TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 1, Janua
ry 201
5, pp. 42 ~ 5
6
DOI: 10.115
9
1
/telkomni
ka.
v
13i1.684
4
42
Re
cei
v
ed O
c
t
ober 1
4
, 201
4; Revi
se
d Novem
b
e
r
10, 2014; Accept
ed No
vem
b
e
r
28, 2014
Effective Facto
r
s on the Generated Transient Voltage in
the Wind Farm due to Lightning
M. A. Abd-Allah, Mahmoud N. Ali, A. Said*
F
a
cult
y
of Engi
neer
ing at Sh
o
ubra, Ben
ha U
n
iversit
y
, Eg
ypt
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: abde
lrahm
an
.ghon
iem@f
e
n
g
.bu.ed
u.eg
A
b
st
r
a
ct
Accordi
ng to
r
eports th
at ha
d b
een
pu
bl
ish
ed i
n
many
pa
pers, w
i
nd t
u
rb
ines (W
T
s
) fau
l
t du
e t
o
light
nin
g
is o
n
e
of th
e
most
dif
f
icult ch
all
e
n
g
e
s
. Lig
h
tni
ng
ov
ervolta
g
e
le
ad
to
malfu
n
ctio
n
in th
e w
i
n
d
far
m
equ
ip
me
nts. T
hese
i
m
pr
oper
function
in
g co
n
t
ain
of malfu
n
c
t
ion
electro
n
ic
equ
ip
me
nts a
n
d
d
e
for
m
atio
n
of
transformer w
i
ndi
ng
an
d Sur
ge
arrester fa
il
ures. T
h
e
trav
elli
ng
w
a
ves w
h
ich
are
ge
ner
ated
du
e to
hi
g
h
grou
nd p
o
tenti
a
l rise u
n
d
e
r li
g
h
tnin
g struck turbin
e caus
e these pro
b
l
e
ms. T
o
evalu
a
te th
ese cases, it
must
be perfor
m
ed
an accur
a
te an
alysis on the w
a
ve sha
pe
an
d
level of the Li
ghtni
ng overv
o
ltage a
nd gro
u
n
d
potenti
a
l ris
e
. T
h
is pap
er inv
e
stigates th
e e
ffective fa
ctors on the w
a
ve sh
ape a
nd l
e
ve
l of the overvo
ltag
e
,
GPR and sur
ge arrester b
u
r
nout. T
hese factors are in
c
l
ude
d i
m
pu
lse
Current-s
econ
d character
i
sti
cs,
positi
on of
l
i
ght
nin
g
,
inc
epti
on ang
le, mu
ltipl
e
light
ni
ng strok
e
s and chopped curre
nt. ATP-EMTP simulation
progr
a
m
is
ap
plie
d to
an
aly
z
e the
lig
htni
ng
over-vo
l
tag
e
of onsh
o
re w
i
nd far
m
. T
h
is
pap
er pr
ovid
es
a
practica
l proce
dure of li
ghtn
i
n
g
protectio
n
.
Ke
y
w
ords
: W
T
s, current-second ch
aracteri
stics,
lightni
ng
overvo
ltage, GPR, AT
P/EMTP
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
With a rapi
d gro
w
th in win
d
power ge
n
e
ration, lightn
i
ng ha
zard to wind turbi
n
e
s
(WTs)
has
co
me to
be rega
rde
d
with mo
re att
ention.
Due t
o
their
gre
a
t
height, di
stin
ctive sh
ape,
and
exposed l
o
ca
tion, WT
s are extrem
ely
vulnera
b
le to
lightnin
g
stroke. Afte
r a
WT i
s
struck by
lightning, hig
h
lightning current flows
throug
h the WT and
cau
s
e
s
co
nsid
erable dam
age
to
electri
c
al
eq
uipment
in
side the
WT
stru
cture a
n
d w
i
nd
tur
b
ine
n
a
c
e
lle
r
e
s
u
lts s
t
op
o
f
the
gene
rato
r op
eration a
nd p
r
oba
bly expe
nsive re
pai
rs
[1].
In orde
r to de
cre
a
se do
wnt
i
me, repai
rs a
nd blad
e dam
aged. Prote
c
t
i
ng the blad
e
is very
importa
nt an
d well
-d
esig
n
ed lightni
ng
prote
c
tion i
s
a ne
ce
ssity f
o
r thi
s
eq
uip
m
ent so Mo
d
e
rn
wind
turbine
blade
s
are
made
of in
sulating
materials
su
ch
a
s
gla
s
s fibe
r
reinfo
rced
pl
astic
(GF
R
P) a
s
a
comm
on m
a
terial o
r
woo
d
epoxy. The
lightning
pro
t
ection of
win
d
turbi
ne bl
a
des
can
be
cla
ssi
fied
a
s
re
cep
t
or,
metalli
c cap, me
sh wi
re,
a
nd metal
lic con
d
u
c
tor
as
repo
rted
in
IEC-61
400
-2
4 stand
ard
s
.
In gen
eral, th
e proble
m
of
lightning
protection
of
win
d
turbi
ne
bla
des is to
con
duct th
e
lightning
current safely from the attachment
poi
nt on the bla
d
e
to the hub
and then to
the
grou
nd.
Ho
wever
ano
ther
seri
ou
s
probl
em
kno
w
n a
s
"ba
c
k-flow surg
e"
whi
c
h n
o
t onl
y cau
s
e
s
damag
es to t
he win
d
turbi
ne that ha
s b
een st
ru
ck
b
u
t
also the oth
e
r turbi
n
e
s
th
at have not. The
back-flo
w
su
rge phe
nom
enon
ha
s b
een defined
as
the
su
rge flo
w
ing
from a
cu
sto
m
er’
s
stru
cture su
ch as a
com
m
unication t
o
we
r into th
e
distrib
u
tion l
i
ne. High
re
sistivity soil often
make
s Surge
Arreste
r
s (S
As) at towe
r grou
ndin
g
sy
stem
s ope
rat
e
in reverse a
nd allow b
a
ckflow
of su
rge
cu
rrent to the g
r
i
d
. The p
hen
omeno
n of
surge
inva
sion
from a
win
d
turbin
e that
is
stru
ck by li
gh
tning to
the
di
stributio
n li
ne
in
a
wind
farm is quite
s
i
milar to the cas
e
of
“back
-
f
l
ow
s
u
rge” [2].
Due to
signif
i
cant influe
nce on the
win
d
fa
rm be
ha
vior und
er lig
htning, the transi
ent
respon
se m
u
st be eithe
r
a
c
curately a
n
a
l
yzed. So in this pa
per
win
d
farm comp
onent mo
del
is
impleme
n
ted
using ATP_
EMTP. Characteri
stics
an
d hazard
s
of
back-flo
w
surge in o
n
sh
ore
wind fa
rm a
r
e
analyzed a
n
d
discu
s
sed.
Effective
Fact
ors on th
e Transi
ent Volta
ge Ge
ne
rated
in
the Wind
Farm due to Lig
h
tning a
r
e a
nalyze
d
.
The
s
e fa
ctors are inclu
ded i
m
pulse Current-
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Effective Fa
ctors o
n
the Ge
nerate
d
Tra
n
s
ient
Voltage
in the Wind F
a
rm
… (M. A.
Abd-Allah
)
43
se
con
d
cha
r
acteri
stics, p
o
sition
of
lig
htning,
in
ce
p
t
ion an
gle,
multiple lig
htning
stro
ke
s and
cho
ppe
d cu
rrent. This pap
er provide
s
a pr
a
c
tical p
r
o
c
edure of lightning protectio
n
.
2. Descrip
tio
n
and Modeli
ng of the
On
shore
Wind Farm
Figure 1
sho
w
s l
a
yout of
ons
hore wind
farm comp
o
s
ed of
two i
dentical wi
nd
power
gene
rato
rs.
Boost tran
sfo
r
mers for the
generators ar
e in
stalled
in vicinity of
the wind turb
ine
towers. All b
oost tran
sformers a
r
e
co
nne
cted to
t
he g
r
id via
grid
-interactiv
e
tran
sfo
r
me
r by
overhe
ad di
st
ribution
line.
Surge
arre
sters are in
se
rted to the
pri
m
ary an
d
se
con
dary
side
s of
the boo
st and
grid-i
ntera
c
ti
ve transfo
rme
r
s.
Figure 1. Win
d
farm model
[2]
Table 1
give
s the
req
u
ire
d
data fo
r m
odelin
g the
gene
rato
rs
o
f
the wind t
u
rbin
es,
transmissio
n line and tra
n
sf
orme
rs.
Table 1. Win
d
Turbi
n
e
s
, Tran
sform
e
rs
Data an
d co
n
necte
d line d
a
ta [2]
Wind Turbine Mo
del(S
y
n
chro
nous
Gene
rator
-
Y
co
nnected)
Voltage (line rms)
0.660 [kV]
Rated po
wer
1.0 [MVA]
Leakage reactan
c
e
0.1 [H]
Freque
nc
y
60.0
[Hz]
Transform
er Mod
e
l (Boost, Grid
-In
t
eractive)
Connection meth
od
Y
/
∆
,
Y
/
∆
Voltage (line rms)
0.660/6.6 [kV], 6
6
.0/6.6 [kV]
Rated po
wer
1.0 [MVA], 10.0 [
M
VA]
Leakage reactan
c
e
0.15 [p.u]
Copper losses
0.005 [p.u]
No-load losses
neglected
Line Model (values at 60 Hz)
positive / zero phase resistance [
Ω
/Km] 0.00105/0.02
1
Positive / zero phase inductance [mH/Km]
0.83556/2.50
067
Positive / zero phase capacitance [nF/Km]
12.9445/6.47
23
A cu
rre
nt fun
c
tion m
odel
called
Heidl
e
r
is n
o
w
used
widely to
mo
del a li
ghtnin
g
current
[3-5]. Equation (1
) rep
r
e
s
ent
s the lig
htning curren
t. A 400
Ω
lightning path
resi
stan
ce
wa
s
con
n
e
c
ted sh
unt to the sim
u
lated natu
r
al
lightning a
s
shown in Figu
re 2.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 1, Janua
ry 2015 : 42 – 5
6
44
2
/
2
1
2
1
]
1
)
/
[(
)
/
(
)
(
t
o
e
t
t
I
t
i
(1)
Whe
r
e I
0
: the pea
k of curre
n
t,
τ
1
,
τ
2
:
time con
s
tant
s o
f
current ri
sin
g
and droppi
n
g
.
Figure 2. Ligh
tning cu
rrent model
The d
o
wn
co
ndu
ctor i
n
the
blad
e a
nd th
e wi
nd tu
rbin
e tower
have
been
con
s
ide
r
ed
as
a
lossle
ss tran
smissi
on line
a
nd they we
re
estimat
ed
according to foll
owin
g experi
m
ental eq
uati
o
n
[4-7], Equatio
n (2), where the do
wn co
n
ducto
r and
th
e tower often
were treated
as a cylind
r
i
c
al
c
o
nd
uc
to
r
.
)
2
2
2
(ln
60
h
r
Z
(2)
Whe
r
e, Z is the su
rge imp
edan
ce, r an
d h
are the radiu
s
and he
i
ght of the cylinder,
respe
c
tively. The
win
d
to
wer i
s
ta
ke
n
a
s
a
n
i
r
on
vertical
con
d
u
c
tor
of 60
m
h
e
ight
and
3.0
m
radiu
s
.
The ove
r
he
a
d
line
s
a
r
e
consi
dered
an
d re
presente
d
by
single
-
p
hase p
o
sitive
wave
impeda
nce (i.
e
. Surge imp
edan
ce
) with
the light velocity.
C
L
/
Z
0
(3)
s
m
LC
v
/
1
(4)
Whe
r
e, C an
d L are the capa
citan
c
e a
nd
indu
ctan
ce of line, resp
ectively, Z
0
is the surg
e
impeda
nce a
nd v is the propag
ation vel
o
city [3, 8].
A simplified
model of
surge
arrester
was derived from IEEE model [9, 10]. The model
circuit is sho
w
n in Figu
re
3. This mode
l is co
mp
ose
d
by two sect
ions of nonli
n
ear resi
stan
ces
usu
a
lly desi
g
nated by A0
and A1 whi
c
h a
r
e sepa
rated by indu
ctan
ce L1
an
d L0. A para
llel
resi
stan
ce
Rp (a
bout 1
M
Ω
) i
s
added to avoid the numeri
cal i
n
st
ability of the
combi
nation
of the
curre
n
t sou
r
ce and no
nline
a
r elem
ents.
Figure 3. Pinceti and Gi
an
nettoni model
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Effective Fa
ctors o
n
the Ge
nerate
d
Tra
n
s
ient
Voltage
in the Wind F
a
rm
… (M. A.
Abd-Allah
)
45
In ca
se
medi
um an
d hi
gh
voltage level
s
the in
du
ctan
ce
s L
1
a
nd L
0
in th
e mo
d
e
l are in
μ
H and
cal
c
ul
ated usi
ng:
Un
Ur
Ur
T
Ur
L
20
/
8
20
/
8
2
/
1
4
1
1
(5)
Un
U
r
Ur
T
Ur
L
20
/
8
20
/
8
2
/
1
12
1
0
(6)
In case low
voltage level
s
the indu
cta
n
ce
s L1 a
n
d
L0 in the model are in
μ
H and
cal
c
ulate
d
usi
ng:
L1=0.03Un
(7)
L0=0.01Un
(8)
Whe
r
e
Un i
s
the arre
ster
ra
ted voltage in
kV,
Ur1/T2 is the re
sidu
al
voltage at 10
kA fast
front cu
rrent
surge (1/T2
μ
s). Ur8/2
0
is t
he re
sid
ual voltage
at 10
kA cu
rrent su
rge
with 8/20
μ
s
time param
eters.
The n
onlin
ea
r cha
r
a
c
teri
stics of the
two
element
s A0
and A1
are b
a
se
d o
n
the
pu d
a
ta
publi
s
hed
in [
11]. In this pa
per
Groun
d system mo
del
is b
a
sed o
n
t
he n
online
a
r
perfo
rman
ce
of
the groun
din
g
re
si
stan
ce
with hig
h
currents i.
e. hig
h
voltage, hi
gh fre
que
ncy
model [1
3]. The
nonlin
earity n
a
ture of the
g
r
oun
d resi
sta
n
ce
ca
n be
repre
s
e
n
ted b
y
a nonlin
ear resi
stan
ce,
RT,
who
s
e valu
e is given a
s
[12];
)
(
1
)
(
0
0
Ig
i
For
Ig
i
R
Rt
Ig
i
For
R
Rt
(9)
Whe
r
e, i
is t
he
cu
rre
nt t
h
rou
g
h
the
rod
(kA
)
, and Ig is
the
c
r
itic
al
c
u
rrent for
s
o
il
ionization (kA
)
whi
c
h is giv
en by:
2
0
0
2
R
E
Ig
(10)
Whe
r
e, E0 is the critical soil ionization
gr
adi
ent and
R0 con
s
tant resi
stan
ce an
d given
by:
}
1
4
{ln
2
0
a
l
l
R
(11)
Whe
r
e,
ρ
is the soil resi
stivity (
Ω
.m), L is the electrod
e lengt
h (m)
and a is the e
l
ectro
de
radiu
s
(m
).
3. Results a
nd Discu
ssi
on
In this
study,
the lightni
ng
stro
ke
is taken a
s
stri
king
win
d
turbine
(WT#1
)
a
s
shown in
Figure 4. Ligh
tning cu
rrent waveform of 51kA
-
2/63
1
μ
s is used in this study.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 1, Janua
ry 2015 : 42 – 5
6
46
Figure 4. lightning hit WT#
1
[3]
In this ca
se, voltages at fo
ur differe
nt locati
on
s (at G
enerator term
inal with light
ning hit,
6.6 kV
sid
e
s of the
boo
st transf
o
rme
r
s a
nd th
e g
r
id-inte
r
a
c
tive tran
sform
e
r) are
taken f
o
r
analysi
s
.
Figure 5 sh
o
w
s the voltag
e waveforms and its
pea
k value at different lo
cation
s of the
wind farm. It is observed
that the peak ma
g
n
itud
e of the gen
erated ove
r
v
o
ltage at WT#1
gene
rato
r terminal
can
be
as
high
a
s
1
2
5
kV, at
(WT#
1) b
o
o
s
t tra
n
s
form
er se
co
ndary
sid
e
re
ach
to 111kV, at (WT#
2) bo
ost
transfo
rme
r
seco
nda
ry sid
e
rea
c
h to 25
kV and at g
r
i
d
rea
c
h to 27
kV.
Also these wave form
s oscillate
with hi
gh fre
quency
.
It is clear t
hat
the
surge hitting
WT
#1,
whi
c
h
wa
s
struck
by light
ning,
was p
r
opag
ated to
the adj
ace
n
t
turbine
an
d t
he g
r
id th
rou
gh
collecting point.
(a) Voltag
e o
n
Gene
rato
r WT#
1
(b) Voltag
e at boost tra
n
sfo
r
mer voltag
e
(WT
#1
)
(c) Voltage at
boost tra
n
sfo
r
mer voltag
e
(WT
#2
)
(d) Voltag
e at primary g
r
id
voltage
@
G
en
er
at
or
@
W
T
#
1
@
W
T
#2
@
G
r
i
d
0
20
40
60
80
10
0
12
0
27
k
V
25
k
V
11
1k
V
12
5
k
V
Vol
t
age(
k
V
)
No
d
e
(e) Pea
k
valu
e of voltage at different location in win
d
farm
Figure 5. Voltage waveforms thro
ugh p
hase (a
)
(
f
il
e m
o
d
e
lw
in
d11
.
p
l4;
x
-
v
a
r
t
)
v
:
X
0
001A
0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
1.
2
[m
s
]
-2
0
0
20
40
60
80
100
120
140
[k
V
]
(f
i
l
e
m
o
d
e
l
w
i
nd11.
pl
4;
x
-
v
a
r
t
)
v
:
X
0002A
0.
0
0.2
0.
4
0.6
0.
8
1.0
1.
2
[m
s
]
-2
0
0
20
40
60
80
10
0
12
0
[k
V
]
(f
ile
m
odel
w
i
nd1
1.
pl4;
x
-
v
a
r
t
)
v
:
X
0004
A
0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
1.
2
[m
s
]
-2
0
-1
0
0
10
20
30
[k
V
]
(
f
ile
m
o
de
lw
in
d
1
1
.
p
l
4
;
x
-
v
a
r t
)
v
:
X
0
005
A
0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
1.
2
[m
s
]
-1
5
.
0
-7
.
5
0.
0
7.
5
15
.
0
22
.
5
30
.
0
[k
V
]
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Effective Fa
ctors o
n
the Ge
nerate
d
Tra
n
s
ient
Voltage
in the Wind F
a
rm
… (M. A.
Abd-Allah
)
47
Figure 6
sho
w
s the
GPR
wave fo
rm
at
WT#
1
a
nd it
s pea
k value
a
t
different l
o
cations of
the wi
nd fa
rm
. It is o
b
serve
d
that the
p
e
a
k
magnitu
de
of the
GPR
at WT
#1
rea
c
h to 1
2
6
k
V ,
at
(WT
#2
) rea
c
h
to 8
k
V a
nd
a
t
grid
re
ach t
o
10
kV. It is
clear that the
GPR i
s
eno
u
gh hi
gh to
ca
use
Bac
k
flow c
u
rrent.
(a) GP
R w
a
v
e
form at WT
#
1
@W
T
#
1
@
W
T
#
2
@G
r
i
d
0
20
40
60
80
100
120
10k
V
8k
V
12
6k
V
G
P
R
pe
ak
(
k
V
)
N
ode
(b) Pea
k
valu
e of GPR at different locati
on in
wind farm
Figure 6. GPR at different
locatio
n
s of the win
d
farm
The Surge Arreste
r
(SA
)
b
u
rno
u
t dep
en
ds on
th
e he
at prod
uced
by the curre
n
t flowing
throug
h the
arreste
r
exce
eds its th
erm
a
l limi
t. The absorb
ed en
ergy can be
obtaine
d in watt-
hour [14]:
T
dt
t
P
w
0
3600
/
)
(
(12)
Where, P(t
)
i
s
the i
n
stantaneous power
in watt.
The absorbed energy in
kJ i
s
cal
c
ulated
as:
Energy =
3,6
x W
(13)
(a) T
hermal limit of SA
(b) Ene
r
gy co
nsum
ption of SA @ WT#1
@W
T
#
1
@
W
T
#
2
@
G
r
i
d
0,
0
0,
2
0,
4
0,
6
0,
8
1,
0
T
h
em
al
l
i
m
i
t
1
5
k
J
Cons
umption energy
(K
J
)
No
d
e
(c) SAs co
nsumption en
ergy at
different location in
wi
nd farm
Figure 7. Energy con
s
u
m
pt
ion of
surge a
rre
ster
at different lo
cation
s of the wind
farm
(f
i
l
e
m
o
del
w
i
nd11
.
p
l
4
;
x
-
v
a
r t
)
v
:
XX0
0
8
0
0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
1.
2
[m
s
]
-1
0
10
30
50
70
90
110
130
[k
V
]
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 1, Janua
ry 2015 : 42 – 5
6
48
Figure 7 sho
w
s the en
erg
y
consu
m
ptio
n of surge a
r
rester th
roug
h
phase (a) lo
cated at
6.6 kV side
of boost tra
n
sfo
r
mers at WT
s#1, 2 and at
the prim
ary si
de of grid. It is ob
serve
d
that
the SA in phase a at the
wind turbi
n
e
that wa
s a
c
tually stru
ck
consumed the
large
s
t ene
rgy,
then SA at WT#2 an
d G
r
id
con
s
u
m
e le
ss
ene
rgy. Th
e re
sult
sho
w
s that t
he a
b
sorbe
d
en
ergy of
surge a
rre
ste
r
s at turbi
n
e
s
and gr
i
d
are highe
r but wit
h
in limits.
4. Effec
t
iv
e
Factor on G
e
nera
ted Tr
a
n
sient Volta
g
es.
4.1. Effec
t
of Lightning T
y
pe
Thre
e lightni
ng surg
es
a
r
e u
s
ed i
n
this inve
stigat
ion [15, 16].
Table 2
gi
ves the
cha
r
a
c
teri
stics of each ligh
t
ning su
rge.
Table 2. Light
ning Surge
s
Cha
r
a
c
teri
stics (St
and
ard f
o
r Lightni
ng
Protectio
n
an
d Lightnin
g
Strength in Japan
)
Lightning t
y
pe
Peak value [kA]
Front time [
μ
s]
T
a
il time [
μ
s]
Japan
Summer #1
30.0
2.0
70.0
Winter #2
51.0
2.0
631.0
Case #3
200.0
10.0
350.0
(a) Voltag
e w
a
v
e
form
s @
W
T#
1
@W
T
#
1
@
W
T
#
2
@G
r
i
d
0
50
100
150
200
30k
A
2/
70us
51k
A
2/
631us
200k
A
10
/
350
us
N
ode
v
o
lt
age (
k
V
)
(b) Compa
r
i
s
on between p
eak valu
es of
voltage
at each n
ode
(c
) GPR
wav
e
form
s @
W
T
#
1
@W
T
#
1
@
W
T
#
2
@G
r
i
d
0
50
100
150
200
250
3
0
k
A
2/
70
us
51k
A
2/
6
31us
2
00k
A
10
/
3
50u
s
No
d
e
GP
R(
k
V
)
(d) GP
R at different locatio
n
s of the win
d
farm
(e) SA co
nsu
m
ption ene
rg
y waveform
s
@W
T#1
@W
T
#
1
@
W
T
#
2
@G
r
i
d
0
5
10
15
20
25
t
her
m
a
l
Li
m
i
t
(
1
5
k
J
)
51k
A
2/
631us
200k
A
10/
350us
A
r
re
s
t
e
r
ab
so
rb
a
t
io
n en
er
g
y
(
k
J
)
NO
DE
(f) co
mpa
r
iso
n
of SA energ
y
consumptio
n at
different location
Figure 8. overvoltage
s, GPR and a
r
reste
r
absorption e
nergy at di
fferent locatio
n
s
of the wind
farm und
er di
fferent type of lightning
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
x 1
0
-3
-0
.
5
0
0.
5
1
1.
5
2
2.
5
x 1
0
5
Ti
m
e
i
n
S
e
c
V
o
l
t
age
@
W
T
#
1
i
n
(k
V
)
30
k
A
-
2
/
7
0u
s
20
0k
A
-
10
/
3
50
us
5
1
k
A
-
2
/
6
31
us
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
x 1
0
-3
-0
.
5
0
0.
5
1
1.
5
2
2.
5
3
x 1
0
5
Ti
m
e
i
n
S
e
c
G
P
R
@
W
T
#1 i
n
(
V
)
200
k
A
1
0
/
350
us
-
51k
A
-
2/
631
u
s
30k
A
-
2/
70u
s
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
x 1
0
-3
-0
.
5
0
0.
5
1
1.
5
2
2.
5
3
x 1
0
4
Ti
m
e
i
n
s
e
c
S
A
C
o
n
s
um
pt
i
on ener
gy
i
n
(
j
)
51k
A
-
2/
6
31us
200k
A
-
10/
350us
30k
A
-
2/
7
0us
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Effective Fa
ctors o
n
the Ge
nerate
d
Tra
n
s
ient
Voltage
in the Wind F
a
rm
… (M. A.
Abd-Allah
)
49
Figure 8 sh
o
w
s the ove
r
v
o
ltage, GPR and co
nsu
m
ption ene
rg
y of arreste
r
through
pha
se a lo
cat
ed at 6.6 kV side of bo
ost
transfo
rme
r
s at WTs#1, 2 and at the pri
m
ary sid
e
of grid
comp
ari
s
o
n
with
varyin
g the
lightni
ng pea
k
valu
e.
It is o
b
served
that the
pe
ak val
ue
of the
overvoltage
and GP
R at WT#1
rea
c
h to 231
kV and 25
0kV resp
ectively, also the e
n
e
r
gy
con
s
um
ption
of the SA surpasse
d their t
herm
a
l lim
itation only at th
e WT
#1 un
de
r lightnin
g
surge
#3. This i
s
du
e to high pea
k value of lig
htning surg
e
#3. It is clear
that t
he lightning su
rge
stri
ke
s
the wind to
we
r is mo
re sig
n
i
ficant und
er
high cre
s
t lightning surg
e #3.
4.2. Effec
t
of Lightning Parameter Fro
n
t Time
(a) Voltag
e w
a
v
e
form
s @
W
T#
1
@W
T
#
1
@
W
T
#
2
@G
r
i
d
0
20
40
60
80
100
120
5us f
r
o
n
t
3u
s
f
r
ont
2u
s
f
r
on
t
1u
s
f
r
on
t
N
ode
Vo
lt
a
g
e
(
k
V)
(b)
Comp
ari
s
on between p
eak valu
es of
voltage at ea
ch no
de
(c
) GPR
wav
e
form
s @
W
T
#
1
@WT
#
1
@
W
T
#
2
@G
r
i
d
0
20
40
60
80
10
0
12
0
14
0
5us
f
r
ont
3us
f
r
ont
2us
f
r
ont
1u
s
f
r
ont
N
ode
GPR
(
kV
)
(d) GP
R at different locatio
n
s of the win
d
farm
(e) SA co
nsu
m
ption ene
rg
y waveform
s
@W
T#1
@WT
#
1
@
WT
#
2
@G
r
i
d
0,
0
0,
2
0,
4
0,
6
0,
8
1,
0
5u
s
f
r
ont
3u
s
f
r
ont
2
u
s
fr
o
n
t
1us f
r
ont
No
d
e
A
b
so
rb
at
ion
en
er
gy (k
J
)
(f) co
mpa
r
iso
n
of SA energ
y
consumptio
n at
different location
Figure 9. Overvoltage
s, GPR and a
r
reste
r
absorption e
nergy at di
fferent locatio
n
s
of the wind
farm und
er di
fferent lightni
ng front time
1.
0
5
1.
1
1.
1
5
1.
2
1.
2
5
1.
3
1.
35
1.
4
x 1
0
-5
0
2
4
6
8
10
12
14
x 1
0
4
Ti
m
e
i
n
(
S
e
c
)
V
o
l
t
age @
W
T
#1 i
n
(
V
)
5us
3us
2us
1us
1.
05
1.
1
1.
15
1.
2
1.
25
1.
3
1.
3
5
1.
4
x 1
0
-5
-2
0
2
4
6
8
10
12
14
16
x 1
0
4
Ti
m
e
i
n
S
e
c
G
P
R
@
W
T
#1 i
n
(
V
)
5us
3us
2us
1us
3
4
5
6
7
8
9
10
11
12
x 1
0
-5
70
0
75
0
80
0
85
0
90
0
95
0
10
00
Ti
m
e
i
n
s
e
c
S
A
c
o
n
s
u
m
p
t
i
o
n
ene
r
g
y
@
W
T
#
1 i
n
(
j
)
2u
s
3u
s
5u
s
1u
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 1, Janua
ry 2015 : 42 – 5
6
50
The lightnin
g
stro
ke
s with
different fro
n
t ti
me (1µs:
5
µs) [1
7] are
studied to
show the
effect of them. Figure 9
shows the co
mpari
s
o
n
of voltage, GPR and arre
st
er abso
r
bin
g
e
nergy
with va
rying l
i
ghtning
front
time. Th
e
re
sults indi
cate
that the
ma
ximum voltag
e an
d th
e G
P
R
locate
d at tu
rbine
s
and
g
r
id a
r
e
de
cre
a
se
d
with in
cre
a
si
ng f
r
on
t time of ligh
t
ning. Also, t
he
absorb
ed e
n
e
rgy by the
a
rre
sters
lo
cat
ed at the n
o
n
-
thund
erstru
ck turbine
s
an
d grid
de
crea
se
with increa
sin
g
front time of lightning.
This indi
cate
s that fo
r th
e
same
current
magni
tu
de, t
he fa
st ri
sing
cu
rrent di
ssi
pates to
grou
nd mo
re
quickly than
the slo
w
ri
si
ng cu
rren
t. T
he faste
r
fro
n
ted cu
rrent
pulse re
sult
s in
large
r
potenti
a
l at fee
d
p
o
i
n
t in the
first
moment
s b
e
cause la
rge
r
currents are fo
rce
d
to
dispe
r
se
into the grou
n
d
throug
h sm
all parts of th
e electrode.
4.3. Effec
t
of Lightning Parameter Tai
l
Time
(a) Voltag
e w
a
v
e
form
s @
W
T#
1
@W
T
#
1
@
WT
#
2
@G
r
i
d
0
20
40
60
80
10
0
12
0
60
0u
s
T
a
i
l
30
0u
s
Tai
l
20
0u
s
T
a
i
l
Volt
age(kV)
No
d
e
(b)
Comp
ari
s
on between p
eak valu
es of
voltage at ea
ch no
de
(c
) GPR
wav
e
form
s @
W
T
#
1
@W
T
#
1
@
W
T
#
2
@
G
r
i
d
0
20
40
60
80
10
0
12
0
14
0
600us
T
a
i
l
300u
s
T
a
i
l
200us
T
a
i
l
N
ode
GP
R
(
k
V)
(d) GP
R at different locatio
n
s of the win
d
farm
(e) SA co
nsu
m
ption ene
rg
y waveform
s
@W
T#1
@WT
#
1
@
W
T
#
2
@G
r
i
d
0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
6
00u
s T
a
i
l
3
00u
s T
a
i
l
20
0u
s
T
a
i
l
Ab
sor
bat
i
o
n
en
er
gy
(
kJ)
Nod
e
(f) co
mpa
r
iso
n
of SA energ
y
consumptio
n at
different location
Figure 10. Overvoltage
s, G
P
R and a
rre
ster absorption
energy at di
fferent lo
cation
s of the wind
farm und
er di
fferent lightni
ng tail time
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
x 1
0
-4
-2
0
2
4
6
8
10
x 1
0
4
Ti
m
e
i
n
s
e
c
V
o
l
t
ag
e i
n
(
V
)
6
00us
3
00us
2
0us
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
1.
6
1.
8
2
2.
2
x 1
0
-4
0
2
4
6
8
10
12
x 1
0
4
Ti
m
e
i
n
S
e
c
GP
R
in
(
V
)
100us
300us
200us
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
x 1
0
-3
-20
0
0
20
0
40
0
60
0
80
0
10
00
12
00
Ti
m
e
i
n
s
e
c
S
A
e
ner
gy
c
o
ns
um
pt
i
o
n
i
n
(
j
)
2
00u
s
6
00u
s
3
00u
s
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Effective Fa
ctors o
n
the Ge
nerate
d
Tra
n
s
ient
Voltage
in the Wind F
a
rm
… (M. A.
Abd-Allah
)
51
The lig
htning
stro
ke
s
with
different tail
time (2
00µ
s:600µs) a
r
e
studie
d
to
sh
ow the
effect of the
m
. Figure 1
0
shows th
e
co
mpari
s
o
n
of v
o
ltage, GP
R
and
arre
ster absorbi
ng en
ergy
with va
rying l
i
ghtning
front
time. Th
e
re
sults indi
cate
that the
ma
ximum voltag
e an
d th
e G
P
R
locate
d at turbine
s
an
d g
r
id are incre
a
se
d with in
cre
a
si
ng tail
time of lightning. Also, the
absorb
ed
en
ergy by
the
a
rre
sters lo
cat
ed at th
e n
o
n
-thun
de
rstru
c
k turbine
s
a
nd g
r
id
incre
a
se
with increa
sin
g
tail time of lightning.
This in
dicates that for the same current
magni
tud
e
, the slo
w
de
cay
curre
n
t dissip
ates to
grou
nd m
o
re
quickly than
the fast d
e
cay cu
rre
n
t. The sl
ower
de
cayed
cu
rren
t pulse
re
sult
s i
n
large
r
potenti
a
l at fee
d
p
o
i
n
t in the
first
moment
s b
e
cause la
rge
r
currents are fo
rce
d
to
dispe
r
se
into the grou
n
d
throug
h sm
all parts of th
e electrode.
4.4. Effec
t
of Lightning Inception
Angl
e
(a) Voltag
e w
a
v
e
form
s @
W
T#
1
@W
T
#
1
@
W
T
#
2
@
G
r
i
d
0
20
40
60
80
10
0
111k
V
110k
V
108k
V
NP
ZC
PP
Vo
lt
ag
e(
kV
)
N
ode
(b)
Comp
ari
s
on between p
eak valu
es of
voltage at ea
ch no
de
(c
) GPR
wav
e
form
s @
W
T
#
1
@WT
#
1
@
W
T
#
2
@G
r
i
d
0
20
40
60
80
10
0
12
0
NP
ZC
PP
GP
R
(
k
V
)
No
d
e
(d) GP
R at different locatio
n
s of the win
d
farm
(d) SA co
nsu
m
ption ene
rg
y waveform
s
@W
T#1
@W
T
#
1
@
W
T
#
2
@G
r
i
d
0,
0
0,
1
0,
2
0,
3
0,
4
0,
5
0,
6
0,
7
0,
8
0,
9
1,
0
1,
1
1,
2
1,
3
NP
ZC
PP
No
d
e
A
b
s
o
rba
t
i
on e
nerg
y
(kJ)
(e)
comp
ari
s
o
n
of SA consumption en
ergy at
different location
Figure 11. Overvoltage
s, G
P
R and a
rre
ster absorption
energy at di
fferent lo
cation
s of the wind
farm und
er di
fferent lightni
ng inception
angle
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
x 1
0
-3
-2
0
2
4
6
8
10
12
x 1
0
4
Ti
m
e
i
n
s
e
c
V
o
lt
a
g
e
in
(
V
)
NP
ZC
PP
0
0.
2
0.
4
0.
6
0.
8
1
1.
2
x 1
0
-3
-2
0
2
4
6
8
10
12
14
x 1
0
4
Ti
m
e
i
n
s
e
c
GP
R
i
n
(
v
)
NP
ZC
PP
4
4.
5
5
5.
5
6
6.
5
7
x 1
0
-5
82
0
84
0
86
0
88
0
90
0
92
0
94
0
96
0
98
0
10
00
10
20
Ti
m
e
i
n
s
e
c
S
A
c
o
ns
u
m
pt
i
on en
er
gy
(
j
)
NP
ZC
PP
Evaluation Warning : The document was created with Spire.PDF for Python.