst
em wa
s
repla
c
ed with autonom
ou
sl
y
needle
d
r
iving
roboti
c
syste
m
according
to predefine
d
posit
ion by
neuro
m
ata (Reni
sh
aw Lt
d, UK) and the
ROSA (Me
d
T
ech, F
r
an
ce
) [2]. Neuro
D
rive and Al
p
ha-Drive (Alp
ha-O
m
eg
a, Na
zareth, Israel)
device
s
are
d
e
sig
ned
to a
u
t
omatically in
sert
the EEG
(Ele
ctroe
n
ce
phalo
ngraphy
) ele
c
trode
in
to
the brain for
sign
al re
co
rdi
ng pu
rpo
s
e
with inse
rting
d
epth of ab
out
40mm. However, this
dep
th
is n
o
t en
oug
h
for
neu
ro
su
rgical
interve
n
t
ion (req
uire
advan
ceme
nt of the
nee
dle
up to
11
0mm
in
the brain
)
[3]. Master and
Slave telerobotic
sy
stem had bee
n intende
d and Slave follows t
h
e
surgeo
n actio
n
using m
a
st
er han
dhel
d device but
n
o
haptic inte
raction i
s
intro
duced [4]. Tele-
operated
system with tact
ile force feed
back a
r
e pla
nned, surgeo
n get tactile
force fe
edb
a
ck
whe
n
intera
cts with patie
nt organ [5]. Master
sid
e
haptic tra
n
sp
are
n
cy d
epen
ds on t
he
mech
ani
cal chara
c
te
risti
c
and dynami
c
s of the
haptic device [6]. Due to dissi
m
ilar ma
ster
and
slave
me
cha
n
ical
st
ru
cture, the
lin
ea
rity betwe
en th
em in
term
s
of po
sition
a
nd velo
city of
the
manipul
ator i
s
not po
ssibl
e
[7]. Haptic t
r
an
sp
a
r
e
n
cy
also d
epe
nd
s on the qu
ant
ified imped
an
ce
and
admittan
c
e
of the
ma
ster an
d
slav
e environm
e
n
ts [8].
Howe
ver, tran
sp
arency
of the
slave
side i
s
b
a
sed
on the fo
rce
sen
s
in
g du
rin
g
nee
dle in
se
rtion an
d tra
n
s
fer th
e a
c
tu
al inten
s
ity wi
th
particula
r dire
ction toward
s the master
si
de.
In telero
botic su
rge
r
y, the
tactile force f
eedb
ack i
s
b
a
se
d up
on two tech
niqu
es,
first, to
place force
sensor
at sl
ave a
c
tuat
or an
d the
se
con
d
, is to
cal
c
ul
ate the
positio
n
errors
betwe
en
the maste
r
a
nd sl
ave man
i
pulator. In g
eneral, the fo
rce se
nsor
i
s
installe
d
on
a
c
tuator or at
the
tip of the s
haft for tac
t
ile sens
ing [9]. In Low
En
ergy Neu
r
ofee
dba
ck Sy
stem (L
ANS), the lo
ad
c
e
lls
are
placed on the ac
t
uator
s
h
aft. The forc
e se
nsor is
not suitable to
be placed on the tip
of
the shaft d
u
e
to ma
ny co
nstrai
nts such a
s
si
ze,
sh
ape, bi
ocom
patibility and
sterili
zation
[
10].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4215 – 4
221
4216
Force
se
nsors a
r
e
pla
c
ed
on
a g
r
ipp
e
r
in l
apa
ro
scopic surg
ery
for a
c
hi
evin
g the
se
nse
of
grippi
ng [11,
12], however,
given solutio
n
is n
o
t app
ropriate fo
r
ke
y hole ne
uro
s
urge
ry. Force
feedba
ck ca
n also obtai
n
ed by ca
lcul
ating the differen
c
e b
e
tween erro
rs in
the position
s
o
f
maste
r
a
nd
slave. Besid
e
s, positio
n e
r
rors a
r
e
not so
ea
sily com
p
uted owi
n
g
t
o
environm
e
ntal
resi
stan
ce
a
n
d
sy
stem
dynamics [13,
14]. In [15
], th
e
po
s
i
tion
er
r
o
r
for
c
e
feed
b
a
c
k
s
y
s
t
em is
pre
s
ente
d
bu
t the accu
ra
cy and
stability are n
o
t
me
ntioned.
T
he actual dynam
ics mod
e
l
of
the
slave a
c
tuato
r
and ma
ster
sho
u
ld be
kn
own to
get po
sition erro
r accurately [16, 17].
In this frame
w
ork, the pr
ototype syst
em is desi
g
ned usi
ng two hapti
c d
e
vice
s b
y
assigni
ng the
role
of ma
ster a
nd
slave.
Some mo
dification i
s
perf
o
rme
d
on
sla
v
e actuato
r
f
o
r
establi
s
hi
ng t
he ri
gid
cont
act with
bio
p
s
y probe
and
force sen
s
o
r
. Position e
r
ror i
s
calculat
ed
and its a
m
pli
t
ude is tran
sferre
d to the
surgeo
n’
s
e
nd a
s
tactile
feedba
ck for estim
a
ting
the
experim
ents.
The
control
system i
s
desi
gne
d for tran
spa
r
en
cy and sta
b
le
comm
uni
cat
i
on
betwe
en m
a
ster
and
sl
ave devi
c
e
s
; therefo
r
e,
surg
eon i
s
a
b
le t
o
control
the
po
sition of t
he
actuato
r
tran
spa
r
ently an
d accurately. Meanwhile,
he is also ca
pable to feel
the tactile force
sen
s
in
g duri
n
g stand
ard
su
rgical biop
sy needl
e inse
rt
i
on and ej
ecti
on. The sy
ste
m
is tested o
n
a
brain li
ke mi
micki
ng tissu
e
usin
g Plasticine at
con
s
tant tempe
r
ature. Finally
, the results
are
sho
w
n ab
out
the accu
rat
e
movement
of the needle according
to surgeo
n hand
held ha
ptic
device p
o
sitio
n
s an
d tran
sp
aren
cy of
the tactile force feedb
ack sy
stem.
2. Material a
nd Metho
d
The obje
c
tive
of the prese
n
t teleroboti
c
syst
em is to drive standa
rd biop
sy ne
edle into
one dim
e
n
s
io
n key hol
e wi
thout the loss of kine
stheti
c
pe
rception.
Nee
d
le is
driv
en by the inp
u
t
of surg
eon h
a
ndhel
d hapti
c
device.
2.1. Mechani
cal Hard
w
a
r
e
Before
startin
g
to de
sign th
e telero
botic
bilatera
l
su
rg
ery, it is impo
rtant to con
s
i
der th
at
the a
c
curate
positio
n info
rmation of th
e
maste
r
ma
nip
u
lator
mu
st b
e
availabl
e a
nd tra
n
smitted to
the slave
ma
nipulato
r
with
out any
del
ay. The sl
ave m
anipul
ator i
s
driven a
c
co
rd
ing to the giv
en
positio
n to th
e ma
ster. T
h
e po
sition
an
d force
se
nsor d
a
ta from
the
slave m
a
nipul
ator
are
need
ed to e
s
tabli
s
he
d the tran
spa
r
ent
and stabl
e
haptic fo
rce feedb
ack
ele
m
ent for ma
ster
manipul
ator.
Keeping th
ese issue
s
in mi
nd, the nov
el
tele-roboti
c
n
eedle inte
rve
n
tion syste
m
for
neurosurgery
are de
sign
ed
and implem
e
n
ted.
Figure 1. Experime
n
tal Ha
rdwa
re
In this
proj
e
c
t, there
a
r
e
two
hapti
c
devic
e
s
. O
n
e
hapti
c
devi
c
e
wo
rks
as maste
r
manipul
ator
while the oth
e
r on
e as a
slave act
uato
r
.
Due to simil
a
r me
cha
n
ica
l
and dynami
c
al
stru
cture
of
the system, we ac
hieved
linea
r
re
spo
n
se
from
th
e
co
ntrol
alg
o
r
ithms.
Ome
ga.6
haptic devi
c
e
s
, de
sig
ned
b
y
Force
Dim
e
nsio
n, a
r
e
used in
this p
r
o
j
ect [18]. T
h
e
s
e
devices a
r
e
six deg
ree
of
freed
om (6-DOF
) ha
ptic
device, of
wh
ich th
ree
are
active an
d th
ree a
r
e
pa
ssi
ve.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign a
nd Im
plem
entation of Probe Driver T
e
le
o
perative Fo
rce F
eedb
ack… (A
m
j
ad Ali Syed)
4217
Joint 1,
2 an
d 3 of the
de
vices
are u
s
e
d
on
bot
h
sid
e
s fo
r control
ling the
slave
actuato
r
. Th
e
experim
ental arrang
ement and device
a
r
chite
c
ture
a
r
e
sh
own in
Fig
u
re
1. Th
e p
u
r
po
sed
sy
ste
m
is a
b
le to
mo
ve in th
ree
d
i
mensi
o
n
s
; h
o
weve
r, to
p
e
rform
n
eedl
e inte
rventio
n expe
rime
nts, it
only ne
eds o
ne di
re
ction.
Therefor
e, th
e sy
stem i
s
restri
cted to
si
ngle
plane
m
o
vement in
z-axis.
The sy
stem provide
s
18
0
mm wo
rkspa
c
e on
z-axis
.
The obje
c
tive of the pre
s
ent tele-robot
ic
system i
s
to
drive stan
d
a
rd bi
op
sy needle into
o
ne dime
nsi
o
n key hol
e without the l
o
ss of
kine
stheti
c
pe
rce
p
tion. Ne
e
d
le is drive
n
by
the input of surge
on ha
n
dheld h
aptic
device.
The impo
rtan
t blocks of the system a
r
e
given belo
w
:
1.
Operator: co
ntrols the p
o
sition and velo
city of the master ha
ptic de
vice (HD).
2.
Maste
r
HD: input the po
si
tion and velo
city and re
ce
ive force fee
dba
ck from the
controlle
r.
3.
Controlle
r: resp
on
sible f
o
r slav
e m
o
tion and force feed
ba
ck magnitude
and
dimen
s
ion.
4.
Slave Actuator: follows the posit
io
n an
d velocity from maste
r
HD.
5.
Mech
ani
cal A
dapter: de
sig
ned for furth
e
r
instrument a
ttachment
s.
6.
Force Se
nsor: One di
men
s
ion Ben
gbu
F
o
rce Sen
s
o
r
(JLBS) i
s
use
d
to me
asure
th
e
conta
c
t re
spo
n
se of the ne
edle at intera
ction with
sa
mple.
7.
Shaft & Nee
d
le: Surgical
biop
sy ne
e
d
le (Ba
r
d
M
agnum
Ti
ssu
e Biop
sy Ne
edle)
attac
h
ed with s
haft.
8.
Sample: Plasticine
For pe
rformi
ng experim
e
n
ts, some p
h
ysical alterations have
been ma
de on slave
actuato
r
. Tri
a
ngula
r
ad
apt
er a
r
e d
e
si
gn
ed an
d a
ttached
with ha
p
t
ic device. M
e
ch
ani
cal
sh
aft,
force
sen
s
or
and bi
op
sy n
eedle
are al
so adju
s
ted
wi
th adapte
r
. T
he sy
stem
compon
ents a
r
e
sho
w
n fro
m
maste
r
manip
u
lator to slav
e needl
e in Figure 2 a
nd 4.
Figure 2. Block
Diag
ram o
f
the System
2.2. Contr
o
l Sy
stem
In orde
r to co
ntrol sl
ave en
d-effect
or to t
r
ack the m
a
st
er HD, the p
r
oportio
nal
co
ntrolle
r
(PC)
are d
e
signed. The
p
r
opo
se
d tele-roboti
c
co
nt
rol system i
s
pre
s
ente
d
in
Figure 3. T
he
position inputs (P
surg
)
are
g
i
ven by the
surge
on/op
era
t
or
to
the ma
ster HD.
The
motor encod
ers
of the ma
ster HD, afte
r inv
e
rse
kinem
atics co
nversio
n
,
tran
sfers p
o
sition val
u
e
s
of the han
d t
o
the controller. Master po
si
tions (PM
in
) a
r
e the input of the control
l
er, whi
c
h the
n
scali
ng fact
or
(K
s
) multiplied with PM
in
for scalin
g of the input (def
ault value of K
s
is 1.00). T
he error
between
the referen
c
e point PMK
in
and the sl
ave actuato
r
position PS
out
(measu
r
e
d
by the sla
v
e
encode
rs) is
multiplied by the pro
porti
o
nal co
efficien
t of the controller (K
p
). Sla
v
e actuato
r
in
put
(SA
in
) is si
m
p
ly the difference of mast
er and
slav
e actuato
r
p
o
sition
s (PM
K
in
- PS
out
). This
differen
c
e i
s
multiplied
wit
h
propo
rtiona
l co
efficient
(K
p
) to obtai
n
the ne
w
po
sition
of slav
e
actuato
r
PS
out
. There is n
o
advan
ceme
nt of the needle
,
wheneve
r
the error is
ze
ro.
Figure 3. Block
Diag
ram o
f
the Control
System
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4215 – 4
221
4218
There a
r
e t
w
o way
s
to
cal
c
ulate
and
ap
ply t
he Fo
rce
feedba
ck o
n
maste
r
side,
Position
error (P-P
e
r
ror) and
Envi
ronmental Force sen
s
o
r
fe
edba
ck
(EF
fee
dback
). Position error is
ba
sed
on the
differe
nce
of the m
a
ster
an
d sl
a
v
e encode
r’
s data. Thi
s
e
rro
r i
s
ge
ne
rated, wh
enev
e
r
slave
actu
ato
r
i
s
n
o
t abl
e t
o
rea
c
h
de
sired p
o
sitio
n
o
r
more tha
n
n
o
rmal
torque
requi
re
d d
ue
to
environ
menta
l
con
s
trai
nt. The po
sition
error
comm
u
n
icatio
n laten
c
y between t
he ma
ster
a
n
d
slave is very
low up to 1.5
K
Hz an
d bot
h device
s
are
conn
ecte
d with usb 2.0 p
o
rt. The se
co
n
d
feedba
ck is
b
a
se
d on fo
rce
sen
s
o
r
atta
ched
with
the
before
the n
e
edle a
d
apte
r
.
Force
se
nsor is
con
n
e
c
ted
wi
th se
rial p
o
rt
and th
e
co
mmuni
cation
latency i
s
h
i
gh, therefore, force d
a
ta
is
recorded
not
tran
smitted f
o
r force
feed
back. Th
e
K-stiffness de
p
end
s on
the
type of physi
c
al
model
s u
s
ed
in the expe
ri
ment. K is hi
gher fo
r h
a
rd
obje
ct and lo
wer fo
r
soft o
b
ject. K-stiffness
is the multipli
er with force f
eedb
ack fact
or and
re
late
d with hapti
c
device for b
e
tter tactile feel
ing.
3. Experimental Proced
u
r
e
3.1. Setup
Experimental
tests
are p
e
rform
ed
by usin
g Ba
rd
Magn
um (2
.1mm diam
eter) brain
biop
sy ne
edl
e. Initially adv
ancement
of t
he n
eedl
e i
s
t
e
sted
in
air fo
r
che
c
king t
h
e sta
b
ility of th
e
positio
n movement and fo
rce fee
dba
ck data due to
system a
s
se
mbly con
s
trai
nts. A Plasticine
sampl
e
is prepared for p
e
rformi
ng ex
perim
ents. A
nother
calib
rated force se
nso
r
(Flexi F
o
rce
sen
s
o
r
ma
nuf
actured by T
e
ksca
n) i
s
in
stalled u
nde
r th
e load
cell fo
r cal
c
ulatin
g a
s
the
referen
c
e
force
signal. The biop
sy
n
eedle
interve
nes
into si
n
g
l
e
-axis,
the
z-axis, a
c
cordi
n
g to
ma
ster
HD.
The physi
cal
alteration
s wit
h
slave a
c
tua
t
or and
expe
ri
mental setu
p are sho
w
n in
Figure 4.
Figure 4. Experime
n
tal Se
tup on Slave Actuator
3.2. Application Soft
w
a
re
Comp
uter
a
pplication i
s
desi
gne
d for
controllin
g, monitori
n
g
and
re
co
rding the
maste
r
/slave
movement
s, velocitie
s
, and fo
rce
e
s
timation. Ap
plicatio
n software i
s
abl
e
to
pre
s
ent real
time numeri
c
al and graph
ical inform
ati
o
n abo
u
t po
sition
s, velocities and force
feedba
ck of t
he n
eedl
e int
e
rvention.
Th
e commu
ni
ca
tion ref
r
e
s
h
rate bet
wee
n
t
he
comp
uter
and
the ma
ster
d
e
vice i
s
2.0K
Hz.
Refresh rate co
mputati
on is ba
se
d
on fun
c
tion
calls that
appl
y a
force o
n
the
haptic d
e
vice
. The averag
e refre
s
h
ra
te
of the slave actuato
r
co
ntrol loop i
s
ab
out
1.5KHz. Surg
eon ca
n wat
c
h and
cont
rol almost a
ll para
meter d
u
r
ing expe
rim
e
nt as sh
own in
Figure 5. During de
signin
g
of the
application software kee
p
in mind
t
h
a
t
i
t
s
h
o
u
l
d
b
e
e
a
s
y
t
o
control and u
nderstan
d for user. Initialization of
the maste
r
and slave manipul
ators, mo
nito
ring
and recordi
n
g co
ntrol
s
, m
a
ster
and
sal
v
e curre
n
t p
o
sition
nume
r
ically a
n
d g
r
aphi
cally, force
feedba
ck int
ensity b
a
r a
nd g
r
ap
h, fi
nally velo
ci
ty of ma
ster
manipul
at
or
are
presente
d
in
followin
g
appl
ication
softwa
r
e a
s
sh
own
Figure 5.The
recording al
g
o
rithm fre
q
ue
ncy for ma
st
er
slave po
sition
ing, maste
r
velocity and p
o
sition
e
r
ror i
s
abo
ut 10Hz which is set by timer
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign a
nd Im
plem
entation of Probe Driver T
e
le
o
perative Fo
rce F
eedb
ack… (A
m
j
ad Ali Syed)
4219
Figure 5. Application Software
4. Result a
n
d Discus
s
io
n
Two type
s o
f
experime
n
ts a
r
e p
e
rfo
r
med.
First, tests are ba
sed on
to ch
eck the
system’
s
respon
se in
air.
The expe
ri
ment
wa
s
re
peated five ti
mes a
nd av
erag
e value
s
are
sho
w
n
in th
e
plots. M
a
ste
r
HD, Slave
a
c
tuator
pos
itio
n, po
sition
error, fo
rce
se
n
s
or an
d m
a
st
er
HD velo
city graph
s a
r
e p
r
ese
n
ted. Gra
phs
sho
w
n in
Figure
6 are
for moveme
nt betwee
n
two
fixed points.
In these
re
sul
t
s, the expe
rimental valida
t
ion
of tele-o
perate
d
sl
ave
actuato
r
p
r
o
be in ai
r
is
sho
w
n. T
h
e ma
ster HD po
sition a
n
d
slave
a
c
tuat
or p
o
sitio
n
coordi
nation
g
r
aph
s
sh
ow the
accuracy an
d linear mov
e
ment with resp
ect to
time. Micro
m
e
t
er fluctuatio
ns are sh
own in
positio
n erro
r graph that
is acce
ptab
le for su
rg
ery. The force
sen
s
o
r
gra
ph shows
small
fluctuation
s
le
ss tha
n
0.010
N and vari
abl
e velocity based on op
erat
or moveme
nt.
Figure 6. System Re
spon
se in Air
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4215 – 4
221
4220
The
se
con
d
experim
ent is based o
n
n
e
edle in
se
rtion
into the Pla
s
ticine
sam
p
le
. In this
experim
ent, the n
eedle
is i
n
jecte
d
an
d
ejecte
d five times. F
o
llo
wi
ng g
r
ap
hs sh
ow th
e respo
n
se
of the system
.
The ne
edle i
s
inje
cted a
bout 40mm i
n
sid
e
the sa
mple. Du
ring
needle
pen
etration,
variation
in
p
o
sition
e
rro
r
and fo
rce
se
nso
r
i
s
se
en.
Maximum
fo
rce
d
u
rin
g
n
e
edle i
n
sertion
is
about 1.9
014
N an
d eje
c
tio
n
is 0.0
N
. Vel
o
city ch
ang
es in all trial
s
a
nd de
pen
ds
o
n
user h
andli
ng
of the
device. Z-axi
s
v
s
Po
si
tion
graph
shows th
e m
a
ximum forc
e
feedb
ack
area
between
70
t
o
85 mm in this area the max
force felt on the device
du
e to needle in
sertio
n into the material.
Figure 7. System Re
spon
se in Plasticin
e
5. Conclusio
n
This pa
per p
r
esents d
e
sig
n
an
d im
ple
m
entat
ion
of
needl
e d
r
ive
n
tele
-ro
botic su
rgi
c
al
system
with force feedb
ack. Op
e
r
ator f
eels mo
re transparen
cy
and sta
b
ility in term of sla
v
e
actuato
r
re
sp
onse and fo
rce feed
ba
ck due to posi
t
ion-po
sition
error. Op
erat
or control
s
the
velocity of th
e sy
stem
accordin
g to
re
q
u
irem
en
t. Ma
ster force f
e
e
dba
ck ha
ptic
loop
and
sl
ave
control lo
op
freque
nci
e
s
are i
n
crea
se
d to a
c
hieve
swift and
smooth
syste
m
re
sp
on
se.
The
maximum force i
s
1.90
14
N ap
plied o
n
the sam
p
le
and maxim
u
m differen
c
e
is -7x1
0
-4
. The
maximum fo
rce fe
edb
ack f
eel at
70 to
85mm i
n
the
sampl
e
a
s
m
ention
at Fig
u
re
6. Th
e fo
rce
and po
sition
error a
r
e al
so depe
nd o
n
the applie
d
velocity from
the ope
rator
at maste
r
HD. In
future, furthe
r improveme
n
t in the resol
u
tion of
the force sen
s
o
r
and
increa
se the resp
on
se time
to realize pro
per commu
ni
cation
with ha
ptic device.
Ackn
o
w
l
e
dg
ements
This wo
rk i
s
sup
porte
d by
the
Nation
al
Te
chnol
ogy Re
sea
r
ch
of CHI
NA
(863
Proje
c
t)
(Grant No. 20
12AA041
606
), Beijing Muni
cipal
Natu
ral
Scien
c
e F
oun
dation (Grant
No. 71
3213
2
)
and Pro
g
ra
m
s
Foun
dation
of Education
of China (Gra
nt No. 2011
1
1011
1000
4).
Referen
ces
[1]
RL Gallo
w
ay
,
RJ Maciunas
. Stereotactic n
e
u
rosur
ger
y.
Cri
t
Rev Biomed
Eng
. 199
0; 18(
3): 181-2
05.
[2]
Cossu M, Lo
Russo
G, F
r
a
n
cio
ne S, et
a
l
.
Epil
epsy s
u
rgery i
n
chi
l
dre
n
:
results an
d
pred
ictors of
outco
me o
n
sei
z
u
r
es. Epil
epsi
a
. 2008; 4
9
(1): 65–
72.
[3]
De L
o
re
nzo D,
Mang
an
ell
i
R,
D
y
ag
ilev
I, et al.
Min
i
aturi
z
e
d
rigi
d pr
obe
dri
v
er w
i
th ha
ptic
loo
p
co
ntro
l
for neuros
urg
i
cal interv
enti
o
ns.
In Biome
d
ical
Rob
o
tics
and Bi
o
m
ec
hatron
i
cs (Bio
Rob) 2
0
1
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign a
nd Im
plem
entation of Probe Driver T
e
le
o
perative Fo
rce F
eedb
ack… (A
m
j
ad Ali Syed)
4221
Proceedings of
the 3rd IEEE RAS and EMB
S
Inte
rnational Confer
enc
e on Biom
edic
a
l
Robotics an
d
Biomec
hatron
i
cs,
T
o
kyo, Jap
an. 201
0; 522
–
527.
[4]
Sutherland G,
Latour I, Greer A.
Integr
ating
an
i
m
ag
e-g
u
id
ed r
obot
w
i
th i
n
traop
erativ
e
MRI: a rev
i
ew
of the desi
gn a
nd constructi
on
of neuroAr
m
.
IEEE Eng Med
Biol
, Mag. 20
0
8
; 27(3): 59
–65
.
[5]
Hag
e
r GD, Okamura AM, Ka
zanzi
des P, et al. Surg
ica
l
a
nd interv
entio
n
a
l ro
botics: part II
I: surgical
assistanc
e s
y
st
ems.
IEEE Robot Auto
mat Mag.
200
8; 15(4)
: 84–93.
[6]
Vlach
o
s K, Papad
op
oul
os E.
Transpar
ency
max
i
mi
z
a
ti
on
meth
od
olo
g
y for haptic d
e
vic
e
s. IEEE/ASME
T
r
ans Mechatr
onics
2
0
0
6
; 11
(3): 249–
25
5.
[7]
S
y
e
d
AA, Xi
ng
-gua
ng D
uan,
Xi
an
gzha
n Ko
ng, M
eng
Li, Yong
gui W
a
ng, Qiang H
u
a
ng. Maxill
ofaci
a
l
surgic
al rob
o
ti
c manip
u
l
a
tor
controll
ed b
y
haptic d
e
vic
e
w
i
th force f
eed
back C
o
m
p
le
x Me
dic
a
l
Engi
neer
in
g (C
ME).
ICME Internati
ona
l Co
nferenc
e
Pub
lica
t
ion. 201
3: 363
–36
8.
[8]
Mahvas
h M, Okamura AM. F
r
iction com
pen
sation fo
r e
n
h
anci
ng trans
pa
renc
y of a tele
oper
ator
w
i
t
h
compli
ant trans
mission.
IEEE Trans Rob
o
t 2007
; 23(
6): 124
0–1
24
6.
[9]
Puan
gmal
i P,
Althoefer
K, S
enev
iratne
L
D
, et a
l
. State-o
f
-the-art
in
for
c
e a
n
d
tactile
sens
ing
f
o
r
minimally
inv
a
s
i
ve surger
y
.
IE
EE Sensors J.
200
8; 8(4): 371
–38
1.
[10]
Rossi A, T
r
evisani A, Z
a
notto
V. A teler
o
botic h
aptic s
y
stem
for m
i
ni
mall
y i
n
vas
i
ve
stereotact
i
c
neur
osurg
e
r
y
.
I
n
t J Med Robot
ics Co
mp
ut Assist Surg
200
5;
1(2): 64–7
5.
[11]
W
agner C
R
, Ho
w
e
RD. F
o
rce
f
eedback
ben
efit depe
nds o
n
exper
ienc
e
i
n
multip
le de
gr
ee of freed
o
m
robotic sur
ger
y task.
IEEE Trans
Robot.
2007
; 23(6): 123
5–1
240.
[12]
Kueb
ler B, Se
ibol
d U, Hirzi
n
ger G. Develo
pment
of actu
ated an
d sen
s
or integr
ated
forceps for
minimally
inv
a
s
i
ve surger
y
.
Int
J Med Robotic
s Comput Assi
st Surg.
2005;
1(3): 96–
10
7.
[13]
Han
naford
B. A desi
gn fram
e
w
ork for
te
le
oper
ators
w
i
th
kinesth
etic fe
edb
ack.
IEEE Trans Robot
Autom
a
t
19
89; 5(4): 426
–4
34.
[14]
Lau
HYK, W
a
i
LCC. Implem
entat
io
n of p
o
s
ition-forc
e an
d pos
ition-
posi
t
ion tel
eop
erat
or control
l
er
s
w
i
t
h
cab
l
e-dr
iv
en mech
anism
s.
Robot Co
mp
ut Integr Manuf
2005; 2
1
(2): 1
45–
15
2.
[15]
Rose
n J, H
a
n
naford
B, Mac
F
arlan
e
M, Si
nan
an
M. F
o
rc
e C
ontrol
l
e
d
a
nd te
le
oper
ate
d
e
n
d
o
scop
i
c
grasp
e
r for m
i
nimal
l
y
i
n
vas
i
v
e
sur
ger
y
–
e
x
perime
n
tal
p
e
rformanc
e ev
al
u
a
tion.
IE
E
E
Tr
a
n
s
Bi
om
En
g
199
9; Oct; 46(10): 121
2–
122
1.
[16]
Hacksel PJ,
Salcudean SE
.
Estimatio
n
of envir
on
me
n
t
forces and
rigid-
bo
dy vel
o
cities us
in
g
observ
e
rs.
Proceed
ings of th
e IEEE Internation
a
l Co
nfer
ence o
n
Rob
o
t
ics and Auto
mation. Sa
n
Dieg
o
, CA.19
9
4
; 931–
93
6.
[17]
Katsura S, Matsumoto Y, Ohn
i
shi K. Ana
l
ysis
and e
x
per
ime
n
tal val
i
d
a
tion
of force ba
nd
w
i
dth for for
c
e
control.
IEEE Trans Ind Electr
on.
200
6; 53(3)
: 922–9
28.
[18]
Amjad
Ali
S
y
e
d
, Amir M
ahm
ood
So
omro,
Arbab
Ni
gh
at
Khizar,
Xin
g
-g
uan
g D
u
a
n
, H
uan
g Qi
ang
,
F
a
rhan Ma
nzo
o
r.
T
e
le-Ro
boti
c
Assisted De
ntal Im
pla
n
t Surger
y
w
i
t
h
Vir
t
ual F
o
rce F
e
e
dback. IAE
S
Journ
a
l of Elec
trical an
d Elect
r
onics En
gin
e
e
r
ing
. 20
14: 45
0
-
458.
Evaluation Warning : The document was created with Spire.PDF for Python.