TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 16, No. 3, Dece
mbe
r
2
015, pp. 488
~ 494
DOI: 10.115
9
1
/telkomni
ka.
v
16i3.942
1
488
Re
cei
v
ed
Jul
y
13, 201
5; Revi
sed
No
ve
m
ber 15, 201
5; Acce
pted
No
vem
ber 3
0
,
2015
Prototy
p
ing a Dedicated Photovoltaic System
Datalogger
Bena
bed Kh
adidja*
1
, Bou
dghene Sta
m
bouli Amine
1
,
Benaba
dji Noureddine
2
1
Departme
n
t of Electronic, Un
i
v
ersit
y
of Sci
e
n
c
es
and T
e
chn
o
lo
gies of Oran
(UST
O-MB), Algeri
a
2
Departme
n
t of Ph
y
s
ics, LAA
R
Lab
orator
y (
U
ST
O-MB), Al
geri
a
*
Corresp
on
din
g
author, e-mai
l
: ben_k
ha
d@
ya
hoo.fr
A
b
st
r
a
ct
Solar
pow
er
is
a ren
e
w
abl
e e
nergy s
e
e
n
as
one
of
the
pri
m
ary sourc
e
s for
electric
ity pro
d
u
ction
i
n
order to meet our dai
ly ne
ed
s. T
he
conversion o
perati
on i
s
sensitive a
n
d
non-fau
l
t toler
ant that can oc
cur
during operation of t
he system
that affects
its over
all performanc
e. We
propos
e in this
present paper
a
compact, low
pow
er an
d lo
w
-
cost datalog
ger for t
he co
ntrol an
d the
mo
nitori
ng
ba
sed on
a sur
v
e
y
me
asur
e of five importa
nt ph
ysical p
a
ra
met
e
rs in t
he ma
n
age
ment
an
d mo
nitori
ng
of the functi
oni
ng
of an
electric syste
m
based
on sol
a
r pane
ls. Thes
e measur
es w
ill be carri
ed o
u
t at regular i
n
ter
v
als, config
ura
b
l
e
throug
h a PIC1
8F
452
0 microc
ontrol
l
er an
d stor
ed i
n
a lar
ge
capac
ity me
mo
ry type SD card.
Ke
y
w
ords
:
photov
olta
ic p
ane
ls, d
a
t
a
l
o
g
g
e
r
, microc
ontr
o
ller
8-b
i
t, SD card
me
mory
, micro
pow
er
LDO
regu
lator
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
A datalogge
r is a device fo
r mea
s
uri
ng
and sto
r
ing a
large amo
u
n
t
of data.
It is
an all-
purp
o
se pie
c
e of measu
r
ement equi
p
m
ent that
finds u
s
e in an extremely
wide ran
g
e
o
f
appli
c
ation
s
. Datalo
gge
rs
have been
succe
ssfully
d
eployed in m
any sci
ent
ific and indu
stri
al
appli
c
ation
s
.
Some of th
e impo
rtant
area
s in
whi
c
h d
a
talog
g
e
r
s
are
wid
e
l
y
used i
n
cl
u
d
e
biomedi
cal i
n
stru
mentatio
n [1], powe
r
quality me
asu
r
em
ent, automotive
engin
eeri
ng
[2],
rene
wa
ble e
n
e
rgy [3], sola
r ene
rgy [4], Tempe
r
atu
r
e
and Humidity
Analysis [5],
sola
r irradi
ation
[6], etc
.
In this pape
r, we de
scrib
e
in detail the d
e
sig
n
and im
plementatio
n of a compa
c
t
and lo
w
co
st auto
m
ati
c
re
cording
d
e
vice
(datal
o
gger) to
cont
rol
and
surve
y
mea
s
ures
of seve
ral
m
a
jor
physi
cal pa
ra
meters in the managem
en
t and monitori
ng of the functionin
g
of an electri
c
syst
em
based on ph
otovoltaic pa
nels.
It
u
s
e
s
an
8
-
bit
mi
croco
n
trolle
r (P
IC18F4
520
) whi
c
h deal
wi
th
all
the function
s provided in
the device
(mea
su
ri
ng,
monitoring
and re
co
rdin
g). The maj
o
r
con
s
trai
nt of t
h
is
datalo
gge
r i
s
the
auto
n
o
my of
o
pera
t
ion, co
nsumi
ng a
fun
c
tion
al po
we
r a
s
l
o
w
as possibl
e (nan
oWatt
T
e
ch
nolo
g
y) without
affe
cting the a
ccura
cy of me
asu
r
em
ents
and
reliability of recorded data.
2. Hard
w
a
re
Des
c
ription
The p
r
ototyp
e device
de
scrib
ed in thi
s
pape
r is d
e
signed fo
r 12
V photovoltai
c
pa
nels
system
at a
medium
po
wer
(10
0
to 3
00W). It
is
resp
on
sible fo
r pe
rforming
automati
c
a
n
d
perio
dic m
e
a
s
ureme
n
ts of
five importa
nt physi
cal p
a
ram
e
ters to
be monito
re
d: the ch
argi
ng
curre
n
t of the
energy accu
mulator
(12V
battery),
the
discha
rge
cu
rrent, the cha
r
ging voltage,
the
external
tem
peratu
r
e
(of the 1
2
V P.V.) and
the
inte
rnal
tempe
r
at
ure
(of
the
b
a
ttery). Th
ese
measurement
s are a
c
qui
re
d peri
odi
cally
and imm
edi
ately displ
a
ye
d on a
2x16
cha
r
a
c
ters L
CD
displ
a
y, whe
r
e the first lin
e is reserve
d
to displ
a
y the mea
s
u
r
e
d
value of the
voltage of the
battery ch
arg
e
, the cha
r
gi
ng cu
rrent (o
r disch
a
rg
e, depe
nding
o
n
the sig
n
) a
nd the qu
anti
t
y of
electri
c
ity (a
cquire
d o
r
con
s
ume
d
),
whil
e the
se
con
d
line is re
se
rv
ed to di
spl
a
y the clo
c
k, an
d, in
turn, the nu
mber of the
day, the in
ternal
tempe
r
ature and the external
temperature.
A
rudim
entary
but sufficie
n
t keybo
a
rd of t
h
ree p
u
shbut
tons is u
s
e
d
for the initial a
d
justme
nt of the
real time
cl
ock (RT
C
) of th
e device. The
diag
ram
i
n
t
he figu
re 1
sh
ows the m
a
in
modul
es
of this
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Prototypi
ng a
Dedi
cated P
hotovoltaic
S
ystem
Datalo
gger
(Bena
be
d Khadidja
)
489
device:
an
8-bit micro
c
ont
roller (PIC18F
4520
), a
2x
1
6
cha
r
a
c
ters
LCD di
spl
a
y
module,
a tin
y
keybo
a
rd
wit
h
3 pu
sh
butto
ns, the
circuit
r
y for fou
r
me
asu
r
em
ent ch
annel
s (i
ntern
a
l and
extern
a
l
temperature,
curre
n
t and
voltage), the
regul
ated
p
o
we
r supply
se
ction, an
d
finally the mass
stora
ge SD m
e
mory.
Figure 1. Block di
agram of
the prototype
device.
2.1. The 8-bit Microcontro
ller (PIC18F4
520)
It is a high-e
nd micro
c
ont
rolle
r of the Amer
ican
so
ciety Microch
i
p, which is
now the
worl
d lead
er in this cat
egory of p
r
ogra
mmabl
e
digital com
pone
nts. It has a
red
u
c
ed
instru
ction
se
t compute
r
(RISC) a
r
chit
ecture
, high
spe
ed pe
rformance and a
large am
oun
t of
flash me
mory
; PICmicro are much bette
r than
other
8
-
bit micro
c
ont
rolle
rs
usi
ng t
he old
com
p
l
e
x
instru
ction
compute
r
(CISC) a
r
chitect
u
re (eg,
Mot
o
rola 6
870
5 or Intel 805
1
)
[7]. It can be
powere
d
by a voltage fro
m
1.8V to 5.5V [8].
Why do we
have
cho
s
e
n
Vdd1
= 5.12 V?
With a
resolution
of 10-bit, the int
e
rnal A
DC
pi
cks u
p
to 10
24 mea
s
u
r
e
s
,
and with
sett
ing a voltage
of
5.12 V, we
o
b
tain a
sen
s
it
ivity of 5120/1024
= 5
mV
pr
e
c
i
s
ely. Th
is ste
p
of 5
m
V
is sufficient
to
measure
the temperature detecte
d
by the LM3
5
se
ri
es temp
eratu
r
e sen
s
ors,
whi
c
h p
r
ovid
e a
step of 1
0
m
V
per d
egre
e
Cel
s
iu
s, a
nd an
ac
cu
racy of 0.5 °
C
. Finally, th
e PIC18F
452
0 is
clo
c
ked by
a
n
8 M
H
z
system internal
clo
c
k (giv
in
g
a ½ µ
s
p
e
r instructio
n,
except fo
r ju
mp
instru
ction
s
t
hat req
u
ire
1
µ
s), an
d an e
x
ternal
qu
artz of 32768
Hz
to accurately manag
e the real
time clo
ck a
n
d
cale
nda
r (RTCC), with
the intern
al 1
6
-bit Time
r1
(Figu
r
e 2
)
. The PIC18F
45
20
con
s
um
es
a curre
n
t about
3.5 mA in ru
n time mode
(at 8 MHz), but this value
drop
s d
o
wn to 9
µA in sleep m
ode (PIC h
a
lted, except for timer1 intern
al clo
ck at 32
768 Hz).
Figure 2. The
PIC18F4
5
2
0
circuit with i
t
s two qua
rtz
(8 MHz an
d 3
2768
Hz)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 488 – 494
490
2.2. The 2x1
6
Char
acters
LCD
Displa
y
Module
The 2x16 ch
ara
c
ters L
C
D module requ
ires a mi
nimu
m of 10 lines
I/O (input / output) to
con
n
e
c
t to the PIC, in 8-b
i
t mode, or o
n
ly 6 I/O lines, in 4-bit mode. Thi
s
latter meth
od
wa
s
therefo
r
e
cho
s
en to mi
nimi
ze the n
u
mb
er of line
s
I/O
(Figu
r
e 3
)
. T
he comma
nd
line (EN: pi
n
6)
of the LCD
displ
a
y is dri
v
en dire
ctly by t
he outpu
t RB3 (pin 3
6
) of PIC18F
4520, while the
comm
and li
n
e
(RS: pi
n 4
)
of the L
C
D is drive
n
by
the RB2 o
u
t
put (pin 3
5
) [9]. In order to
minimize the global
current
con
s
umptio
n
in sleep
mo
d
e
, we have to
avoid to power pe
rman
ent
ly
the LCD di
sp
lay. Hence, p
i
n 2 (Vdd) an
d pin 15 (b
a
c
klight) of the LCD displ
a
y are not direct
ly
con
n
e
c
ted to
the p
r
ima
r
y p
o
we
r
su
pply,
but rather
to
an o
u
tput
pin
of the PICmicro
(pin
1
3
). T
h
e
same id
ea ha
s been a
pplie
d for the temperatu
r
e sen
s
or
whi
c
h is
powere
d
only
during the time
of analog a
c
q
u
isition.
Figure 3. The
2x16 LCD di
splay mod
u
le
4-bit mode
2.3. The Thr
ee Bu
tto
ns
Ke
y
board
The
keybo
a
rd ha
s three
pushbutton
s
driven
with o
n
ly two I/O (Figure 4
)
; pu
shb
u
tton
s
BP1 and BP
2 are di
re
ctly con
n
e
c
ted
to input
pi
ns RB0
and
RB1 (with thei
r inte
rnal
pul
lup
resi
sto
r
s a
c
tivated, only
durin
g the
keyboard polli
ng time) an
d are used
to increm
ent
or
decrem
ent
of
the RT
CC, whe
r
ea
s pu
shbutton
BP3,
indirectly
co
nne
cted to
RB0 a
nd
RB
1
simultan
eou
sl
y, through di
ode
s D1 an
d
D2, is use
d
to roll over hour, min
u
te, second, day,
month a
nd ye
ar. When th
e
PICmicro i
s
p
u
t in sl
eep
m
ode, the
LCD modul
e is
sh
ut off (its
sup
p
ly
is co
ntrolle
d throu
gh pin
RC7) a
nd can
be po
wered a
gain by pu
sh
button BP3.
Figure 4. The
three pu
sh b
u
ttons keybo
a
rd
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Prototypi
ng a
Dedi
cated P
hotovoltaic
S
ystem
Datalo
gger
(Bena
be
d Khadidja
)
491
2.4. The Circ
uitr
y
for Four Measur
e
ment Chann
e
ls
Only four of
the PIC18
F
4520
anal
og
i
nputs have
been
devot
ed to me
asure five
importa
nt ph
ysical
pa
ram
e
ters (Fi
gure
5): the
ch
arging
cu
rre
nt
(Ibat po
sitive
) for th
e e
n
e
r
gy
stora
ge p
a
ck (12V batte
ry), the disch
a
rge curr
ent (I
bat negative
)
, the cha
r
gin
g
voltage (Vb
a
t),
the external t
e
mpe
r
ature (T°ext, of the
photovolta
i
c
panel
s) a
nd the intern
al temperature
(T
°int,
of the battery
). The L
M
35
CZ an
d LM
3
35 tempe
r
at
u
r
e sen
s
o
r
s
are used, with
a se
nsitivity of 10
mV/°C and a
n
accuracy of 0.5 °C and 1
°C re
spe
c
ti
vely. The temperatu
r
e ra
nge
is -40 °C to 1
10
°C fo
r the fi
rst sen
s
o
r
, an
d
-40
°
C
to 1
0
0
°
C
for th
e
seco
nd o
ne. T
hey ca
n b
e
p
o
we
red
by a
DC
voltage from
4V to 20V [1
0]. The
cha
r
ging
cu
rre
nt
(and
di
scharge)
of the b
a
ttery is d
one
by
measuri
ng a
voltage drop
across a l
o
w
resi
stan
ce
(0
.
1
ohm
) in
series
with the p
o
sitive termi
n
al
of the battery to be re
ch
arge
d. The
calcul
ati
on of
the maximu
m power
dissipate
d
by that
resi
stan
ce
de
pend
s
on the
maximum
current that
ca
n be
source
d
by the
sola
r pan
els i
n
u
s
e,
and the maxi
mum cu
rrent allowed for u
s
er
con
s
u
m
pt
ion. The ch
arging voltage t
o
be mea
s
u
r
ed
is taken from
a conventio
nal voltage
di
vider, de
co
up
led with
capa
citors
C12
an
d C1
3 u
s
e
d
to
filter any tran
sient voltage
or noise tha
t
c
ould be in
duced thro
ug
h long lead
s from the sol
a
r
panel
s.
Figure 5.
Circuitry for 4 an
alog chan
nel
s
2.5. The Po
w
e
r Supplies
Two po
we
r sup
p
lie
s have been de
si
gned: On
e
delivering a
stable 5.12Vd
c
for the
microcontroll
er, the L
C
D
displ
a
y and
active te
mpe
r
ature sen
s
o
r
s,
and one d
e
livering a
st
able
3.0Vdc for th
e SD card
m
e
mory. A
s
with any
po
rtabl
e
em
bedd
ed
desi
gn,
b
o
th high co
nversi
on
efficien
cy an
d very low st
andby po
we
r dissi
pati
on
were amo
ng
our p
r
ima
r
y goals. Th
e pri
m
ary
power
sup
p
ly unit (Fig
ure
6) mu
st de
al
with
a wi
de
input ra
nge
(10.5V to 21V
), we
cho
o
se
a
step-do
wn
de
dicate
d integ
r
ated ci
rcuit: the M
C
P163
1
1
[11]
characterize
d
with e
fficiency u
p
t
o
96% and
a v
e
ry low quie
s
cent
cu
rre
nt (44 µA ty
pical
)
. The
se
co
n
dary po
we
r
supply unit
(fig
ure
7) i
s
ba
sed
o
n
a
microp
o
w
er L
D
O
line
a
r
reg
u
lator,
the M
C
P170
2 cha
r
a
c
teri
zed
with lo
w d
r
op
out of 1
0
0
m
V
@ 40
mA,
and
an
ultra
l
o
w
quie
s
cent
cu
rrent
(2 µA
typical
)
. The
s
e t
w
o i
n
teg
r
ated
circuits offe
r robu
st ope
rat
i
on with inte
grated ov
e
r
-current prote
c
tion, short
-
ci
rcuit prote
c
tio
n
,
high-temperature operation
capab
ilities,
and over-temper
ature protection feat
ures.
The SD
card
memory i
s
p
e
riodi
cally a
c
tivated (each
hour) only to
save mea
s
u
r
es, the
n
it is completely
shut
off (to save p
o
we
r), he
nce the use
of the P chann
el
m
o
sfet T1 d
r
ive
n
with the out
put pin RA6 o
f
the PICmicro.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 488 – 494
492
Figure 6. The
primary po
wer su
pply unit
Figure 7. The
powe
r
su
ppl
y
for the SD c
a
rd memory
2.6. The Memor
y
SD Card (2 GO)
The m
e
mo
ry
use
d
in
this
device
con
s
ists of
a
SD
c
a
rd
of 2
GB
for daily
re
co
rding
of
variou
s para
m
eters acquired peri
odi
call
y. The Table 1 summ
ari
z
e
s
the format of the measu
r
ed
data over on
e
year.
The SD memory c
a
rd is
configured in the FA
T16 file s
y
s
t
em from Mic
r
os
oft. We us
ed
Mikr
oC
compi
l
er (of
Mi
kro
e
l
e
kt
ro
nic
a
)
wh
ich ha
s st
a
n
d
a
rd built in ro
utines fo
r SD memory. Each
day, a file is
saved under t
he name LOG_Nxxx.DAT (xxx is the
n
u
mber of days, rangi
ng from
001 to
365
o
r
36
6, if lea
p
year), in bi
n
a
ry form
at, with a fixed
si
ze
of 27
bytes. The
Fig
u
re
8
details th
e in
terco
nne
ction
of the S
D
card
me
mo
ry
with the PI
C18F45
20 mi
crocontroller.
The
se
con
dary
re
gulated
po
wer
su
pply d
e
livering
3.0V
dc
wa
s
de
si
gned
only fo
r the
SD ca
rd
memory [1
2], that acce
pts a rath
er
narrow volt
ag
e m
a
rgin
(b
etwe
en 2.7V a
nd
3.6V only). T
he
SD
card m
e
mory i
s
ve
ry se
nsitive to
pea
k volt
ag
e
variation
s
o
n
its
su
pply
pins (Vd
d
,
Vss),
hen
ce the n
eed for the
two de
cou
p
ling ca
pa
citors C3
0 and
C31
clo
s
e to the SD. The
inputs/o
u
tput
s of PIC work
with logi
c l
e
vels
(0
V, 5
V
) an
d mu
st
be ad
apted
to SD l
ogi
c le
vels
(0V, 3V), with the resi
stive voltage divider (R3
0
to R35
)
. Finally, the red LED is optional a
n
d
s
e
rves
only for ac
tivity (write/read) c
o
ntrol of the SD memory
c
a
rd.
Figure 8. The
memory SD
card (2 G
O
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Prototypi
ng a
Dedi
cated P
hotovoltaic
S
ystem
Datalo
gger
(Bena
be
d Khadidja
)
493
Table 1: Re
cordin
g format
of a package
of
measu
r
e
s
for one day (size = 2
7
bytes)
Nbr b
y
t
e
s
Variables
Meanin
g
3
2
6
2
2
2
6
2
2
nDa
y
Ye
a
r
Qda
y
RhoMax
Ti
ntMax
TextM
a
x
Qnight
TintMin
TextMi
n
Number of
da
y
s
i
n
one
year = 1,
2, ..., 365 (o
r
366)
Y
e
a
r
= 00, 01, ...
, 99 correspond
t
o
2000 to
2099
Quantit
y of electr
icity
accumulated
in one da
y
Maximum efficiency in one da
y
Max
i
mum interna
l
temperature
Max
i
mum e
x
tern
al temperatu
r
e
Quantit
y of electr
icity
consumed a
t
night
Minimum internal temperatu
r
e
Minimum externa
l
temperatur
e
3. Results a
nd discussio
n
Unli
ke a
noth
e
r datal
ogg
er, also b
u
ilt in
our
la
bo
ratory, but base
d
on the mi
crocontrolle
r
PIC16F7
16 [
13], our p
r
oto
t
ype is ba
se
d
on the mi
cro
c
ontrolle
r PIC18F
452
0 which
ha
s several
enha
ncement
s:
1)
It has the
abi
lity to accept
a greate
r
nu
m
ber
of inp
u
t cha
nnel
s, a
nd it is
provided
with an intern
al ADC with h
i
gher a
c
q
u
isiti
on sp
eed a
n
d
resol
u
tion.
2)
The extern
al
memory is
based on a
hi
gh ca
pa
ci
ty SD card
of 2GB for daily
recording of variou
s pa
ram
e
ters.
3)
Our
prototyp
e uses
a p
o
w
er supply b
a
se
d on
dedi
cated I.C. fo
r porta
ble d
e
vice
s
(efficien
cy
up
to 9
6
%, and
quie
s
cent
cu
rre
nt of
44
A typic
a
l)
whereas in [13], the
regul
ated
p
o
we
r
sup
p
ly com
p
ri
se
s a cl
assi
c integrated
reg
u
lator
78L0
5
cha
r
a
c
teri
ze
d
with a quie
s
cent curre
n
t of 4 mA!
4. Conclusio
n
This
pap
er d
e
scrib
e
s the
desi
gn
and i
m
pleme
n
tatio
n
of a
n
a
u
to
matic
re
cordi
ng d
e
vice
(datalo
gge
r) to measure seve
ral i
m
porta
nt
ph
ysical
para
m
eters (inte
r
nal a
nd ex
ternal
temperature,
the current
and voltag
e
of the ba
tte
ry). This
prot
otype is
re
co
mmend
ed in
the
manag
eme
n
t and the m
o
nitoring
of a
n
ope
ration
al
sola
r po
we
r plant ba
se
d
on ph
otovol
taic
panel
s. The d
e
sig
n
wa
s focuse
d prin
cip
a
lly with powe
r
con
s
umptio
n
in mind, and a spe
c
ial
care
wa
s give
n
wh
en
cho
o
si
ng t
he
right
com
p
onent
s for thi
s
p
u
rp
ose
(st
ep-d
o
wn inte
grated
regul
a
t
or
with very l
o
w q
u
ie
scent
curre
n
t, micropo
wer
L
D
O
reg
u
lato
r, n
ano
Watt microcontroller, l
o
w
power
sen
s
o
r
s, and
a very
small
ratio ru
n-time/sta
ndb
y mode). Th
e
modula
r
con
c
eptio
n ap
plied
in the ha
rd
ware of thi
s
e
m
bedd
ed d
e
s
ign
ha
s be
e
n
also ap
plie
d in the d
e
velopme
n
t of the
dedi
cated
firmwa
re i
n
a
hi
gh level
lan
g
uage,
wh
ere
i
n
terrupts hav
e be
en
used f
o
r
each
sep
a
rate
task: an
alog
acq
u
isitio
n, key
board se
nsing, LCD disp
lay.
Referen
ces
[1]
Aking
bad
e KF
, Alimi IA, Oni
T
.
Design
of a
Data L
o
g
ger fo
r Biome
d
ica
l
Si
gna
ls.
Internati
ona
l Jour
na
l
of Electronics
and El
ectrical
Engi
neer
in
g (IJEEE)
. 2015; 3(
2): 149-1
52.
[2]
Holl
an
d E. Formula-SAE Wir
e
less
Data L
o
gger.
Jo
urn
a
l
of Und
e
rgra
du
ate Res
earch
at Minn
esot
a
State Univers
i
ty
. 2002: 3.
[3]
Srino
n
chat J. Improvem
ent of a dat
a lo
gg
er s
y
stem for ren
e
w
a
ble
ener
g
y
.
Asian Jour
na
l on En
er
g
y
and Env
i
ro
nme
n
t
. 2009; 10(
3): 142-1
48.
[4]
Akposi
onu S.
Desig
n
a
nd F
abric
ation
of A Lo
w
-
C
o
st D
a
ta Lo
gg
er for Solar En
erg
y
Parameters
.
Journ
a
l of Ener
gy T
e
chno
lo
gie
s
and Pol
i
cy
. 2012; 2(6): 1
2
-1
7.
[5]
W
aghmar
e MB, Chatu S.
T
e
mperatur
e an
d
Humidit
y
An
al
ysis us
in
g Dat
a
Log
ger of D
a
ta Acquis
i
tio
n
Sy
s
t
e
m
.
Inter
n
ation
a
l J
our
nal
of E
m
er
gin
g
T
e
chno
logy
a
n
d
Adv
ance
d
E
ngi
neer
in
g
. 20
12; 2(
1): 10
2-
106.
[6]
Beni RA, P
e
rang
in-a
ng
in H
P
, Pebri
y
a
n
ti
G. Implementa
t
ion of AT
Mega8 Microc
ontr
o
ller for
Dat
a
Log
ger
of Sol
a
r Irradiati
on.
Int
e
rnati
ona
l Jo
ur
nal
of App
l
i
ed
Mathe
m
atics
a
nd Mo
de
lin
g (I
JA2M)
. 201
5;
3(1): 1-8.
[7]
Dog
an I. D
e
sig
n
of
a microc
o
n
troll
e
r b
a
sed
multich
ann
el te
mperatur
e d
a
ta
log
ger
dev
ice
w
i
t
h
SD
ca
r
d
storage a
nd re
al time clock i
n
terface.
Electro
n
ics W
o
rld.
20
09: 26-3
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 488 – 494
494
[8]
Sarker S, Cha
k
rabort
y
M, Baner
jee A. Lo
w
C
o
st Embe
dde
d S
y
st
em/Andro
i
d Bas
e
d
Smart Hom
e
Au
to
ma
ti
on
Sy
ste
m
U
s
i
ng Wi
re
l
e
ss
Ne
tw
orkin
g
. Int
e
rnati
ona
l Jo
urna
l of El
e
c
tronics a
n
d
Co
mmun
icati
o
n Engi
ne
erin
g
. 201
4; 7(2): 175
-186.
[9]
Sethuma
d
h
a
va
n S. Smart M
e
tering
an
d
Ho
me Auto
m
a
tio
n
So
lutio
n
s for
Ne
xt
Deca
de
Using
Zig
b
e
e
T
e
chnolog
y.
S
S
RG Internati
ona
l Jo
urn
a
l
of Electro
n
ics
an
d C
o
mmu
n
icati
on E
n
g
i
n
eeri
ng (SS
R
G
-
IJECE)
. 2015; 2(6): 32-4
2
.
[10]
Marimuth
ul R, Dee
pak V, Gow
t
h
a
m S,
Ram PV. Remote Heart Ra
te Monitoring Sy
stem.
Internatio
na
l
Journ
a
l of Elec
tronics an
d Co
mmu
n
ic
ati
on E
ngi
neer
in
g Res
earch (IJECER
)
. 2013; 1(3): 4
7
-52.
[11]
Daiso
n
SS, V
i
noth KK, Sur
e
sh
KS. Hi
gh
Efficient Mod
u
le of B
oost
Conv
erter in
PV Modu
le.
Internatio
na
l Journ
a
l of Electr
ical
a
nd Co
mp
uter Engi
ne
erin
g (IJECE)
. 201
2; 2(6): 758-7
8
1
.
[12]
Red
d
y
BNK,
Venktram N,
Sir
ees
ha. An
Efficient Data
T
r
ansmission
b
y
usi
ng Mo
d
e
rn USB F
l
as
h.
Internatio
na
l Journ
a
l of Electr
ical
a
nd Co
mp
uter Engi
ne
erin
g (IJECE)
. 201
4; 4(5): 730-7
4
0
.
[13]
Naim H, Hassi
ni A, Bena
bad
j
i
N, Falil FZ,
Boua
di A. Rea
l
izat
io
n of an In
expe
nsive Em
bed
de
d Mini-
Datal
ogg
er for Measuri
ng a
n
d
Controll
in
g Ph
otovolta
ic S
y
st
em.
Journa
l of Solar En
ergy
Engi
neer
in
g
.
201
5; 137(
2): 5.
Evaluation Warning : The document was created with Spire.PDF for Python.