TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.6, Jun
e
201
4, pp. 4419 ~ 4
4
2
6
DOI: 10.115
9
1
/telkomni
ka.
v
12i6.547
7
4419
Re
cei
v
ed
De
cem
ber 2
2
, 2013; Re
vi
sed
Febr
uary 14,
2014; Accept
ed Feb
r
ua
ry
27, 2014
Photovoltaic Technology and Electricity Saving
Strategies for Fixed-Velocity-Measurin
g
System
ZhangLi Lan
*
1
, Jian Li
2
Schoo
l of infor
m
ation, Scie
nc
e & engi
ne
erin
g, Chon
gq
ing J
i
aoto
ng U
n
iver
sit
y
, Cho
n
g
q
in
g, 4000
74, Ch
i
na
Ph/F
ax: +
861
3
883
83
599
8/13
883
99
464
4
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: m1388
39
946
44@
163.com
1
,
lzl73
0
9
@
12
6.c
o
m
1
,
Jianl
i.confi
d
e
n
c
e@gma
il.com
2
A
b
st
r
a
ct
T
he pow
er s
u
pply
metho
d
s for fixed-v
e
loc
i
ty-me
a
suri
ng s
ystem (F
VMS)
base
d
o
n
p
h
o
t
ovolta
i
c
(PV) techno
lo
g
y
are
prop
ose
d
after a
nalys
i
s
and
co
mp
ari
s
on a
m
on
g th
e curre
nt meth
ods for F
V
MS
on
freew
ay. Accordin
g to the sun
s
hin
e
con
d
itio
n
in typica
l l
o
w
sunsh
i
ne
area
s, all compo
n
e
n
ts consist of PV
system
are
specially designed,
inc
l
ud
ing the related
m
a
xim
u
m power po
int track
(MP
PT) technology for
solar p
a
n
e
l a
n
d
the ch
arge-
d
i
schar
ge a
l
gor
i
t
hm for stora
g
e
battery i
n
th
e de
dicate
d co
ntroll
er. T
a
rget
ed
electricity savi
ng strategi
es for F
V
MS on freew
ay
are
put forw
ard.
Experi
m
ental
r
e
sults s
how
h
i
g
h
efficiency a
nd
stability of the ded
icat
e
d
cont
roller a
nd in pr
actical a
ppl
icat
ion, the spec
ia
lly desi
g
n
ed P
V
system
in th
is
pap
er ca
n pr
o
v
ide c
onti
n
u
o
u
s
electric
p
o
w
e
r supp
ly thr
oug
hout
a ye
ar i
n
an
efficient w
a
y,
and
the output voltag
e
an
d
freque
ncy are sta
b
le.
Ke
y
w
ords
:
photov
olta
ic techno
logy (PV)
, MPPT
, charge-
d
i
schar
ge alg
o
rith
m,
fixe
d-vel
o
city-mea
s
urin
g
system
(FVMS), electricity saving strategies
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The fixed-vel
o
city-me
a
suri
ng sy
stem (FVMS)
on freeway ca
n
effectively de
tect the
traveling vehi
cle
s
’ velocity
and se
nd fe
edba
ck
to the law enfo
r
cement and
monitori
ng center
timely and a
c
curately, so
as to
urg
e
d
r
i
v
ers to
co
ntrol their
sp
ee
d, con
s
e
que
n
t
ly decrea
s
e
the
accide
nt rate.
It is a premise to
ke
ep effe
ctive, everla
st
ing an
d sta
b
l
e
po
wer
su
pp
ly for functio
n
s’
reali
z
ation of
FVMS.
1) Analysi
s
of
the current p
o
we
r su
pply method
s for
FVMS
No
wad
a
ys, there a
r
e two
major mo
de
s fo
r FVMS’ power supply
–elect
r
ic
su
pply and
sola
r po
we
r.
Electri
c
su
ppl
y is the prim
ary mode.
While
, the mai
n
s voltage fl
uctuate
s
he
a
v
ily and
freque
ntly excee
d
s the re
que
sts of
equ
ipments
con
s
ist of FVMS,
that make
s n
o
t only electri
c
al
energy wa
ste
but immense
l
y shorte
n FVMS’ lifetime.
Espe
cially for the remote a
nd ina
c
cessib
le
core pa
rts
of freeway to electri
c
sup
p
l
y
, elec
tric
wi
re con
s
tru
c
ti
on, system
maintena
nce
and
repai
r n
eed
a
huge
expe
nse, moreover,
the ele
c
tr
i
c
al
energy lo
ss d
u
ring
po
we
r transmi
ssion
will
be great [1].
Solar p
o
we
r
sup
p
ly is to
build an i
nde
pend
ent PV system to
re
alize FVMS’
electri
c
power
sup
p
ly. Firstly, sola
r ene
rgy re
source i
s
inex
hau
stible an
d PV system
can b
e
ea
si
ly
establi
s
h
ed a
s
lon
g
a
s
the
sola
r illumi
na
nce
and
ge
og
raphi
cal
cond
itions a
r
e
suit
able. Se
con
d
l
y
,
the output of
PV system i
s
stable
DC which
ca
n me
e
t
all equip
m
e
n
ts’ requi
rem
ents fo
r suppl
ied
voltages an
d
frequen
cie
s
i
n
FVMS through DC-D
C and DC-A
C conversion. T
h
irdly, com
p
a
r
ed
with elect
r
ic
sup
p
ly, solar powe
r
su
ppl
y is more effective and th
e stable outp
u
t voltage and
freque
ncy
ca
n effectively prolon
g FVMS’
lifetime. Mo
reover, sele
ction of the inst
allation site
s
are
flexible, and
system
con
s
tructio
n
a
n
d
maintena
nce
need
le
ss co
st; additio
nall
y
, PV system
ha
s
a highe
r safet
y
level and lower
re
sou
r
ce occup
a
tion ra
te; and so on
[2].
2
)
Ba
ck
gr
o
und
With the gro
w
th of global
energy dem
and,
increa
si
ng co
nsumpti
on of non-re
newable
resou
r
ces
su
ch a
s
coal, o
il, natural ga
s, etc,
and
e
n
vironm
ental
pollution, exp
l
oitation of so
lar
energy beco
m
es mo
re a
n
d
more im
portant for our
h
u
man b
e
ing
s
. It is estimated that one
-d
ay
sola
r radi
atio
n rea
c
hin
g
on the earth can su
ppl
y en
ough en
ergy to the curre
ntly existing 6.5
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4419 – 4
426
4420
billion
popul
a
t
ions
at p
r
esent con
s
ump
t
ion rate
for
more
than
2
6
years [3]. Based
on
th
e
photoel
ectri
c
effect, PV technolo
g
y whi
c
h co
nverts
so
lar en
ergy into ele
c
trical e
nergy i
s
cl
ea
n,
safe, lo
ng-liv
ed, wi
dely a
pplicable, a
n
d
free
to
m
a
intena
nce.
There a
r
e
pl
enty of natu
r
al
resources
available; as one of the m
o
st impo
rtant
technologi
es to
utilize
solar energy, PV
techn
o
logy surely will hav
e enormou
s
p
o
tential econ
omic an
d so
ci
al value [4, 5].
Cho
ngqin
g
, l
o
cate
d b
e
si
d
e
the
no
rth a
nd
sout
h
cli
m
ate bo
und
ary
of o
u
r
co
untry, is the
intersectio
n
o
f
cold an
d wa
rm air, a
nd m
o
st of
a yea
r
there i
s
le
ss
sunli
ght and
more
rain
here.
Along
with Si
chu
an a
nd
G
u
izh
ou, Chon
gqing
belo
n
g
s
to the
5th-cla
ss’
re
gion
in ou
r
cou
n
try
whi
c
h h
a
s th
e lea
s
t sola
r radiatio
n in
a year. In th
ese
regi
on
s, annu
al su
nshine d
u
ratio
n
is
1000
~1
400 h
ours, and all
year’s
so
l
a
r radiation i
s
33
44~418
0 MJ/
m
2
which eq
uals to the h
eat
gene
rated
by
115
~1
40
kg
coal’
s
burnin
g
. Pre
s
ently
, it is ra
re
to
use in
dep
e
ndent PV
po
wer
gene
ration
sy
stem to
suppl
y FVMS on f
r
eeway, not
m
ention to
the f
o
rmul
ation
of
relevant
po
wer
sup
p
ly strate
gies; what’s
more, the
r
e a
r
e few releva
nt rese
arch a
r
ticle
s
publi
s
h
ed [6].
3) Re
se
arch i
n
this pap
er
Dep
end
ed o
n
the pra
c
tical appli
c
ation
in the free
way of Cho
ngqin
g
and
sun
s
hi
ne
con
d
ition
of typical l
o
w su
nshi
ne
are
a
s,
a d
edi
cated
indep
ende
nt PV
power ge
neratio
n syst
em
is d
e
si
gne
d a
nd d
e
velop
e
d
out, b
o
th the
involved
MPPT tech
nolo
g
y
for
sola
r
pa
nel a
nd
ch
arg
e
-
discha
rge al
g
o
rithm for sto
r
age b
a
ttery in the co
re controlle
r are con
d
u
c
ted the spe
c
ial stu
d
y
and d
e
si
gn i
n
this p
ape
r. Based
on the
analysi
s
of t
he st
ructu
r
e,
electri
c
p
o
we
r utilizatio
n a
nd
function
s of FVMS, targe
t
ed strate
gie
s
for sa
ving
electri
c
ity are propo
se
d
to achieve
all
function
s, an
d to get effective electri
c
ity ut
ilization a
n
d
a long se
rvic
e lifetime for the FVMS.
2.
Design o
f
PV Po
w
e
r G
e
neratio
n
Sy
s
t
em
This PV
po
wer g
ene
ratio
n
syste
m
i
s
de
veloped
out
a
c
cordi
ng to
th
e sun
s
hin
e
condition
in typical
lo
w
sun
s
hi
ne
area
s an
d it
co
nsi
s
ts
of
four
com
pon
ents-sol
a
r ce
ll pan
el,
storage
battery, controller an
d load
.
Figure 1. Photovoltaic System
1) Solar p
ane
l
Comp
ared
wi
th sin
g
le
crystalline
sili
co
n sola
r p
anel
s, poly
c
ry
stal
line a
nd
amo
r
pho
us
silicon
can effectively convert sola
r energy into electri
c
al
energy
under l
o
w sunshine
condition in
daytime; by
increa
sing
th
e sunlight
receivin
g a
r
e
a
, they ca
n
get the
sa
me ph
otoele
c
tri
c
conve
r
si
on q
uantity as si
n
g
le crystalline
silico
n
pan
el
s do. Polycrystalline a
nd a
m
orp
hou
s sili
con
panel
s
have
lower p
r
ice
s
a
n
d
could
be
mo
re
suitable fo
r l
o
w
su
nshine
area
s
su
ch
a
s
Cho
ngqin
g
.
2) Storag
e ba
ttery
Specific PV
stora
g
e
batte
ry should
be
the fi
rst optio
n in
practi
cal
co
nst
r
u
c
tion
s of PV
system.
Taki
ng into
a
c
cou
n
t the
daily e
l
ectri
c
al
po
wer
dema
nd
of the lo
ad, m
a
ximum de
pth
of
discha
rge,
nu
mber
of day
s for ind
epe
nd
ent func
tio
n
in
g, and
enviro
n
ment of th
e
installin
g
site,
etc, mainte
na
nce
-
fre
e
lea
d
-
aci
d
stora
g
e
battery shoul
d be the
be
st
choi
ce. In
order to
ke
ep t
h
e
balan
ce
of v
o
ltage
and
e
nergy
du
ring
batterie
s
’
ch
a
r
ging
a
nd
discha
rgin
g, fou
r
step
s m
u
st
be
taken in the
orde
r: First, con
n
e
c
t every two batte
ries in serie
s
. Secon
d
, para
llel all the se
ries
wire
s. Third, parallel all
batterie
s
’ po
sitive out
put wire
s togeth
e
r. Four, pa
rallel all batteries’
negative o
u
tp
ut wires to
get
her. After a
b
o
ve ope
ration
s, all batte
rie
s
ma
ke
up to
a battery p
a
ck
and have the
comm
on po
si
tive and nega
tive output wire.
3) Co
ntroll
er
Specific PV
controlle
r is
d
e
velope
d co
n
s
ide
r
ing
all p
a
rts’ p
r
a
c
tical requi
rem
ent
s of the
PV system. F
i
rst, the ph
oto
e
lectri
c
conve
r
sio
n
rate
will
rea
c
h to a
hig
her level th
ro
ugh the MPP
T
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Photovoltai
c
Tech
nolo
g
y a
nd Electri
c
ity
Saving
Strate
gies for Fi
xe
d
-
Velo
city… (Z
hang
Li Lan
)
4421
algorith
m
opti
m
ization
de
si
gn. Seco
nd,
by maki
n
g
co
rre
sp
ondi
ng p
l
ans d
u
ri
ng di
fferent ch
argi
n
g
perio
ds,
the
battery’s charging
efficien
cy and
se
rvic
e
life-time
co
ul
d be
si
gnifica
ntly improve
d
,
while
avoidin
g
overch
arg
e
.
Third, a
c
co
rding
to
the battery’s
volt
age cha
nge in
disch
a
rgi
n
g,
relevant
strat
egie
s
are m
ade o
u
t to a
v
oid ov
er-di
s
cha
r
ge
and
make
battery
kee
p
in b
e
tter
ac
tivity.
3.
Algorithms i
n
the Co
ntro
ller
1) MPPT algo
rithm optimization de
sign f
o
r sol
a
r p
anel
’s ch
argi
ng
MPPT algorit
hm is a
pplied
in sola
r pa
n
e
l’s
cha
r
ge t
o
improve
so
lar en
ergy
re
sou
r
ces’
utilization. The sola
r panel’
s
P-V curve is non
-linear;
there i
s
a maximum power point (MPP)
in
each P-V
curve as sho
w
e
d
in
Figu
re
2
[7, 8]. The
output voltag
e of the
sola
r p
anel
ca
n
be
cha
nge
d by
changi
ng
duty cycl
e of th
e
output
cu
rre
n
t, and the
n
m
a
ke
the
outp
u
t po
wer exp
o
rt
at its
MPP.
Figure 2. P-V Curve of Sol
a
r Panel
s
There ca
n be
the equation:
()
0
PV
I
I
V
VI
VV
V
V
[
9
]
Figure 3. Flow of Succe
ssi
ve Approx
ima
t
ion and Di
stu
r
ban
ce
Jum
p
Algorithm
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4419 – 4
426
4422
Whe
n
the output powe
r
re
ach
e
s to the maximu
m poi
nt. The flow of MPPT algorithm is
showed in Figure 3. After system initiali
zation,
the PV cell’s output power
can
be figured out by
voltage a
nd
curre
n
t samp
ling; on
ba
si
s of th
e
st
ab
le outp
u
t voltage, firstly, generate a
tin
y
cha
nge
of th
e charging
current d
u
ty cycle
△△
D to
g
e
t a tiny o
u
tput current v
a
riation
I, then
check the PV cell’s output power variati
on
△△
P (
P
=P
m
-P
n
, P
m
is
PV cell’s out
put power at this
moment, P
n
a moment bef
ore
)
, depe
nd
on the above
resu
lt to judg
e the dire
ctio
n var of
△
P and
deci
de the n
e
xt directio
n
var of the cha
r
gin
g
cu
rre
nt duty cycle a
c
cordin
g to the pre
-
set
algorith
m
and
installing
sp
ace e
n
viron
m
ent
al facto
r
s;
if the power
variation
△
P is less than th
e
pre
-
set tiny value
, then di
sturb
the
cha
r
ging
cu
rrent
dut
y cycle to
two greate
r
value
s
D
1
a
nd
–
D
1
an
d
wo
rk out the
corresp
ondi
ng
p
o
we
r valu
es
P
1
and P
2
; t
hen
com
p
a
r
e
P,P
1
and P
2
, i
f
P=
Max(P,P
1
,P
2
), P is
the
MPP, els
e
mak
e
the Max(P,P
1
,P
2
) be t
he initial
outp
u
t po
wer P of
the
sola
r pan
el, and step b
a
ck
to the start.
2) Storag
e ba
ttery’s ch
argi
ng algo
rithm
Acco
rdi
ng to
the
storage
battery’s
ch
argi
n
g
cu
rre
nt cu
rve [1
0
], multiple m
e
thod
s
inclu
d
ing pul
se, con
s
tant current and tri
ckl
e are
u
s
e
d
in the chargi
ng pro
c
e
s
s [11, 12]. Figure
4
is the flo
w
ch
ar of b
a
ttery’s cha
r
gin
g
al
g
o
rithm.
At the
begin
n
ing
of PV cell’s
ch
arging, the o
u
tp
ut
curre
n
t is sm
all and by using pulse mo
de and MPP
T
algorithm,
PV cell’s out
put voltage ca
n
kee
p
in a
larger val
ue, which
will g
r
e
a
t
ly stim
ulates storage
battery’s
activity and im
prove
its
cha
r
gin
g
efficiency, an
d PV cells’
ch
arging p
o
we
r
can lie
s clo
s
e
to the MPP of the PV pan
el.
With the cha
r
ging
pro
c
e
s
s advan
cin
g
, values of ba
ttery’s voltag
e (V
b
) and P
V
cells’
cha
r
ging
cur
r
e
n
t
(I
s
) are gra
dually g
e
tting larg
er.
(V
1
, V
2
, V
3
an
d I
3
are the
p
r
eset pa
rame
ters) If V
b
<
V
1
,
still use MPPT cha
r
gi
ng m
e
thod; Else
compa
r
e V
b
an
d V
2
, if V
b
< V
2
, c
o
mpare I
s
and I
3
; if I
s
< I
3
,
still u
s
e
MPPT charging
m
e
thod, el
se
u
s
e
co
nsta
nt current
cha
r
gi
ng m
ode;
Du
ring t
h
is pe
ri
od,
Storage
batte
ry’s voltage i
s
lo
wer th
an
PV cell’s
a
n
d
PV cell’s o
u
tput voltage a
nd current a
r
e
stable, in p
r
at
ical, there co
uld be the m
a
ximum
amo
unt of cha
r
ge
and the hig
h
e
st sol
a
r e
n
e
r
gy
utilization. If
V
b
>=
V
2
, co
mpare V
b
an
d V
3
, if V
b
> V
3
, c
l
os
e th
e cha
r
g
i
ng
pr
oc
ess
,
e
l
s
e
u
s
e
tr
ic
k
l
e
cha
r
gin
g
mod
e
- it is the chargi
ng way whe
n
st
orage
battery is ab
out to saturat
e
and by usi
ng
small
current
’s pul
se charging to en
su
re battery’
s
real satu
ratio
n
so a
s
to p
r
olon
g battery’s
serv
i
c
e t
i
me.
Figure 4. Flow of Storage
Battery’s Ch
a
r
ging
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Photovoltai
c
Tech
nolo
g
y a
nd Electri
c
ity
Saving
Strate
gies for Fi
xe
d
-
Velo
city… (Z
hang
Li Lan
)
4423
3) Storag
e ba
ttery’s discha
rging al
go
rithm
Targ
eted at stora
ge batte
ry’s disch
a
rgi
ng, there mu
st be a plan
ned way an
d
operate
step by
step
to kee
p
the
b
a
ttery in go
o
d
functi
o
n
ing
state, while
to av
oid ove
r
-disch
arge. T
he
flow ch
ar of
battery’s di
schargi
ng is
sh
owe
d
in
Figu
re 5. As sho
w
n in the fig
u
re, battery’s
discha
rgin
g voltage is p
r
o
c
essed
with a hystere
s
i
s
to prevent the
controlle
r freq
uently swit
chi
ng
its statu
s
bet
wee
n
cha
r
ge
and
disch
a
rge in
a
sho
r
t time du
ring
the di
scha
rgin
g process to
the
high-po
wer lo
ad, whi
c
h cou
l
d prote
c
t the controlle
r, battery and load.
Figure 5. Flow of Storage
Battery Disch
a
rgin
g
4.
Electricit
y
Sav
i
ng Strate
gies for FVM
S
on Free
w
a
y
As the
loa
d
of the d
edi
ca
ted PV sy
ste
m
in
thi
s
pa
per,
elect
r
ical
dema
n
d
s
of
FVMS’
equipm
ents d
i
rectly dete
r
m
i
ne the ele
c
tri
c
ity saving st
rategie
s
’ form
ulation.
The follo
win
g
Ta
ble 1
shows th
e
ch
ief equi
pmen
ts, po
we
r
su
pply an
d fu
nction
al
analysi
s
of a FVMS on Ch
ongqi
ng free
way.
Table 1. Chi
e
f Equipments,
Power Sup
p
l
y
and Functio
nal Analysi
s
of FVMS on Free
way
Equipment’s
name
Voltage Freque
nc
y
Power
Function
Snap camera
DC 12V
Stable
20W
Capture t
he trav
elling vehic
l
es’
in
formation
Smart strobe
AC
220V
50Hz
200W (the mom
e
nt
smart strobe is lighting)
Impr
ove illumina
nce for
t
he snap camer
a
w
hen
vehicle’s passing
the FVMS
Net
w
ork camer
a
DC 24V
Stable
20W
Shoot the road
surface and synchronize the
information to th
e traffic monitorin
g
points
LED supplement
light
DC 5V
Stable
20W
Auto open to supplement light in
tensity
fo
r the
snap camera dur
ing insuffi
cient lig
h
t conditions
Panoramic
camer
a
DC 12V
Stable
20W
Shoot the
w
hole
road surface
Speed
measuring rada
r
DC 5V
Stable
2.5W
Measure t
he t
r
avelling vehicles’
speed
Microw
ave radar
tester
DC 5V
Stable
30W
Send out the microw
ave signals to vehicles
installed speed measuring rada
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4419 – 4
426
4424
Acco
rdi
ng to
the an
alysi
s
of the
st
ructu
r
e, fun
c
tions’
reali
z
a
t
ion and
el
ectri
c
al
con
s
um
ption
of FVMS’ equipme
n
ts, the followi
ng
electri
c
ity sa
ving strate
gi
es a
r
e p
r
op
o
s
ed
based on the
dedi
cated PV
system.
1) Adoptio
n o
f
DC interfa
c
e
s
Operating vo
ltages of the
main equi
p
m
ent
s in FV
MS are 5V,
12V and 2
4
V
, direct
adoptio
n of
DC inte
rfa
c
e
s
could, o
n
th
e o
ne h
and,
avoi
d the
en
ergy l
o
ss
cau
s
e
d
b
y
conve
r
sion
s’
com
s
um
ption
of DC to AC and to DC
a
gain, on t
he
other h
and, i
m
prove
sy
ste
m
stability. If
th
e
conve
r
si
on ef
ficien
cy of DC to AC is 9
0
%,
and AC
to DC i
s
90
% in FVMS,
the total power
utilization is o
n
ly 80%. In
fac
t, the conversion efficie
n
cy between DC and AC is
usu
a
lly less t
han
90% in
practi
cal
appli
c
atio
n, plu
s
the
p
o
w
er
con
s
um
p
t
ion of th
e
co
nverting
app
a
r
atuses a
nd t
h
e
influence of the AC frequency,
the cost performance
of the whole
FVMS will inevitably plummet.
2) Flexible lig
ht suppl
emen
ting
Switche
s
’
de
sign
of
sma
r
t strobe
s a
n
d
LE
D
su
pple
m
ent light
s d
epen
ds on
th
e a
c
tual
light intensity
.
By detecting the output
current
an
d
charging vol
t
age of the sola
r pan
el, th
e
c
ontroller could judge the light intens
ity and time,
s
o
as
to
use the
flexible and variable methods
to make
sna
p
cam
e
ra
s, p
anorami
c
ca
mera
s an
d n
e
twork
came
ras work at th
e stand
ard light
intensity. Fig
u
re 6 i
s
the algorith
m
flow
ch
ar for fle
x
ible light su
ppleme
n
ting. V
6
and I
4
are the
pre
s
et pa
ram
e
ters, if the
output
voltag
e of the sol
a
r pan
el V
s
> V
6
, it represents the FV
MS
doe
sn’t ne
ed
LED suppl
em
ent lights
ope
rate; and if th
e ch
argi
ng
cu
rre
nt I
s
> I
4
while the batte
ry
is in chargin
g
(V
b
< V
max
, V
ma
x
is the maximum vol
t
age of the storage
battery) or V
b
>=
V
ma
x
(clo
se th
e ch
argin
g
process at this mo
ment, I
s
= 0A), it indicate
s light intensity
in this peri
o
d is
very stron
g
a
nd the sma
r
t strob
e
s a
r
e n
o
t neede
d to functio
n
.
Figure 6. Flow of Flexible Light Supple
m
enting
3) Adoptio
n o
f
sleep mod
e
In the sy
ste
m
non
-op
e
rating situ
ation
s
su
ch
as
at
night an
d no
vehicle
s
tra
v
eling on
freeway, etc for FV
MS, clo
s
e th
e m
a
in
equipm
ents i
n
clu
d
ing
sna
p
came
ra
s, n
e
twork came
ras,
sma
r
t strobe
s an
d LE
D
supplem
ent lig
hts; and
en
sure ba
sic eq
uipment
s su
ch
as
micro
w
ave
rada
r teste
r
s
and opti
c
al transceive
r
s o
n
line.
4) The first p
a
ssing
car
ca
pturing
Whe
n
facin
g
nume
r
ou
s ve
hicle
s
pa
ssin
g the FVMS and the inte
rval time between the
adja
c
ent two
cars i
s
very short in pe
ak t
r
affic,
it only need
s me
asu
r
e an
d re
co
rd
the informati
on
of the first ca
r pa
ssi
ng through the FV
MS and wh
ether the follo
wing vehi
cle
s
exceed the l
i
mit
will be able to judge. The
next c
apturing action
will be executed
the moment the duration
of
the
above situ
ation rea
c
h
e
s to
the pre-set time t.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Photovoltai
c
Tech
nolo
g
y a
nd Electri
c
ity
Saving
Strate
gies for Fi
xe
d
-
Velo
city… (Z
hang
Li Lan
)
4425
5.
Analy
s
is of the Ac
tual O
p
eratin
g Da
ta and Con
c
lusions
Actual o
p
e
r
a
t
ing data
of
the PV sy
stem in th
e F
V
MS on
Ch
ongqi
ng free
way a
r
e
obtaine
d by
usin
g the
wi
reless
data t
r
ansmi
ssio
n
e
quipme
n
t-DT
U a
s
the
dat
a send
er an
d
the
local
devel
op
ed PC
softwa
r
e
as the
dat
a receive
r
.
T
he follo
win
g
grap
hs a
r
e
pl
otted a
c
cordi
ng to
the analysi
s
o
f
the gained d
a
ta.
Figure 7. Cha
r
ging a
nd Di
scha
rgin
g of the PV System
1
Figure 8. Cha
r
ging a
nd Di
scha
rgin
g of the PV System
2
Components
of the PV sy
stem in this
FVMS are 8
pol
ycry
stalline silic
on solar panels
who
s
e
rated
power i
s
196.
5W, 6 mainte
nan
ce-f
ree
le
ad-a
c
id
batteries who
s
e ca
pacity is 1
0
0
A
H
and n
o
rm
al voltage 1
2
V a
nd 8 d
edi
cate
d PV controll
ers. Eve
r
y co
ntrolle
r match
e
s
with on
e solar
panel, all
co
ntrolle
rs
co
n
nect
with the
battery p
a
ck, seven
of th
em only
cont
rol the
chargi
ng
pro
c
e
ss
and t
he re
maini
ng
one
con
n
e
c
te
d with
sola
r p
anel, battery
pack a
nd the
FVMS cont
rol
s
both ch
argi
n
g
and disch
a
rgin
g pro
c
e
ss. Netw
o
r
k came
ra
s, panorami
c
ca
mera
s, velocity
measuri
ng ra
dars an
d mi
cro
w
ave
rad
a
r teste
r
s sh
ould be i
n
work
duri
ng th
e system
no
n-
operating situ
ations; then turn on
e grou
p of s
nap ca
mera an
d sm
art stro
be on
when there are
vehicle
s
p
a
ssing throug
h the FVMS in
the
single
la
n
e
and
turn two group
s o
n
while ve
hicl
e
s
a
r
e
passin
g
in
th
e do
uble
lan
e
; LED suppl
ement li
ghts
will b
e
tu
rne
d
on
at ni
ght.
The
analy
s
is
o
f
grap
h 7
and
8 illust
rate
s the spe
c
ially
desi
gne
d
PV system
ha
s h
i
gher phot
o
e
l
e
ctri
c conve
r
sion
efficien
cy an
d po
wer utili
zation; the i
m
prove
d
MP
PT algo
rithm
for PV pan
els a
nd
cha
r
ge-
-5
0
5
10
15
20
25
30
35
201
3-9-2
4 12
:41
2013
-9-24
13:5
3
2013-
9-24
15:05
20
13-9
-24 1
6:17
201
3-9-2
4 17
:29
2013
-9-24
18:4
1
vol
tage
of t
he so
lar p
anel
vol
tage
of t
he st
orage
batt
ery
the
char
ging
curr
ent
the
disc
harg
ing c
urren
t
-1
00
0
10
0
20
0
30
0
40
0
50
0
60
0
20
13
-
9
-
2
4
1
2
:
4
1
2
01
3-
9-
24
1
3:
53
2
0
1
3
-
9
-
2
4
1
5
:
0
5
20
13
-9
-2
4
16
:1
7
2
0
1
3
-
9
-
2
4
1
7
:
2
9
2
01
3-
9-
24
1
8:
41
th
e
ch
ar
gi
ng
p
owe
r
of
t
he
so
la
r
pa
ne
ls
th
e
po
we
r
of
t
he
FV
MS
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4419 – 4
426
4426
discha
rge arit
hmetic
for sto
r
age battery can
b
e
suffi
ci
ently reali
z
ed
in the cont
ro
ller. In additio
n
,
this FVMS ha
s a strong
sta
b
ility and func
tions well in a
c
tual ap
plication.
Ackn
o
w
l
e
dg
ements
This p
ape
r h
a
s be
en
sup
ported
by the proj
ect of rese
arch a
nd
developm
ent
of sola
r
power
su
ppl
y techn
o
logy
and
en
gine
ering
de
mon
s
tration,
an
d
the p
r
oj
ect
of re
se
arch
and
appli
c
ation
d
e
mon
s
tratio
n
of imp
oun
dment
and
su
staine
d re
lease o
n
freeway (Yu
n
nan
transpo
rtation
and tech
nolo
g
y committee
2011(LH) 15
-b).
Referen
ces
[1]
Z
h
iga
ng Sh
i, Jianj
un Z
hu. Des
i
gn stud
y
of sol
a
r po
w
e
r sup
p
l
y
o
n
monitor
i
n
g
camera o
n
free
w
a
y
.
No
rth
transportati
on
.
200
6; 11: 67-7
0
.
[2]
D Ganesh, S
Moorthi, H sud
heer. A volta
g
e
controll
er in P
hoto-Vo
ltaic S
ystem
w
i
t
h
Batter
y
Stor
age for
Stand-Al
on
e Applic
atio
ns.
Internati
ona
l Jo
urnal of P
o
w
e
r Electronics
and
Drive Syste
m
.
201
2; 2(1): 9
-
18.
[3]
Lig
u
i LI, Guan
gha
o Lu,
Xia
o
n
iu Ya
ng, En
l
e
Z
hou. Progre
ss in pol
ym
er solar ce
ll.
Chi
nese Sci
enc
e
Bull
etin.
20
07; 52 (2): 145-
15
8.
[4]
Huimi
ng Z
h
an
g, Lia
n
sh
ui
Li,
Deq
un Z
h
ou,
Peng
Z
hou. P
o
litica
l
co
nn
ections, g
o
ver
n
m
ent su
bsid
ie
s
and firm financ
ial perform
anc
e: Evidenc
e from rene
w
a
bl
e e
nerg
y
ma
nufac
turing in C
h
i
na.
Renew
ab
l
e
Energy.
20
14; 63:
330-
33
6.
[5]
T
a
sk
force of ‘researc
h
of sol
a
r photov
olta
ic
i
ndustr
y dev
el
opme
n
t strateg
y
’ of e
l
ectron
ic
science a
n
d
techno
lo
g
y
c
o
mmittee of Ministr
y
of infor
m
ation
i
n
d
u
stry. Res
earch r
eport of sol
a
r
photov
oltai
c
i
n
du
stry
de
ve
lop
m
e
n
t.
Chi
nes
e integr
ated cir
c
uit
. 2008; 1
0
-
24.
[6]
Hao Z
h
o
u
, Bao
gan
g Yan
g
, Bi
ng
ya
n Ch
en
g. Anal
ys
is
of characteristics of clim
ate ch
an
ge
over last 4
6
ye
ars in C
hon
g
q
in
g.
Chin
ese agric
ultura
l
me
teorol
ogy.
20
0
8
; 29(1): 23-2
7
.
[7]
Qiang F
u
, Na
n T
ong. A Strateg
y
Res
earc
h
MPPT
T
e
ch
niq
ue in P
hot
ovolta
ic Po
w
e
r
Generatio
n
Sy
s
t
e
m
.
T
E
LK
OMNIKA Indon
esia
n Journ
a
l o
f
Electrical Eng
i
ne
erin
g.
2013
; 11(12): 76
27-
763
3.
[8]
Yuho
ng Z
h
ao,
Xu
ech
e
n
g
Z
h
ao, Yun
h
u
i
Z
h
ao. MPPT
for
Photovo
l
taic S
y
stem Us
ing
Multi-ob
jectiv
e
Improved Particle S
w
arm O
p
timization A
l
gorithm.
T
E
LK
OMNIKA Indo
nesi
an J
our
nal
of El
ectric
a
l
Engi
neer
in
g.
2014; 12(
1): 261
-268.
[9]
Lib
o
W
u
, Z
h
e
ngmi
ng Z
h
ao,
Jia
n
zhe
n
g
Li
u. Intell
ig
ent c
ontrol
l
er for
p
hotovo
l
taic
li
g
h
ting
s
y
stem.
Journ
a
l of T
s
in
ghu
a Univ
ersit
y
. 2003; 43(
9): 119
5-11
98.
[10]
Z
heng
Z
hu, C
hon
g
y
a
ng Li
u,
Da
n Liu,
J
i
n
w
e
i
Sun.
SOC
Estimatio
n
of LiF
e
PO4
Batt
er
y Bas
e
d
o
n
Improved
Ah I
n
tegra
l
Meth
o
d
.
T
E
LKOMNIKA Indo
nesi
a
n
Journ
a
l
of
El
ectrical E
n
g
i
ne
erin
g.
20
13
;
11(1
2
): 705
8-7
064.
[11]
W
e
imin Z
h
a
n
g
,
Xia
o
w
u
Li, T
i
ng Lei. Sola
r cell char
ge
control
l
er for l
ead ac
id b
a
tter
y
.
Power
T
e
chno
logy
. 2
004; 28(
1): 43-
46.
[12]
Shub
o Qiu,
Xi
ngg
ua
ng Qi. D
e
sig
n
an
d re
ali
z
ation
of
the a
u
tomatic ch
arg
e
-disc
harg
e
co
ntroll
er of th
e
storage b
a
tter
y
.
Automati
on a
nd instru
menta
t
ion
. 200
1.
[13]
Xi
np
ing Y
an, Hui Zha
ng, Ch
aozh
o
n
g
Wu. Rese
arch a
n
d
devel
opm
ent of
Intellig
ent Transp
o
rtatio
n
S
y
stems.
Proc
eed
ings-
11th I
n
ternati
o
n
a
l S
y
mp
osi
u
m
on
Distribut
ed C
o
mp
utin
g an
d A
pplic
atio
ns to
Busin
e
ss, Engi
neer
ing a
nd Sc
ienc
e
. 201
2; 321-3
27.
[14]
Xi
anz
hen
g F
e
ng,
Xunm
in
g
Li. Des
i
gn
of intel
lig
ent so
l
a
r char
gin
g
ci
rcuit.
Journ
a
l
of South
east
Univers
i
ty (nat
ural sci
ence e
d
i
tion).
20
08;
38
: 194-19
8.
[15]
Bigazz
i
, Ale
x
a
nder Y, Sir
i
, Hele
ne, Berti
n
i, Ro
b
e
rt L. Effects of tem
pora
l
data
ag
greg
ation
o
n
performa
nce
measur
es an
d
other i
n
tel
lig
ent transp
o
rta
t
ion s
y
stems
app
licati
ons.
T
r
ansportati
o
n
Research Rec
o
rd.
201
0; 96-1
06.
Evaluation Warning : The document was created with Spire.PDF for Python.