Indonesi
an
Journa
l
of El
ect
ri
cal Engineer
ing
an
d
Comp
ut
er
Scie
nce
Vo
l.
9,
No.
2,
Februa
ry 20
18,
pp.
502
~
511
IS
S
N: 25
02
-
4752, DO
I: 10
.11
591/ijeecs
.v9.i
2.pp
502
-
511
502
Journ
al h
om
e
page
:
http:
//
ia
es
core.c
om/j
ourn
als/i
ndex.
ph
p/ij
eecs
Growth
-
site Qual
ity Ass
essment
of Nyp
a fru
tica
ns
usin
g
Unmann
ed Aeri
al Vehi
cles Imag
es: A c
ase stu
dy in
Kubu
Ra
ya
Regen
cy, West K
alimant
an
Provin
ce
Ad
el
ia
Ju
li
K
ardik
a
1
, I Ne
n
gah
S
urati
Jaya
2
, N
ini
ng Pu
spa
nin
gs
ih
3
,
F
airus
Mulia
4
1Bogor
Agric
ul
t
ura
l
Univ
ersity
,
Campus
IPB Dramaga, Bogor, I
ndonesia
16680
2,
3Depa
rtmen
t
o
f
Forest
Man
agem
ent
,
Fa
cul
t
y
of
Forestr
y
,
Bogor
Agric
ul
tura
l
Un
ive
rsit
y
,
Campus
IPB Dramaga,
Bogor,
Indone
sia
16680
4Arte
ri
Supad
io S
tre
et,
Vil
la Co
m
ple
x
Ceria Les
ta
ri
No.
1
,
Pont
i
ana
k,
W
est
Ka
lim
ant
an
Art
ic
le
In
f
o
ABSTR
A
CT
Art
ic
le
history:
Re
cei
ved
A
ug
18
, 201
7
Re
vised
Oct
2
7
, 2
01
7
Accepte
d
Dec
30
, 201
7
The
growth
-
site
qual
ity
is
one
of
the
essenti
al
inf
orm
at
ion
nee
ded
to
support
sus
ta
ina
bl
e
for
est
m
ana
gement
p
art
i
cul
ar
l
y
in
for
estr
y
pl
anni
ng.
Thi
s
pap
er
desc
ribe
s
the
d
eve
lopment
of
a
site
-
qualit
y
class
of
Ny
p
a
ve
get
a
ti
on
b
y
conside
ring
th
e
biol
ogical
and
p
h
y
sic
al
fa
ct
ors.
The
m
ai
n
obje
c
t
ive
of
thi
s
stud
y
is
to
develop
a
discri
m
inant
m
odel
and
to
find
out
m
aj
or
fac
tors
that
m
a
y
be
used
to
pre
dic
t
the
qua
li
t
y
of
N
y
pa
gr
owth
-
site
s.
The
m
odel
was
deve
lop
ed
using
var
ia
bl
es
ei
th
er
m
ea
sured
on
UA
V
i
m
age
s
or
from
fie
ld
m
ea
surem
ent
,
n
amel
y
soil
te
xtu
re
(X1),
wa
te
r
s
al
init
y
(X2),
w
ater
pH
(X3),
cro
wn
cl
osure
(
X4)
and
stand
d
ensity
(N)
m
ea
s
ure
d
on
th
e
UA
V
image
(X5).
The
stud
y
foun
d
tha
t
the
sit
e
qual
ity
of
N
y
p
a
coul
d
be
indi
c
at
ed
b
y
th
e
var
iation
of
it
s
biomass
cont
e
nt.
Th
en,
it
wa
s
conc
lude
d
that
the
m
a
jor
fac
tors
that
aff
e
ct
the
site
qua
lit
y
ar
e
the
soil
t
ext
ure
(X1),
wa
te
r
sali
ni
t
y
(X2),
and
wat
er pH (X3)
with
78
.
3%
of
over
al
l
a
cc
ura
c
y
.
Ke
yw
or
d
s
:
Discrim
inant A
naly
sis
Grow
t
h
-
Sit
equal
it
y
Nypa
Un
m
ann
e
d Aer
ia
l
Veh
ic
le
s
(
U
AV
)
Copyright
©
201
8
Instit
ut
e
o
f Ad
vanc
ed
Engi
n
ee
r
ing
and
S
cienc
e
.
Al
l
rights re
serv
ed
.
Corres
pond
in
g
Aut
h
or
:
Ad
el
ia
J
uli Ka
r
dik
a
Bogor A
gr
ic
ultur
al
U
niv
er
sit
y
,
Cam
pu
s
IP
B
D
ram
agaBog
or,
Ind
on
esi
a
1668
0
Em
a
il
:
ins
-
j
ay
a@ap
ps
.i
pb.ac.i
d
1.
INTROD
U
CTION
Nypa
is
a
fam
i
ly
of
palm
that
com
m
on
ly
gr
ow
s
i
n
the
m
a
ngr
ov
e
ec
os
yst
e
m
aff
ect
ed
by
ti
dal
of
sea
water [1]. I
t ha
d
bee
n
re
porte
d
that I
ndonesi
a h
as the w
i
des
t
Nypa
palm
ar
ea in the wor
ld
o
f
a
bout 700
000 h
a
[2
]
.
Its
distri
buti
on
c
overs
the
re
gion
of
S
um
at
ra,
Kalima
ntan,
Java
,
S
ulawesi,
Ma
lu
ku,
an
d
Ir
ia
n
J
ay
a.
In
Be
ngkalis,
Ri
au
Pro
vin
ce
,
pe
op
le
had
bee
n
sta
rted
to
util
iz
e
the
po
te
ntial
of
Ny
pa
as
a
so
urce
of
na
tural
antioxi
dan
ts
as
w
el
l as
for bio
et
hanol [3]
w
it
hin
26
ha ou
t
of
100 ha c
once
ssion area
[4].
Fr
om
the
oth
er
eco
no
m
ic
per
s
pecti
ves
,
Nypa
is
on
e
of
the
f
or
e
st
resou
rces
that
m
ay
giv
e
a
prom
isi
ng
eco
no
m
ic
value,
bu
t
it
s
pote
nti
al
is
sti
ll
le
ss
util
iz
ed
an
d
ev
en
a
ba
ndoned
.
I
n
S
outh
Kali
m
antan
Pr
ovi
nce,
the
Nypa
f
ru
it
was
util
iz
ed
as
m
a
in
ingredie
nts
of
dr
ie
d
-
s
weets,
wet
-
ca
nd
y
s
weets,
flo
urs
and
as
a
m
edici
nal
plan
t
[5
-
7].
Wh
il
e
in
G
resik.
East
Java
P
r
ov
i
nce
,
pe
op
le
util
iz
e
the
Ny
pa
as
a
m
ixed
in
gr
e
di
ent
of
syru
p
for
m
aki
ng
j
am
[8
]
.
In
Ba
nten
an
d
West
Java
Pr
ovin
ces,
people
are
us
ed
to
util
iz
ing
the
le
aves of
Nypa
as
raw
m
at
erial
s
for
m
aking
m
edium
den
sit
y
fiberbo
a
r
d
[
9]
.
In
the
South
Su
la
we
si,
pe
ople
ta
pp
i
ng
the
“nira
(p
al
m
wine)
”
of
Nypa
for
pro
duci
ng
tra
di
ti
on
al
dri
nks
a
nd
util
iz
e
their
le
aves
for
tr
aditi
on
al
r
oof
[10].
Seve
ral
stud
ie
s
sh
ow
that
Nyp
a
in
Ri
au
and
Ce
ntral
Java
w
ere
us
e
d
as
ra
w
m
a
te
rial
fo
r
bio
et
ha
nol
[4,
11
-
12
]
,
wh
il
e
Nypa
in
East
Kali
m
ant
an
is
us
e
d
as
a
foo
d
re
source
[
13
]
.
All
the
a
bove
s
how
t
hat
Nypa
m
ay
pro
vid
e
a
po
te
ntial
econom
ic
value
and
need
to b
e
util
iz
ed
opti
m
a
ll
y.
The
la
ck
of
pu
blic
knowle
dg
e
about
the potenti
al
,
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng
&
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Gro
wt
h
-
sit
e
Q
ua
li
ty
Asses
sm
ent o
f N
y
pa fru
ti
can
s
us
in
g U
nma
nn
e
d Aeri
al
Veh
ic
le
s
…
(
Adeli
a
J
uli Kar
di
ka
)
503
distrib
ution,
sta
nd
qu
al
it
y
and
util
iz
at
ion
as
well
as
and
th
e
processin
g
of
Nypa,
m
ay
t
hr
eat
the
exist
ence
of
Nypa, w
het
he
r m
arg
inali
zed,
aband
on
e
d
a
nd
ev
e
n
c
ons
ider
ed
as
a c
onfou
nd
i
ng p
la
nt.
The
sam
pling
error
a
nd/o
r
th
e
sam
pling
intensit
y
of
te
rr
es
tria
l
fo
re
st
in
ve
ntory
are
al
w
ay
s
facin
g
by
cost,
ti
m
e,
and
hu
m
an
res
our
ces
pro
blem
s
par
ti
cula
rly
durin
g
m
easur
em
ents
an
d
obse
r
vations
[
14]
.
I
n
th
e
con
te
xt
of
determ
ining
the
grow
t
h
-
sit
e
qual
it
y
or
sta
nd
pr
oductivit
y,
fiel
d
m
easur
em
ent
and
obser
vatio
n
is
a
cru
ci
al
act
ivit
y
in
fo
rest
ry
plann
i
ng.
Sp
at
ia
l
inf
or
m
at
ion
ab
ou
t
sit
e
qu
al
it
y,
su
ch
as d
ist
ribu
ti
on, p
erim
eter
an
d
area
are
r
e
quir
ed
in
s
patia
l
plann
i
ng,
sp
eci
e
s
m
at
ching
,
a
nd
yi
el
d
regulat
ion
s
.
I
nfor
m
at
i
on
on
the
sit
e
qu
al
it
y
is
i
m
po
rtant
in
determ
ining
the
su
cce
ss
le
ve
l
of
a
plantin
g
[15].
In
ge
neral
,
the
bette
r
th
e
grow
t
h
-
sit
e
qual
it
y,
the
hi
gh
e
r
the
pro
du
ct
ivit
y.
T
he
pre
viou
s
re
search
sta
te
s
that
the
s
ucces
s
le
vel
of
a
plant
gro
wth
c
ould
be
m
easur
ed
b
y t
he
f
act
ors
of gr
owth
-
sit
e [
16
-
17].
The
gro
wth
-
sit
e
qu
al
it
y
sign
if
ic
antly
aff
ect
s
the
qu
al
it
y
of
the
sta
nd
or
ve
getat
ion
as
indi
cat
ed
by
it
s
tim
ber
or
bi
oma
ss
stoc
k.
In
f
or
est
r
y
sect
or,
the
pro
blem
s
al
ways
arise
at
the
be
ginnin
g
of
f
or
est
plan
ni
ng
or
forest
m
anag
e
m
ent,
pa
rtic
ula
rly
w
hen
the
re
is
no
i
nfor
m
at
ion
re
gardin
g
t
he
sit
e
pro
du
ct
ivit
y.
Determ
i
nation
of
sit
e
qual
it
y
base
d
on
pro
du
ct
ivit
y
becom
es
diff
ic
ult
to
do,
par
ti
cul
ar
ly
w
hen
the
of
s
upportin
g
data
require
d
a
re
not
a
vaila
ble.
Ther
e
f
or
e,
in
this
stu
dy,
t
he
aut
hors
e
xplore
the
existi
ng
Ny
pa
sta
nd.
The
pro
du
ct
ivit
y
assessm
ent
being
pilote
d
was
to
identify
the
bio
-
physi
cal
var
ia
bles
that
wer
e
highly
relat
ed
to
pro
du
ct
ivit
y.
P
hysic
al
var
ia
bles
that
m
ay
aff
ect
pro
duct
ivit
y
include
t
he
aci
dity
le
vels
(
pH),
water
sal
init
y
[18]
and
s
oil
t
extu
re
[19].
Wh
il
e
the
bio
lo
gical
aspects
consi
der
e
d
wer
e
r
el
at
ed
to
the
presence
of
ve
ge
ta
ti
on
as
well
as
the
var
ia
bles
der
i
ve
d
from
m
easur
in
g
sta
nd
dim
ensio
ns
su
c
h
a
s
sta
nd
de
ns
it
y
[1
7,
20]
,
basal
area,
sta
nd
volum
e,
tree
diam
et
er
[2
0],
an
d
bio
m
ass
co
ntent
[
21
]
.
T
he
la
ck
of
da
ta
base
on
Nypa
in
I
ndonesi
a
m
a
y
encou
rag
e
f
ore
st
inv
ent
or
y
act
ivit
ie
s
to
asse
ss
the
Nypa
si
te
qu
al
it
y
that
m
igh
t
be
us
e
d
fo
r
fu
t
ur
e
w
orks
to
su
pp
or
t a
s
us
ta
inable
forest m
anag
em
ent.
The
us
e
of
ai
r
bor
ne
rem
ote
sensing
i
n
the
forestry
se
ct
or
ha
s
been
sta
rted
si
nce
the
early
19t
h
centu
ry,
a
nd
e
ven
since
the
1990s,
the
us
e
of
sat
el
li
te
re
m
ote
sensing
in
Ind
on
esi
a
ha
s
increa
sed
s
ha
rp
ly
,
especial
ly
in
t
he
c
on
te
xt
of
l
and
co
ve
r
a
nd
la
nd
use
.
C
urren
tl
y,
the
ad
ve
nt
of
ve
ry
hi
gh
res
olu
ti
on
im
ages
recorde
d
us
i
ng
a
dy
nam
ic
rem
ote
ly
op
erat
ed
nav
i
gatio
n
equ
i
pm
ent
(dr
on
e
),
al
so
cal
le
d
un
m
ann
e
d
aerial
veh
ic
le
(
UAV)
te
chn
ol
ogy
ha
s
prov
i
ded
a
ne
w
pe
rsp
ect
i
ve
,
pro
vid
in
g
m
or
e
detai
le
d
inf
or
m
at
ion
du
e
t
o
it
s
high
s
patia
l
res
olu
ti
on.
I
n
this
stu
dy,
the
aut
hors
re
viewe
d
the
abili
ty
of
the
10
-
cm
-
reso
l
ution
U
A
V
im
age
t
o
assess
the
qua
li
ty
of
the
gr
owth
-
sit
e,
espec
ia
ll
y
on
the
N
y
pa
sta
nd.
T
he
us
e
of
U
AV
i
m
age
is
on
e
of
t
he
al
te
rn
at
ives
t
o
get
m
or
e
detai
l
ed
data,
m
or
e
r
eal
tim
e,
fa
ste
r
an
d
c
hea
per
[
22
]
.
Se
ver
al
st
ud
ie
s
that
e
xa
m
ined
the
us
e
of
10
-
cm
-
reso
luti
on
U
AV
im
age
cap
abili
ty
to
est
i
mate
the
tim
ber
sta
nd
i
ng
st
ock
can
be
fou
nd
i
n
the
stud
y
[
23
-
24
]
.
Be
sides,
the
use
of
UAV
im
age
f
or
devel
opin
g
a
bio
m
ass
est
i
m
ation
m
od
el
ca
n
be
found
in
oth
e
r
stud
y
[
24]
.
The
assessm
ent
of
the
gro
w
th
-
sit
e
qu
al
it
y
of
te
ak
usi
ng
a
non
-
m
et
ric
ae
rial
ph
ot
o
(sim
il
ar
to
UAV
im
ager
ie
s)
al
s
o prov
i
de a
pro
m
isi
ng
r
e
su
lt
[25
]
.
As
m
entioned
earli
er,
only
few
Nypa
ec
os
yst
e
m
s
that
has
go
tt
en
an
at
tr
act
ive
at
te
ntion
,
nor
e
ve
n
util
iz
ed
at
a
la
rg
e
scal
e.
I
nfo
r
m
at
ion
on
t
he
sp
at
ia
l
distrib
ut
ion
,
e
xtent
a
nd
pr
oductivit
y
as
well
as
the
qu
al
it
y
of
Ny
pa'
s
gr
owth
-
sit
e
qu
al
it
y
is
s
ti
l
l
ou
r
com
m
on
chall
e
ng
e
.
In
the
f
or
est
ry
sect
or
,
th
e
determ
inati
o
n
of
th
e
grow
t
h
-
sit
e
qu
al
it
y
of
Ny
pa
i
s
so
m
et
hin
g
ne
wly
done
.
Alth
ough
th
e
Nypa
existe
nce
is
al
ways
ass
ociat
ed
with
m
ang
r
ove
ve
ge
ta
ti
on
w
hich
is
con
si
der
e
d
t
o
ha
ve
m
or
e
at
tract
ive
eco
nom
ic
value,
th
e
re
searc
h
on
Nypa
ecosyst
em
is
s
ti
ll
l
i
m
it
ed.
Th
us
,
t
his
stu
dy
fo
c
us
es
on
est
im
at
ing
the
qual
it
y
of
Nypa
sta
nd
s
with
t
he
m
a
in
obj
ect
ive
of
es
ta
blishin
g
gro
wth
-
sit
e
qual
it
y
as
well
as
t
o
id
entify
t
he
m
os
t
sign
ific
ant
bi
ophysic
al
facto
r
s
m
easur
ed
i
n
both
UAV
im
a
ges
an
d
in
t
he
fiel
d,
incl
ud
i
ng
s
oil
te
xture
(X1)
,
W
at
er
sal
init
y
(X
2),
water
aci
dity
,
pH
(X3),
cr
own
cl
osure
on
t
he
U
A
V
im
age
(X
4)
and
sta
nd
de
nsi
ty
(N
)
on
th
e
UAV
im
age
(X5).
Be
sides,
this re
search
w
ould
a
lso
li
ke
to d
et
e
rm
ine
the
ind
ic
at
or
o
f
t
he
Nyp
a
gro
wth
-
sit
e
qual
it
y
su
ch
as
b
asal
area, volu
m
e,
bio
m
ass,
an
d
s
ta
nd
d
e
ns
it
y
w
hich
is
the
m
ost
consi
ste
nt
a
nd
acc
ur
at
e
i
ndic
at
or
f
or
a
ssess
ing
t
he
sit
e q
ualit
y.
2.
Rese
arch Met
ho
d
2.1. D
at
e
and
Ti
me
This
stu
dy
wa
s
co
nducte
d
in
Ma
rch
an
d
A
pr
il
20
16,
within
t
he
c
on
ces
sion
a
rea
of
PT
Ka
nd
el
ia
Alam
,
Ku
bu
Ra
ya
Re
gen
cy
,
West
Kalim
antan
P
r
ov
i
nce
(Fi
gure
1)
.
F
ur
t
he
rm
or
e,
the
pr
ocessin
g,
an
al
ysi
s
an
d
repor
ti
ng
wer
e
carrie
d
out
f
rom
Ma
y
20
16
unti
l
Februa
ry
2017
at
the
Re
m
ote
Sensi
ng
La
borato
ry,
Fac
ul
ty
of
Fo
r
est
ry,
IP
B.
2.2.
T
ools, S
of
tware,
H
ardw
are
, an
d
Dat
a
The
m
ai
n
data
us
e
d
in
this
stu
dy
was
dig
it
al
i
m
age
data
of
UAV
hav
i
ng
10
-
cm
-
sp
at
ia
l
reso
luti
on,
8
bits
rad
i
om
et
ri
c
reso
l
ution
a
nd
RGB
s
pectra
l
reso
luti
on. While
,
the
im
age
data
processi
ng
ha
rdwa
re
us
e
d
wa
s
a
set
of
c
om
pu
te
r
un
it
,
with
the
f
ollo
wing
so
ft
war
e:
ArcGis
10.
1,
Er
das
Im
agine
9.1,
Excel,
SP
SS
16
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
502
–
511
504
(stat
ist
ic
al
pac
kag
e
f
or
serv
ic
e
so
luti
on
),
Mi
nitab
17,
an
d
Excel
Stat
s.
Fo
r
gr
ound
data
colle
ct
ion
,
the
too
l
s
us
e
d
we
re
GPS,
s
uunto
cl
i
nom
et
er,
rope,
m
easur
i
ng
ta
pe
,
di
gital
scal
es,
com
pass,
pl
ast
ic
bag
s
,
ov
en,
sal
t
m
et
er an
d p
H
-
m
et
er.
To
s
upport
ac
hi
eve
the
stu
dy
obj
ect
ive
,
sta
nd
va
riables
of
the
Nypa
we
re
m
easur
ed
on
sam
ple
plo
t
in
the
fiel
d.
T
ho
s
e
va
riables
include
the
la
rg
est
ci
rc
um
fer
ence
of
the
N
ypa
le
af
bla
de
at
1.3
-
m
heig
ht,
the
sm
a
ll
est
ci
rcu
m
fer
ence
of
N
ypa
le
af
at
1.3
-
m
heigh
t,
dea
d
a
nd
al
ive
le
a
ves,
the
i
nd
i
vid
ual
diam
et
er
of
each
Nypa,
t
he
ci
rc
um
fer
ence o
f
t
he
b
ase a
nd
t
he t
ip o
f
t
he
Ny
pa
stum
p
(leaf b
l
ade)
at a
heig
ht
o
f 1.
3
m
, th
e leng
t
h
of
the
l
eaf
st
um
p,
the
num
ber
of
le
af
stum
ps
,
the
ci
rc
um
fer
ence
an
d
the
l
eng
t
h
of
the
le
af
blade
sam
ple,
the
ci
rcu
m
fer
ence
and
t
he
le
ng
t
h
of
the
bucke
d
le
af
blade
,
the
wet
-
an
d
dr
y
-
weig
ht
of
t
he
s
a
m
ple
blade
an
d
wet
-
and
dry
-
weig
ht
of
sam
pled
le
af
blade
,
rela
ti
ve
co
ordinate
s
of
each
Nyp
a
cl
um
p,
sp
eci
es
nam
e,
nu
m
ber
of
trees
in
eac
h
ob
s
er
vation
pl
ot,
wate
r
pH,
water
sli
nity
,
and
so
il
te
xtur
e.
I
n
U
A
V
im
ager
y,
t
he
m
e
asur
e
d
var
ia
bles w
e
re
crow
n
c
ov
e
r
a
nd stan
d de
ns
it
y.
Figure
1. Ma
p
of
the
Stu
dy Si
te
within
t
he
P
T K
a
ndel
ia
A
l
a
m
Co
Ltd C
oncessi
on
A
rea
2.3. D
ata An
aly
sis Pr
oced
ur
e
2.3.1. Im
age
P
rocessin
g
u
nm
an
ne
d
aerial
ve
hicl
e (UA
V)
i
ma
ges
The
im
age
pro
cessi
ng
i
nclu
de
d
vis
ual
inter
pr
et
at
io
n
by
usi
ng
th
e
on
-
scre
en
di
giti
zi
ng
t
o
co
unt
the
ind
ivi
du
al
cl
um
p
of
Nypa
within
eac
h
pl
ot,
then
us
e
d
to
m
easur
e
th
e
sta
nd
de
ns
it
y.
The
oth
e
r
var
ia
ble
m
easur
ed
was
cr
own
cl
osur
e
on
t
he
UAV
im
age.
Th
e
cr
own
cl
osure
va
riable
was
cal
c
ulate
d
by
a
segm
entat
ion
a
ppr
oach
us
i
ng
the
be
st
pa
ram
et
er
-
com
bin
at
ion
that
have
be
en
done
by
t
he
e
arli
er
sta
ge
of
this
researc
h.
2.3.2. D
ata
c
ol
le
ction
Fiel
d
sa
m
pling
te
chn
iq
ue
ap
pl
ie
d
in
this
stud
y
was
a
purposive
sam
pling
te
chn
iq
ue
to
r
epr
ese
nt
the
var
ia
ti
on
of
the
Nypa
f
r
om
down
st
ream
to
upstream
par
ts
of
ar
ea.
This
wa
s
desi
gn
e
d
to
c
ov
e
r
t
he
var
ia
ti
on
of
water
sal
init
y,
water
aci
dity
,
so
il
co
nd
it
io
n
a
nd
Ny
pa
produ
ct
ivit
y.
In
t
his
stud
y,
f
our
cl
ust
ers
wit
h
the
s
iz
e
of
60
m
x
10
0
m
wer
e
la
id
out
on
t
he
UAV
i
m
age,
in
wh
ic
h
eac
h
cl
us
te
r
was
div
ide
d
i
nt
o
15
cl
ust
er
el
e
m
ents
with
the
gr
i
d
si
ze
of
20
m
x
20
m
.
In
each
of
the
cl
us
te
r
el
e
m
ent
(p
lot
),
th
ere
are
fou
r
sub
-
plo
t
hav
i
ng
s
iz
e
of
10
m
x
10
m
(f
our
qua
dr
a
nts);
and
sin
gle
sub
-
pl
ot
of
2
m
x
2
m
a
t
the
center
of
t
he
plo
t.
On
eac
h
el
em
e
nt
of
the
cl
us
te
r
al
l
ph
ysi
cal
var
i
ables
an
d
Ny
pa
veg
et
at
io
n
wer
e
m
ea
su
re
d.
I
n
this
2
m
x
2
m
su
b
-
plo
t,
the
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng
&
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Gro
wt
h
-
sit
e
Q
ua
li
ty
Asses
sm
ent o
f N
y
pa fru
ti
can
s
us
in
g U
nma
nn
e
d Aeri
al
Veh
ic
le
s
…
(
Adeli
a
J
uli Kar
di
ka
)
505
m
easur
em
ent
of
m
idrib
a
nd
le
aves
of
Ny
pa
,
water
a
nd
s
oil
sam
ples
wer
e
do
ne.
T
he
e
sta
blishm
ent
of
f
our
-
qu
a
drant
was
a
i
m
ed
to f
aci
li
ta
te
the calcula
ti
on of t
he nu
m
ber
of
i
nd
i
vidua
ls (clum
ps
) Nypa.
2.4. D
ata An
aly
sis
The
in
dicat
ors
for
est
im
a
ti
ng
the
sit
e
qu
al
it
y
ind
e
x
are
bas
al
area
(BA
),
Nypa
vo
l
um
e
and
bio
m
ass
of N
yp
a as
f
ollow
s:
2.4.1. B
asal ar
ea (BA
)
The basal
a
rea
of the
Nypa
is
expresse
d
as
th
e f
ollow
i
ng form
ula
:
BA =
1
4
(
π
(
d
)
2
)
Pe
No
te
s:
BA
= b
asal
a
rea
(
m
2/h
a)
π
= 3
.
14
d
= the
diam
et
er
of N
yp
a
cl
u
m
p
Pe
= p
lot e
xte
nt (Ha)
2.4.2. N
ypa
volume
The
cal
culat
io
n
of
li
ve
a
nd
de
ad
volum
e
of
le
af
blade
wa
s
ob
ta
i
ned
us
in
g
a
m
od
el
that
express
th
e
relat
ion
s
hip
be
tween
volum
e
of
Nypa
m
idrib
a
nd
the
m
i
dr
i
b
diam
et
er.
This
eq
uatio
n
m
od
el
was
use
d
t
o
cal
culat
e the
volum
e o
f
t
he
li
ve
a
nd d
ea
d pe
r
in
div
i
du
al
Ny
pa,
with t
he fol
lowing e
quat
io
n:
Vm
= 1
.76
02 d1.466
1
The v
olu
m
e o
f t
he
li
ve
a
nd
de
ad
m
idrib
of
N
ypa w
e
re calc
ul
at
ed
us
i
ng the
fo
ll
owin
g form
ula:
VLD
M
N
=
(V
m
. N
LNM)
+
(Vm
. N
D
NM)
No
te
s:
d
= the
diam
et
er
of N
yp
a
cl
u
m
p
(m
)
Vm
= volum
e o
f N
ypa m
idrib
(
m
3)
VLD
M
N
= the
vo
l
um
e o
f
the
li
ve
a
nd dea
d
m
idrib
of
Nypa (m
3)
NLN
M
= num
ber
of live
Nypa
m
idrib
NDNM
= num
ber
of
de
ad Nypa m
idr
ib
The v
olu
m
e o
f t
he
m
idrib
stu
m
p
was
cal
cul
at
ed
usi
ng the
foll
ow
i
ng for
m
ula:
VS
=
G
SB
+
G
ST
400π
.
L
S
.
N
S
No
te
s:
Vs
= volum
e o
f
st
um
p
(m
3)
π
= 3
.
14
GS
B
= g
irt
h of
stum
p base
(m
et
er)
GS
T
= g
irt
h of
stum
p
to
p (m
et
er)
LS
= le
ng
t
h of stu
m
p
(
m
et
er)
NS
= num
ber
of st
um
p
The
t
otal v
olum
e o
f
Nypa
(V
TN) was
calc
ul
at
ed
usi
ng the
foll
ow
i
ng equat
ion
:
VTN (m
3/h
a)
=
V
L
DMN
+
V
S
Pl
ot
e
xtent
2.4.3. Bi
omass
of Nyp
a
Leaf
bio
m
ass (l
eaf and m
idrib) wa
s
ob
ta
ine
d usin
g
t
he
f
ollo
wing e
qu
at
io
n:
Vb
m
(
gram
)
= 2
92
419 dm
1.
6565
No
te
s:
d
= the
diam
et
er
of
Nyp
a
cl
u
m
p
(m
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
502
–
511
506
Vbm
= Mi
dr
ib
b
i
oma
ss (
le
af
and m
idrib) in
gram
Fu
rt
her
m
or
e,
t
he
le
af
an
d
st
e
m
bio
m
ass
of
Nypa
wa
s
m
ulti
plied
by
th
e
nu
m
ber
of
li
ve
an
d
dead
m
idrib
fo
r
eac
h
cl
um
p
usi
ng
the foll
owin
g
f
or
m
ula:
Vb
m
(
to
n)
=
V
bm
(
N
L
MN
+
N
DMN
)
10
00
00
0
Vbm
(to
n/clum
ps
)
=
V
bm
.
F
K
Nc
No
te
s:
Vbm
= Mi
dr
ib
b
i
oma
ss (
le
af
and m
idrib)
(to
n)
NLN
M
= num
ber
of live
Nypa
m
idrib
NDNM
= num
ber
of
de
ad Nypa m
idr
ib
Vbm
= Mi
dr
ib
b
i
oma
ss (
le
af
and m
idrib)
(to
n/clu
m
ps
)
CF (Con
versi
on
factor)
= 0
.
1093
7
Nc
= n
um
ber
of th
e N
ypa
clum
p
per pl
ot
The
e
quat
ion f
or cal
culat
ing t
he biom
ass p
er
unit
area
(to
n/
ha) was
as
fo
ll
ow
s:
Bi
om
ass p
er p
l
ot (
t
on
/
ha)
=
V
bm
(
t
on
/
c
lump
s
)
plot
e
xtent
(
Ha
)
Indicat
ors
of
the
gro
wth
-
sit
e
qu
al
it
y
exam
i
ned
i
n
this
stu
dy
are
basal
a
rea
(Y1
),
volu
m
e
of
Nyp
a
(Y2),
a
nd
Ny
pa
bio
m
ass
(
Y3)
per
unit
area.
Furthe
r
m
or
e,
three
a
nd
fi
ve
cl
asse
s
of
sit
e
qu
al
it
y
wer
e
dev
el
op
e
d
us
in
g
the
m
et
ho
ds
of
(a)
e
qual
int
erv
al
s,
(
b)
e
qu
al
fr
eq
ue
ncies,
with
the
fo
ll
owin
g
de
scripti
on,
(
1)
for
fi
ve
cl
asse
s,
the
si
te
qual
it
ie
s
wer
e
cat
egorized
i
nto
i
nferti
le
,
le
ss
fe
r
ti
le
,
m
od
eratel
y
fer
ti
le
,
fer
ti
l
e
an
d
extrem
el
y
fer
ti
le
,
wh
il
e
the
three
cl
asse
s,
they
we
re
cl
assifi
ed
int
o
l
ess
fe
rtil
e,
m
od
e
ratel
y
fer
ti
le
,
an
d
extrem
el
y ferti
le
(
Tables
1 an
d 2).
Table
1
.
Fiv
e
clas
s
es o
f
gro
wth
-
site q
u
ality
of
Ny
p
a
No
tatio
n
Descripti
o
n
Equ
al interv
al
m
et
h
o
d
Equ
al f
requ
en
cy
m
eth
o
d
Interval
I
Inf
erti
le
< µ
-
1
.2 SD
< µ
-
0
.84
SD
II
Less f
ertile
(µ
-
1
.2 SD)
–
(µ
-
0
.
4
SD)
(µ
-
0
.84
SD)
–
(µ
-
0
.25
SD)
III
m
o
d
e
ratel
y
f
ertile
(µ
-
0
.4 SD)
–
(µ+0
.
4
SD)
(µ
-
0
.25
SD)
–
(µ+
0
.25
SD)
IV
Fertile
(µ+0
.4 SD)
–
(µ+1
.2 SD)
(µ+0
.25
SD)
–
(µ+
0
.84
SD)
V
Extre
m
e
ly
f
ertile
> µ+1
.2 SD
> µ+0
.84
SD
SD: stan
d
ard d
ev
ia
tio
n
,
µ:
m
ean
Table
2
.
Three
clas
ses
of
gro
wth
-
site q
u
ality
of
Ny
p
a
No
tatio
n
Descripti
o
n
Equ
al interv
al
m
et
h
o
d
Equ
al f
requ
en
cy
m
eth
o
d
Interval
I
Less f
ertile
< µ
-
0
.67
SD
< µ
-
0
.43
SD
II
Mod
erate
l
y
f
ertile
(µ
-
0
.67
SD)
–
(µ+
0
.67
SD)
(µ
-
0
.43
SD)
–
(µ+
0
.43
SD)
III
Extre
m
e
ly
f
ertile
> (
µ+0
.67
SD)
> (
µ+0
.43
SD)
SD: stan
d
ard d
ev
ia
tio
n
,
µ:
m
ean
The
discrim
inant
va
riables
of
the
gro
wth
-
sit
e
qual
it
y
con
sid
ered
i
n
this
st
udy
we
re
s
oil
te
xture
(
X
1),
water
sal
init
y
(X
2),
water
pH
(X3),
cr
own
cl
os
ure
on
UAV
i
m
age
(X
4),
a
nd
t
he
num
ber
of
trees
m
easu
red
i
n
UAV
(
N)
(X5
)
i
m
ager
y.
Th
os
e
va
riables
wer
e
cal
cu
la
te
d
base
d
on
fie
ld
m
easur
e
m
e
nt
resu
lt
s
an
d
i
m
age
interp
retat
ion.
The
s
oil
te
xtur
e
was
dev
el
oped
by
fo
ll
owin
g
the
IH
MB
(perio
dical
ly
perform
ed
ov
e
rall
forest
inv
e
ntory
)
gu
i
delines,
w
hile
water
sal
i
nity
was
m
easur
e
d
by
sal
t
m
et
er
an
d
water
pH
by
pH
m
et
ers.
T
he
per
ce
ntage
of
c
rown
cl
os
ure
a
nd
the n
um
ber
o
f
trees on
the U
A
V
(
N)
im
age
wer
e
obta
ine
d
by
delineat
in
g
the
UAV
im
age and
se
gm
entat
ion
pro
ces
s.
2.4.4. D
ata
E
valua
tio
n
Pr
io
r
to
f
ur
t
her
discrim
inant
analy
sis,
the
col
le
ct
ed
data
wa
s
analy
zed,
the
n
us
e
d
as
the
de
te
rm
inant
var
ia
ble
in
the
analy
sis.
The
norm
al
i
ty
te
st
resu
lt
s
sho
w
the
data
ha
ve
norm
al
l
ines
of
55.1%
[19],
an
d
the
norm
al
i
ty
of
51.
67%,
c
oncl
udin
g
that
t
he
da
ta
wer
e
norm
al
.
Furthe
rm
or
e,
a
m
ulti
colli
near
it
y
te
st
to
evaluate
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng
&
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Gro
wt
h
-
sit
e
Q
ua
li
ty
Asses
sm
ent o
f N
y
pa fru
ti
can
s
us
in
g U
nma
nn
e
d Aeri
al
Veh
ic
le
s
…
(
Adeli
a
J
uli Kar
di
ka
)
507
wh
et
her
t
he
da
ta
can
analy
ze
directl
y
or
ne
ed
to
be
no
rm
al
iz
ed
was
perform
ed,
by
ev
al
uating
t
he
to
le
ran
ce
and
V
IF
value
(v
a
riance
fact
or
i
nf
la
ti
on).
T
he
ev
al
uatio
n
sh
ows
t
hat
the
tolerance
val
ue
above
0.1
(>
0.1),
and
or
V
IF
value
ar
ound
1(
le
ss
than
10).
T
his
m
eans
that
there
is
no
m
ulti
colli
near
it
y
betwee
n
in
de
pende
nt
var
ia
bles [2
6 & 27]
.
2.4.5.
Discri
m
inant Fu
ncti
on A
na
l
ys
is
In
this
st
ud
y,
t
he
discrim
inant
analy
sis
use
d
was
the
f
orwa
rd
m
et
ho
d.
W
it
h
t
his
f
orwa
rd
m
et
ho
d,
the
stud
y
will
rec
ord
the
var
ia
bl
es
are
entere
d
first
ly
,
sec
ondly,
thir
dly
et
c.
The
n
this
discrim
inant
m
et
ho
d
si
m
ultaneou
sly
iden
ti
fies t
he
s
equ
e
nce
of
vari
ables ente
red.
2.4.6. Accur
ac
y assessme
nt
To
e
valuate
the
reli
abili
ty
of
the
cl
assi
ficat
ion
t
he
res
ults
of
discri
m
inant
analy
si
s
we
re
t
hen
evaluate
d usi
ng acc
ur
acy
a
na
ly
sis. Th
e acc
uracy
m
easur
es
us
e
d
w
as
ov
e
ra
ll
accur
acy
e
xpresse
d
as
f
ollo
ws:
OA =
∑
X
ii
r
i
=
1
N
100%
No
te
s:
N
= num
ber
of
pix
el
used
in
t
he sa
m
ple p
lot
r
= num
ber
of c
olu
m
n
or ro
w of t
he
m
at
rix
(
nu
m
ber
of cla
s
ses)
∑ii
= Th
e
d
ia
gonal
v
al
ue
of t
he
m
at
rix on the
r
ow
-
i a
nd c
olu
m
n
-
i
2.4.7
Map
of gr
owth
-
site
qu
ality o
f Nypa
Ba
sed
on
the
di
scri
m
inant
f
unct
ion
de
velo
pe
d,
t
hen
the
dist
rib
ution
m
ap
of
the
gr
ow
t
h
-
si
te
qu
al
it
y
of
Ny
pa
was
de
velo
pe
d
us
in
g
the
va
riables
sel
ect
ed.
T
o
be
m
app
ed
,
the
discri
m
inan
t
va
riabl
e
was
pr
e
par
e
d
f
or
each
la
ye
r.
By
us
in
g
the
s
patia
l
op
erati
on
f
unct
ion
i
n
A
rc
Gis
10.
3,
the
n
ov
e
rlay
op
e
rati
on
was
perform
ed.
3.
RESU
LT
S
AND A
N
ALYSIS
Ba
sed
on the co
r
relat
ion
an
al
ysi
s b
et
ween
ind
ic
at
ors of th
e sit
e q
ualit
y,
i
.e.,
b
asal
area
, s
ta
nd
volum
e
of
Nypa
an
d
bi
om
ass
of
Ny
pa
with
th
e
phy
sic
al
and
bio
l
ogic
al
va
riables
su
c
h
as
s
oil
te
xture,
sal
init
y,
water
pH,
cr
own
cl
osure
an
d
t
he
num
ber
of
trees
m
easur
ed
on
the
UAV
im
age,
it
is
know
n
that
the
Nypa
vo
l
um
e
has
a
high
co
rrel
at
ion
with
soi
l
te
xtu
re
an
d
water
sal
init
y
with
R2
of
62.
1%
an
d
51.
0%
resp
ect
ively
.
Be
sides
,
it
is
al
so
sh
ow
n
that
the
bio
m
ass
of
Ny
pa
bi
om
ass
has
a
cl
os
e
c
orrelat
ion
with
s
oil
te
xture
an
d
water
pH
with
R2
of
59.
4%
a
nd 45.4%
r
es
pe
ct
ively
.
Of
the
31
di
ff
e
ren
t
c
om
bin
at
i
on
s
of
v
a
riable
s
exam
ined
in
the
proces
s
of
cl
assify
ing
3
a
nd
5
cl
asses
of
sit
e
qual
it
y,
i.e.,
f
ro
m
us
in
g
the
si
ng
le
va
riable
to
fu
ll
fi
ve
va
riables
,
we
can
su
m
m
a
rize
by
the
bes
t
three
ranks
of
eac
h
com
bin
at
ion
a
s
pr
ese
nted
i
n
Table
3.
From
the
cl
assifi
cat
ion
re
su
lt
s
obt
ai
ned
us
in
g
(a
)
equ
al
interval
a
nd
(
b)
e
qu
al
fr
e
quency,
the
n
we
sel
ect
ed
13
t
he
to
p
ra
nk
c
om
bin
at
ion
th
at
hav
e
has
a
highe
r
accuracy.
Fr
om
Table
3,
a
m
on
g
t
he
thre
e
grow
t
h
-
sit
e
qual
it
y
ind
ic
at
ors
of
N
ypa,
th
e
ind
ic
at
or
that
con
sist
e
ntly
giv
es
a
high
qual
it
y
assessm
ent
is
the
Ny
pa
bio
m
ass
co
nt
ent.
T
he
high
est
accuracy
pro
vid
e
d
by
us
ing
the
bio
m
ass
ind
ic
at
or
is
78.3%,
wh
il
e
the
volu
m
e
is
71
.7
%,
and
the
basal
area
is
on
ly
65%.
T
heoreti
cal
ly
,
the
m
os
t
co
m
pr
eh
ensive
in
dicat
or
ex
plaini
ng
the
qu
al
it
y
of
the
env
ir
on
m
ent
is
the
sta
nd
in
g
bio
m
ass,
wh
ic
h
consi
der
al
l
the
bio
lo
gical
com
po
ne
nts
bo
t
h
li
vin
g
an
d
de
ad
(n
ec
r
om
as
s
and
li
tt
er)
m
at
erial
s.
W
hi
le
the
vo
l
um
e
on
ly
con
si
ders
the
volum
e
of
sta
nd
ing
sta
nd
s
a
nd
neg
le
ct
the
ne
cro
m
ass
and
li
tt
er.
The
a
rea
of
the
b
asal
area
is
si
m
pler
than
th
e
vo
lum
e,
regardless
of
the
heigh
t
va
riat
ion
of
the
sta
nd.
T
he
discri
m
inant
analy
sis
resu
lt
sh
ows
t
hat
th
e
bio
m
ass
of
Nypa
c
ou
l
d
be
the
best
in
di
cat
or
in
desc
ribing
the
growt
h
-
sit
e
qu
al
it
y as s
hown b
y i
ts acc
uracy
, larg
e
r
t
ha
n
t
he
volum
e and b
a
sal
area.
Fo
r
t
he
basal
a
rea
ind
ic
at
or
,
t
he
assessm
ent
of
us
in
g
only
one
va
riable
wit
h
five
a
nd
thre
e
cl
asses
of
grow
t
h
-
sit
e
qu
al
it
y,
the
hig
he
st
accuracy
wa
s
pro
vid
e
d
by
the
water
s
al
init
y
(X
2)
with
a
n
accu
racy
of
48.
3%
for
5
cl
asse
s
a
nd
60
%
f
or
3
cl
asses
(
ba
se
d
on
e
qu
al
i
nter
va
l
m
e
tho
d).
F
or
the
c
om
bin
at
ion
of
t
wo
va
ri
ables,
the
highest
accuracy
was
obta
ined
f
ro
m
the
com
bin
at
ion
of
water
sal
init
y
(X2)
a
nd
wate
r
pH
(
X3)
with
55%
accuracy
(for
5
cl
asses
)
a
nd
65%
(
f
or
3
cl
a
sses
)
with
e
qu
al
f
re
qu
e
ncy
m
et
hod.
The
us
e
of
the
com
bina
ti
on
s
with
3,
4
a
nd
5
va
riables
did
no
t
giv
e
any
sign
i
ficant
acc
uracy
increase
.
As
s
how
n,
the
com
bin
at
ion
s
of
3
a
nd
4
va
riables
a
re
giv
i
ng
acc
ura
cy
that
equ
al
t
o
tw
o
var
ia
bles,
espe
ci
al
ly
for
th
ree
cl
asses
of
sit
e
qu
a
li
ti
es
us
in
g
the
eq
ual
inte
r
val
m
et
ho
d.
W
it
h
5
var
ia
bles,
the
acc
ur
acy
of
t
he
discrim
i
nan
t
e
ve
n
decre
ased,
w
hich
m
ay
be
cause
d
by
the
data
outl
ie
r
or
"data
noise
".
I
n
ot
her
wor
ds
,
the
basal
area
ind
ic
at
or
is
only
able
to
des
cribe
3
grow
t
h
-
sit
e
qu
al
it
y wit
h
a m
a
xim
u
m
o
f
65%
accu
racy.
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
502
–
511
508
Table
3
.
T
he
best
thr
ee c
om
bin
at
ion u
sin
g o
ne
to
f
i
ve
in
de
pende
nt v
a
riab
le
s to
cl
assify
t
hr
ee
and
five g
rowth
-
sit
e q
ualit
y wit
h (a)
e
qual
inte
rv
al
s a
nd
(b)
e
qu
al
fr
e
quenci
es m
et
ho
ds
Equ
al interv
al
m
et
h
o
d
Equ
al f
requ
en
cy
m
eth
o
d
Equ
al interv
al
m
et
h
o
d
Equ
al f
requ
en
cy
m
eth
o
d
Variable
(5 class
)
Accurac
y
(%)
Variable
(5 class
)
Accurac
y
(%)
Variable
(3 class
)
Accurac
y
(%)
Variable
(3 class
)
Accurac
y
(%)
Bas
al ar
ea
X
2
4
8
.3
X
2
3
5
.0
X
2
6
0
.0
X
2
5
6
.7
X
3
4
5
.0
X
3
3
1
.7
X
3
5
1
.7
X
3
5
5
.0
X
5
3
3
.3
X
5
2
6
.7
X
5
5
0
.0
X
5
5
1
.7
X
2
X
4
5
1
.7
X
2
X
3
5
5
.0
X
2
X
5
5
8
.3
X
2
X
3
6
5
.0
X
1
X
2
4
8
.3
X
1
X
3
4
0
.0
X
2
X
4
5
6
.7
X
2
X
4
6
1
.7
X
2
X
3
4
6
.7
X
1
X
2
3
8
.3
X
2
X
3
5
1
.7
X
2
X
5
6
0
.0
X
1
X
2
X
3
6
0
.0
X
2
X
3
X
5
5
0
.0
X
2
X
3
X
4
5
6
.7
X
2
X
3
X
5
6
5
.0
X
2
X
3
X
4
5
1
.7
X
1
X
2
X
3
4
6
.7
X
2
X
4
X
5
5
6
.7
X
1
X
2
X
3
6
3
.3
X
2
X
4
X
5
4
8
.3
X
2
X
3
X
4
4
6
.7
X
1
X
2
X
3
5
3
.3
X
2
X
3
X
4
6
3
.3
X
1
X
2
X
3
X
4
5
6
.7
X
1
X
2
X
3
X
4
4
6
.7
X
2
X
3
X
4
X
5
5
6
.7
X
2
X
3
X
4
X
5
6
5
.0
X
1
X
2
X
3
X
5
5
1
.7
X
1
X
2
X
3
X
5
4
5
.0
X
1
X
2
X
3
X
4
5
3
.3
X
1
X
2
X
3
X
4
6
1
.7
X
2
X
3
X
4
X
5
5
0
.0
X
2
X
3
X
4
X
5
4
3
.3
X
1
X
2
X
4
X
5
5
1
.7
X
1
X
2
X
3
X
5
6
1
.7
X
1
X
2
X
3
X
4
X
5
5
8
.3
X
1
X
2
X
3
X
4
X
5
4
1
.7
X
1
X
2
X
3
X
4
X
5
5
6
.7
X
1
X
2
X
3
X
4
X
5
6
1
.7
Vo
lu
m
e of
Ny
p
a
X
3
3
0
.0
X
2
4
3
.3
X
3
7
1
.7
X
3
6
6
.7
X
1
2
5
.0
X
3
3
5
.0
X
5
5
3
.3
X
4
4
8
.3
X
5
2
3
.3
X
1
3
1
.7
X
4
3
3
.3
X
1
3
6
.7
X
2
X
3
5
0
.0
X
2
X
4
4
8
.3
X
2
X
3
7
1
.7
X
2
X
3
7
1
.7
X
3
X
5
4
5
.0
X
2
X
5
4
3
.3
X
1
X
3
6
1
.7
X
3
X
4
5
8
.3
X
3
X
4
4
0
.0
X
2
X
3
4
1
.7
X
3
X
4
6
1
.7
X
3
X
5
5
6
.7
X
2
X
3
X
4
5
0
.0
X
1
X
2
X
3
5
5
.0
X
2
X
3
X
4
7
3
.3
X
2
X
3
X
4
6
5
.0
X
1
X
3
X
4
4
6
.7
X
2
X
3
X
4
5
5
.0
X
1
X
3
X
4
6
3
.3
X
3
X
4
X
5
6
0
.0
X
3
X
4
X
5
4
6
.7
X
1
X
2
X
4
5
3
.3
X
1
X
2
X
3
6
1
.7
X
1
X
3
X
4
5
6
.7
X
1
X
3
X
4
X
5
5
3
.3
X
1
X
2
X
3
X
4
5
6
.7
X
2
X
3
X
4
X
5
7
6
.7
X
2
X
3
X
4
X
5
6
3
.3
X
2
X
3
X
4
X
5
5
3
.3
X
2
X
3
X
4
X
5
5
5
.0
X
1
X
2
X
3
X
4
6
6
.7
X
1
X
2
X
3
X
4
6
1
.7
X
1
X
2
X
3
X
4
4
6
.7
X
1
X
2
X
4
X
5
5
1
.7
X
1
X
3
X
4
X
5
6
5
.0
X
1
X
3
X
4
X
5
5
6
.7
X
1
X
2
X
3
X
4
X
5
5
3
.3
X
1
X
2
X
3
X
4
X
5
5
6
.7
X
1
X
2
X
3
X
4
X
5
6
3
.3
X
1
X
2
X
3
X
4
X
5
6
3
.3
Ny
p
a bio
m
ass
X
3
5
3
.3
X
3
3
8
.3
X
5
5
0
.0
X
3
7
5
.0
X
5
5
3
.3
X
2
3
0
.0
X
4
4
6
.7
X
5
5
8
.3
X
2
4
6
.7
X
1
2
8
.3
X
2
3
8
.3
X
2
4
1
.7
X
1
X
3
5
6
.7
X
2
X
4
4
0
.0
X
2
X
5
4
8
.3
X
1
X
3
7
1
.7
X
1
X
4
5
6
.7
X
3
X
5
3
8
.3
X
2
X
4
4
3
.3
X
2
X
3
7
0
.0
X
1
X
2
5
5
.0
X
2
X
3
3
6
.7
X
3
X
4
4
1
.7
X
3
X
5
6
3
.3
X
1
X
2
X
3
6
1
.7
X
2
X
3
X
4
4
6
.7
X
1
X
2
X
3
4
8
.3
X
1
X
2
X
3
7
8
.3
X
1
X
3
X
4
6
1
.7
X
1
X
3
X
4
4
3
.3
X
1
X
2
X
5
4
6
.7
X
1
X
3
X
4
7
5
.0
X
1
X
3
X
5
5
6
.7
X
2
X
4
X
5
4
0
.0
X
2
X
3
X
5
4
5
.0
X
1
X
3
X
5
7
1
.7
X
1
X
2
X
3
X
5
6
3
.3
X
1
X
2
X
3
X
5
4
5
.0
X
1
X
2
X
3
X
5
5
5
.0
X
1
X
2
X
3
X
4
7
8
.3
X
1
X
3
X
4
X
5
6
0
.0
X
2
X
3
X
4
X
5
4
5
.0
X
1
X
2
X
3
X
4
5
0
.0
X
1
X
2
X
3
X
5
7
6
.7
X
1
X
2
X
3
X
4
5
8
.3
X
1
X
2
X
3
X
4
4
3
.3
X
1
X
3
X
4
X
5
4
5
.0
X
1
X
3
X
4
X
5
7
3
.3
X
1
X
2
X
3
X
4
X
5
60
.0
X
1
X
2
X
3
X
4
X
5
4
5
.0
X
1
X
2
X
3
X
4
X
5
5
1
.7
X
1
X
2
X
3
X
4
X
5
7
8
.3
No
tes: X
1
: so
il text
u
re;
X
2
: wat
er
sal
i
n
ity
; X
3
: w
ater
pH;
X
4
: cr
o
wn
den
sity
on
UAV
i
m
ag
e;
X
5
: the n
u
m
b
e
r
o
f
tr
ees
m
e
asu
red in
U
AV (
N)
Wh
e
n
the
volu
m
e
Nypa
was
app
li
ed
as
a
sit
e
qu
al
it
y
ind
ic
at
or
,
the
cl
assi
ficat
ion
of
the
grow
t
h
-
sit
e
qu
al
it
y
into
fiv
e
(
eq
ual
f
re
qu
e
ncy)
a
nd
t
hr
ee
cl
asses
(e
qu
al
intervals
),
t
he
sing
le
var
ia
ble
water
sal
init
y
m
ay
giv
e
a
n
accu
ra
cy
of
43.
3%
a
nd
w
hile
water
pH
va
riable
gav
e
71.
7%.
W
it
h
tw
o
va
riables
com
bin
at
ion
,
t
he
accuracy
of
th
e
assesse
d
sit
e
qu
al
it
y
did
not
giv
e
any
im
pr
ov
em
ent
at
al
l.
It
pr
ov
i
des
ac
cur
acy
t
hat
the
sam
e
to
sin
gle
var
ia
ble
i.e.,
71.
7%
,
us
i
ng
water
sa
li
nity
(X
2)
a
nd
water
pH
(X3
).
With
t
hr
ee
va
riables,
t
her
e
was
a
sli
gh
t
inc
rease
of
73.3
%
(
3
c
la
sses
of
gro
w
th
-
sit
e
qual
it
y)
de
rive
d
from
a
com
bin
at
ion
of
so
il
t
e
xtu
re
(X1),
water
sal
init
y
(
X2),
a
nd
water
pH
(
X
3)
or
w
at
er
sal
init
y
(X2),
wate
r
pH
(
X3)
a
nd
cr
own
cl
osure
(X4
).
W
it
h
a
com
bin
at
ion
of
fou
r
va
riables
there
was
a
sig
nificant
i
ncr
ea
se
to
76.7
%
(t
hree
cl
asses
of
grow
t
h
-
sit
e
qual
it
y),
pro
vid
e
d
by
a
com
bin
at
i
on
of
water
sal
init
y
var
ia
bles
(X2),
water
pH
(
X
3),
cr
own
cl
osur
e
(X
4)
an
d
nu
m
be
r
of
tr
ees
m
easur
ed
on
the
im
a
ge
(
X
5)
.
W
it
h
al
l
five
va
riabl
es,
the
resu
lt
in
g
acc
ur
acy
wa
s
decre
ased
sha
rp
ly
t
o
on
ly
63.3%. T
his
beh
a
vior is
the sam
e as the
b
asal
a
rea
(see
Tab
le
3).
Ba
sed
on
bio
m
ass
co
nte
nt
in
di
cat
or
,
t
he
cl
as
sific
at
ion
i
nto
three
cl
asse
s
si
te
qual
it
y
with
fr
e
quen
cy
equ
al
m
et
ho
d,
sing
le
var
ia
ble
of
water
pH
(
X3)
pr
ov
i
des
75.0%
overall
accuracy.
For
cl
assify
ing
int
o
fiv
e
sit
e
qu
al
it
ie
s,
the
sin
gle
var
ia
ble
that
giv
es
t
he
high
acc
ur
a
cy
of
53.
3%
is
water
pH
(X3
)
or
tree
de
ns
it
y
(N)
m
easur
ed
on
t
he
U
A
V
im
age
(X5).
T
he
cl
assifi
cat
ion
of
five
gro
wth
-
s
it
e
qu
al
it
y
us
ing
t
wo
va
riabl
es,
the
highest
accu
ra
cy
is
pr
ovide
d
by
the
com
bina
ti
on
of
s
oil
te
xture
(
X1)
an
d
water
pH
(
X
3);
or
t
he
com
bin
at
ion
of
so
il
te
xtu
re
(X1)
an
d
im
age
de
ns
it
y
(
X4),
both
com
bin
a
ti
on
s
ha
ve
a
n
accuracy
of
56.7
%
.
F
or
cl
assi
fyi
ng
three
cl
asses
of
sit
e
qu
al
it
y,
two
var
ia
bles
so
il
te
xtu
re
(
X
1)
an
d
water
pH
prov
i
ded
acc
urac
y
of
a
bout
71.
7%
.
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng
&
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Gro
wt
h
-
sit
e
Q
ua
li
ty
Asses
sm
ent o
f N
y
pa fru
ti
can
s
us
in
g U
nma
nn
e
d Aeri
al
Veh
ic
le
s
…
(
Adeli
a
J
uli Kar
di
ka
)
509
The
c
om
bin
at
i
on
of
t
hr
ee
vari
ables
that
co
ve
rs
so
il
te
xture
(X1),
so
il
sal
init
y
(X
2)
a
nd
water
pH
(X3),
wa
s
capab
le
to
cl
as
sify
three
sit
e
qu
al
it
ie
s
(e
qua
l
fr
e
quency)
prov
i
ding
acc
ur
a
cy
of
a
bout
78.
3%.
T
he
inc
re
ase
of
the
num
ber
of
var
ia
ble
from
us
in
g
th
ree
va
r
ia
bles
to
fou
r
or
fi
ve
va
riabl
es
did
not
incr
eas
e
the
cl
assifi
cat
ion
accuracy.
Fr
om
the
res
ults
and
disc
us
si
on
m
entione
d
above,
t
he
m
os
t
con
sist
e
nt
ind
ic
at
ors
t
hat
pro
vid
e
th
e
highest
accura
cy
are
the
Nyp
a
bio
m
ass.
The
m
os
t
accurate
nu
m
ber
s
an
d
the
best
com
bin
at
ion
s
of
va
r
ia
bles
wer
e
obta
ine
d
us
in
g
a
com
bin
at
ion
of
th
ree
var
ia
bles
with
an
accuracy
of
78.3%
(equal
fr
eq
ue
ncy).
T
hese
var
ia
bles
are
a
ll
gr
ou
nd
m
easur
e
d
var
ia
bles,
nam
el
y
so
il
t
extu
re
(
X1),
w
at
er
sal
init
y
(X
2),
water
pH
(X3).
The
com
bin
at
ion
s
us
in
g
f
our
and
e
ve
n
five
var
ia
bles
did
not
pro
vid
e
the
increase
d
accu
racy,
the
accu
r
acy
is
sta
gn
a
nt
at
78.
3%.
T
he
c
om
bin
at
ion
with
th
ree
va
riables
was
c
ho
se
n
due
to
the
le
sser
nu
m
ber
of
var
i
ables
app
li
ed
,
wh
il
e
the
accu
racy
a
r
e
sti
ll
the
sam
e
.
T
he
a
dd
it
io
n
of
va
riable
w
il
l
cause
t
he
a
ddit
ion
of
c
os
t,
both
i
n
fiel
d
data
colle
ct
ion
an
d
in
th
e
data
processi
ng.
Th
us
,
it
is
exp
ect
e
d
to
sel
ect
the
m
os
t
ef
fici
ent
com
bin
at
ion.
The
st
ud
y
no
t
ed
that
of
al
l
c
om
bin
at
ion
s,
with
al
l
ind
ic
a
tor,
t
he
wate
r
pH
va
riable
(
X3)
beco
m
es
the
m
o
st
fr
e
qu
e
nt
var
ia
bl
e that p
rese
nts in
the
co
m
bina
ti
on
. T
he
sele
ct
ed
disc
rim
ina
nt fu
nction i
s presente
d
in
Ta
ble 4.
Table
4
.
Discri
m
inant
Functi
on
for
Cl
assify
ing
the
Nypa
Si
te
Qu
al
it
y
with the
Va
ria
bles
of
X
1
, X
2
and X
3
Ny
p
a site
qu
ality
c
lass
Discri
m
in
a
n
t f
u
n
ct
io
n
Site qu
ality
I
(less
f
ertile)
Y =
-
2
1
3
.62
+
1
1
.94
X
1
+ 14
.84
X
2
+ 63
.51
X
3
Site qu
ality
II
(
m
o
d
erate
ly
f
ertile)
Y =
-
2
6
6
.94
+
1
3
.42
X
1
+ 18
.07
X
2
+ 70
.84
X
3
Site qu
ality
II
I
(f
er
tile)
Y =
-
2
7
8
.31
+
1
4
.77
X
1
+ 13
.64
X
2
+ 72
.06
X
3
This
stu
dy
al
so
sho
ws
the
al
te
rn
at
ive
us
e
of
othe
r
c
om
bin
at
ion
s,
by
com
bin
in
g
the
fiel
d
m
easur
e
d
and
on
U
AV
-
i
m
age
m
easur
ed
var
ia
bles
(m
od
el
II)
,
pro
vi
ding
a
c
om
parable
acc
ur
acy
of
75%.
Alth
ough
it
s
accuracy
is
3%
s
m
al
le
r
than
the
previ
ous
on
e,
this
functi
o
n
would
be
m
or
e
pr
act
ic
al
sinc
e
the
sal
init
y
c
an
be
rep
la
ce
d
by
cr
own
cl
osure
m
easur
e
d
on
the
UAV.
T
he
var
i
ables
us
e
d
are
so
il
te
xtu
re
(
X
1
),
water
pH
(
X
3
)
and
crow
n
cl
osu
re
(X
4
)
(
Table
5
)
.
Table
5
.
Discri
m
inant fun
ct
io
n of m
od
el
I
I
for cl
assify
ing t
he
th
ree
gro
wth
-
sit
e
qu
al
it
y o
f
Nypa usi
ng the
v
a
riables
of X1, X
3
a
nd X4
with e
qu
al
fr
e
quency
Ny
p
a site
qu
ality
c
lass
Discri
m
in
an
t f
u
n
ct
io
n
Site qu
ality
I
(less
f
ertile)
Y =
-
2
0
9
.63
+
1
2
.89
X1 + 63
.01
X3
–
0
.02
X4
Site qu
ality
II
(
m
o
d
erate
ly
f
ertile)
Y =
-
2
6
1
.84
+
1
4
.66
X1 + 71
.21
X3
–
0
.13
X4
Site qu
ality
II
I
(f
er
tile)
Y =
-
2
7
5
.09
+
1
5
.68
X1 + 71
.98
X3
–
0
.06
X4
Fr
om
the
discrim
inant
m
od
e
l
dev
el
ope
d
above,
it
is
known
that
the
s
oil
te
xtu
re
ha
d
been
a
key
var
ia
ble
that
af
fects
the
var
ia
t
ion
of
Ny
pa
bio
m
ass.
So
il
te
xture
is
on
e
of
the
m
os
t
decis
ive
fact
or
s
f
or
sta
nd
su
it
abili
ty
since
it
has
a
cl
ose
relat
ionshi
p
with
oth
e
r
s
oil
pro
per
ti
es
s
uc
h
as
water
hol
ding
ca
pacit
y,
cat
ion
exch
a
nge
capa
ci
ty
,
po
r
os
it
y,
infilt
rati
on
rate
and
water
m
ov
em
ent
and
soi
l
aerati
on
[
20
]
.
This
is
inli
ne
wit
h
the
earli
er
stu
dy
that
i
den
ti
fi
es
the
s
oil
te
xt
ur
e
as
on
e
of
the
in
de
pende
nt
va
riabl
es
in
determ
ining
t
he
sit
e
qu
al
it
y
of
Par
aserianthe
s
fal
cat
aria
(L)
Ni
el
sen
[
28
]
.
W
at
er
sal
init
y
also
beco
m
es
one
of
the
i
nde
pende
nt
var
ia
bles
in
de
te
rm
ining
the
sit
e
qu
al
it
y
of
Ny
pa.
T
he
stud
y
of
al
s
o
fou
nd
th
at
water
sal
init
y
is
on
e
determ
inant
in
assess
ing
m
angr
ov
e
veg
et
at
ion
sit
e
qual
it
y
with
an
accuracy
of
66.
7%
[20].
H
ow
e
ver,
for
pr
act
ic
al
us
e,
the
water
sal
ini
ty
cou
ld
be
sub
sti
tuted
with
the
cro
w
n
cl
osur
e
as
the
fu
nctio
n
ta
bu
la
te
d
in
Table
5.
Figure
2
s
how
s
the
distrib
ution
of
the
Nyp
a
sit
e
qu
al
it
y,
us
in
g
a
Mod
el
II
with
the
va
riables
of
so
il
te
xtu
re
(X1),
pH
(
X3)
an
d
cr
own
cl
osure
(
X4).
I
n
the
m
ap,
th
ree
sit
e
qu
al
it
ie
s
are
expressi
ng
the
bio
m
ass
con
te
nts.
T
he
descr
i
ptions
ar
e
as
fo
ll
ows:
si
te
qu
al
it
y
I
le
ss
fer
ti
le
,
sit
e
qual
it
y
II
m
od
er
at
el
y
fer
ti
le
,
and
sit
e
qu
al
it
y
I
II
fer
ti
le
.
Ba
sed
on
t
he
resu
lt
on
th
e
m
app
ing
of
t
he
gro
wth
-
sit
e
qual
it
y
of
Ny
pa,
t
he
pro
port
ion
of
each sit
e
qu
al
it
y cou
l
d be s
umm
arized in Ta
bl
e 6
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
502
–
511
510
Figure
2
.
Ma
p of
G
rowth
-
Sit
e
Q
ualit
y
of
Ny
pa
Table 6
.
the
p
ro
p
o
rtion of
e
ac
h
site qualit
y
maps
Site qu
ality
of
N
y
p
a
Area
(ha)
Site qu
ality
I
(less
f
ertile)
4
0
.4
Site qu
ality
II
(
m
o
d
erate
ly
f
ertile)
302
Site qu
ality
II
I
(f
er
tile)
1
0
.6
No
n
Ny
p
a
3
7
3
4
.8
Total
4
0
8
7
.8
4.
Conclusi
on
Fr
om
the
res
ults
and
discu
ssion
s
desc
ribe
d
earli
er,
s
om
e
c
on
cl
us
io
ns
relat
ed
to
the
de
ve
lop
m
ent
of
discrim
inant
f
un
ct
io
n
f
or
as
sessing
the
grow
t
h
-
sit
e
qual
it
y
of
Nyp
a
a
r
e
de
rive
d.
The
m
os
t
con
sist
e
nt
a
nd
accurate
in
dica
tor
us
ed
i
n
de
s
cribin
g
the
sit
e
qu
al
i
ty
of
Ny
pa
is
the
bio
m
ass
of
t
he
Ny
pa
.
The
sit
e
qua
li
ty
of
the
Nypa
c
oul
d
be
cl
assi
fied
into
3
cl
as
ses
with
an
accu
ra
cy
of
78.3
%
usi
ng
s
oil
te
xtur
e
(X1),
wate
r
s
al
inity
(X2)
an
d
water
pH
(
X
3).
T
he
us
e
of
the
c
ombinati
on
betwe
en
gro
und
-
bas
ed
var
ia
bles
(s
oil
te
xture
a
nd
wate
r
pH)
a
nd UA
V
-
i
m
age
-
base
d v
ariable
prov
i
de
d rela
ti
vely
larg
e yi
el
ds
of ab
ou
t
75%.
REFERE
NCE
S
[1]
Ta
m
unai
du
P,
Saka
S.
Com
par
at
iv
e
Stud
y
of
Nutrie
nt
Suppl
ementsa
nd
Natu
ral
Inorga
n
ic
C
om
ponent
s
in
Et
hanolic
Ferm
e
nta
ti
on
of
N
y
p
a S
ap.
Journal
of
t
he
Japan
Insti
tute
of
en
ergy
.
201
2;
92(2):
181
-
18
6.
[2]
Ta
m
unai
du
S,
Matsui
N,
Okimori
Y,
Saka
S.
N
y
pa
(N
y
p
a
frut
ic
ans)
Sap
as
a
Potent
ial
Feedst
ock
for
Eha
nol
Producti
on.
Jour
nal
B
iomass
and
Bi
o
ene
rgy
.
201
3;
52:
96
-
102.
[3]
Putri
IJ,
Fauziyah,
El
f
it
a
.
Akti
vit
a
s
Antioksidan
Daun
dan
Bij
i
Buah
Nipah
(N
y
pa
frut
ic
ans)
As
al
Pesisir
Ban
y
u
asin
Sum
a
te
ra
Selatan
den
gan
Metod
e
DP
PH
.
Jurnal
Mas
pari
.
2013;
5(1):
16
-
21.
[4]
Hadi
S,
Tha
m
rin
,
Moersidik
SS
,
Bahr
y
S.
K
ara
kt
eri
stik
dan
Pot
en
si
Bioe
t
anol
dar
i
Nira
Nip
ah
(N
ypa
frut
ica
ns)
untuk
Pener
apa
n
Skala T
eknol
og
i
T
epa
t
Guna.
Ju
rnal
Ilmu
Lingku
ngan
.
2013;
7(2)
:
223
-
240.
[5]
Rada
m
RR.
Pen
gola
han
Bu
ah
N
ipa
h
(N
y
pa
frutica
ns
W
urm
b)
seba
gai
B
aha
n
Ba
ku
Manisan
Bua
h
Keri
ng
da
n
Manisan
Buah
B
asa
h.
Jurnal
Hut
an
Tr
opis B
orne
o
.
2009;
10(27):
286
-
296.
[6]
Fatri
ani,
Sari
N
M,
Mashudi
MN
.
Renda
m
en
T
epung
Buah
Nip
ah
(N
y
p
a
frutica
ns
W
ur
m
b)
Berda
sarka
n
Jara
k
Te
m
pat
Tumbuh.
Jurnal
Hutan
T
ropis
.
2011;
12(
32):
171
-
174.
[7]
Rada
m
RR,
Pur
namasari
E.
Uji
Fitoki
m
ia
Sen
y
a
wa
Kim
ia
Aktif
Akar
Nipah
(Ny
pa
fruti
c
ans
W
u
rm
b)
seba
gai
Tumbuhan
Obat
di
Kal
imanta
n
Selatan.
Jurnal
H
utan
Tr
opis
.
201
6;
4(1):
28
-
34.
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng
&
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Gro
wt
h
-
sit
e
Q
ua
li
ty
Asses
sm
ent o
f N
y
pa fru
ti
can
s
us
in
g U
nma
nn
e
d Aeri
al
Veh
ic
le
s
…
(
Adeli
a
J
uli Kar
di
ka
)
511
[8]
Mul
y
ad
i
AF
,
Wi
ja
n
a
S,
Dewi
IA,
Lumongga
DM
.
Pem
anf
aa
ta
n
Sirup
dan
Buah
Nipah
(N
y
pa
Frutic
ans)
Sebaga
i
B
aha
n
Baku
Alte
rn
at
if
Pem
buat
an
Selai
(Kaji
an
Pen
ambaha
n
Kons
ent
r
asi
Sukros
a
pada
P
roporsi
Sirup
Gula
dan
Bu
ah
N
y
pa)
.
Pros
idi
n
g
Sem
ina
r
Agroi
ndustri
dan
Lokakar
y
a
Nasion
al
FKPT
-
TPI
Progr
a
m
Studi
TIP
-
UTM.
Madura
.
2015.
[9]
Roli
adi
H
,
Indr
awa
n
DA
,
Pari
G,
Ta
m
pubolo
n
RM.
Potensi
Te
knis
Pem
an
faa
t
an
Pel
epa
h
Nipah
dan
Campurann
y
a
d
enga
n
Sabu
t
Kel
apa
un
tuk
Pem
buat
an
Papan
Ser
at
Be
rke
rap
atan
Sedang.
Jurnal
Pe
ne
li
t
ian
da
n
Has
il
Hutan
.
20
12;
30(3):
183
-
1
98.
[10]
Suhadi
y
ah
S,
T
a
m
bar
u
E,
Surni.
Kea
neka
r
aga
m
a
n
dan
Fungs
i
Ek
onom
i
Flora
di
Delt
a
La
kka
ng,
Sungai
Tallo,
Maka
ss
ar,
Sula
wesi
Sela
t
an.
Pr
osiding
Sem
ina
r
Nasiona
l
Mas
y
a
rak
at
B
iodi
ver
si
t
as
Indone
sia.
20
15;
1(3):
444
-
448.
[11]
Chai
rul
,
Yent
i
SR
.
Pe
m
buat
an
Bioe
ta
no
l
dar
i
Nira
Nipah
Me
nggunaka
n
Sach
aro
m
y
c
es
Cere
v
ic
e
ae.
Jurna
l
Teknobi
ologi
.
20
13;
4(2):
105
-
10
8.
[12]
Hendra
D,
Kom
aray
a
ti
S,
W
ibi
s
ono
HS
.
Pem
bu
at
an
B
ioe
t
anol
d
ari
Nira
Nipah
denga
n
Ala
t
Ha
sil
Rekay
a
s
a
Ti
pe
P3H
H
-
1.
J
urnal
Pe
n
el
i
ti
an
Has
il
Hutan
.
20
16;
34(1).
[13]
Heri
y
ant
o
NM
,
Endro
S.
Karl
in
a
E.
Potensi
d
a
n
Sebar
an
Nipa
h
(N
y
pa
frut
ica
ns
(Thunb.
)
W
urm
b)
seba
gai
Sum
ber
da
y
a
Pa
ngan
(Poten
c
y
and
Distribution
of
n
y
pa
pal
m
(N
y
pa
frutica
ns
(Thunb.
)
W
urm
b)
as
Food
Resourc
e).
Jurn
al
P
ene
l
it
ian
Hu
tan
dan
Konser
v
asi A
lam
.
2011;
8(4):
327
-
335
.
[14]
Marini
Y,
Emi
yat
i
,
Hawariy
a
h
S,
Hart
uti
M.
2
014.
Perba
nding
an
Metode
Kl
asifi
kasi
Supervis
ed
Maximum
Li
kelihood
d
eng
an
Klasif
ika
si
B
erb
asis
Objek
u
ntuk
Inve
n
ta
risa
si
La
h
an
T
amba
k
di
Kabup
at
en
Maros.
Di
dal
am:
Kart
asa
sm
it
a
M,
Has
y
im
B,
Kus
har
dono
D,
Adiningsih
E
S,
Dewant
i
R,
S
ambodo
KA
,
edi
tor.
Sem
ina
r
Nasiona
l
Pengin
der
aa
n
Jauh
Det
eksi
Para
m
et
er
Geobiof
isik
dan
Disem
ina
si
Penginde
ra
an
Jauh.
P
erb
andi
ng
an
Metode
Klasifi
k
asi
Supervised
Maximum
Li
kel
ihood
denga
n
K
la
sifik
asi
Berba
s
is
Objek
untuk
Inve
nta
r
isasi
La
han
T
ambak D
i
Kabupa
t
en
M
aro
s.
Bogor
.
201
4;
505
–
516.
[15]
Hardj
ana
AK
,
Suastat
i
L.
Pro
dukti
vitas
Te
ga
kan
Ta
naman
Mera
nti
T
embaga
(Shorea
le
pr
osula
Miq.)
dar
i
Cabut
an
Alam d
an
Stek
Pucuk.
J
urnal
Pe
n
el
i
ti
an
Dipte
rokarpa
.
2
014;
8(1):
47
-
58.
[16]
Sim
amart
a
MM
T.
Mode
l
Pen
y
u
sunan
Kualitas
Te
m
pat
Tumbuh
Eucal
y
ptus
u
ro
ph
y
l
la
Pada
Hu
t
an
T
ana
m
an.
Jurnal
E
le
k
troni
k
AK
AR
.
2015;
1
(1):
1
-
10.
[17]
Sim
on
H.
Metod
e
Inve
n
tore Hutan.
Yog
y
ak
art
a
:
P
ustaka
Pe
la
j
ar.
2
007.
[18]
Ha
y
at
SN
.
Pemba
ngunan
Kela
s
Kuali
ta
s
Te
m
pa
t
Tumbuh
Mang
rove
Mengguna
kan
Cit
ra
Resol
usi
Sedang
di
IUP
HHK
-
HA
P
T.
Kand
elia
A
lam
Kali
m
ant
an
B
ara
t
.
Skripsi
.
Bo
gor:
Insti
tut
Per
t
ani
an
Bogor;
20
15.
[19]
Muis
H,
Ja
y
a
I
NS
,
Sale
h
MB,
Murtil
aksono
K.
Inform
at
ion
R
e
quire
d
for
Esti
m
at
ing
the
Indicat
or
of
Fores
t
Rec
l
amati
on
Su
cc
ess
in
Ex
Co
a
l
-
Mining
Area
.
Indone
sian
Jour
nal
of
Elec
tric
al
Engi
ne
ering
an
d
Computer
Sci
en
ce
.
2016;
3
(1):
182
-
193
.
[20]
Suhendang
E
.
Hubungan
antar
a
Dim
ensi
T
eg
aka
n
Hut
an
T
a
naman
denga
n
Faktor
T
empat
Tumbuh
dan
Ti
ndak
an
Silv
ik
ult
ur
p
ada
Hut
an
Ta
n
aman
Pinus
m
erc
usii
Jungh.
Et
De
Vriese
di
Pulau
Jawa.
Diserta
si
.
Bogor
:
Instit
ut
Pe
rta
n
ian Bogor;
1990
.
[21]
Pree
ce
ND
,
Law
es
MJ
,
Rossm
an
AK
,
Curra
n
TJ,
Oozte
r
zee
PV
.
Modell
ing
th
e
Grow
th
of
Young
Rai
nfore
s
t
Tre
es
for
Biom
ass
Esti
m
at
es
and
Carbon
Sequestra
ti
on
Acc
oun
ti
n
g.
Journal
Forest
Ec
olog
y
and
Manage
ment
.
2015;
351:
57
-
6
6.
[22]
Shofi
y
an
ti
R
.
Teknologi
Pesawat
ta
npa
Aw
ak
unt
uk
Pem
et
aa
n
da
n
Pem
ant
aua
n
T
ana
m
an
dan
La
h
an
Pert
ani
a
n
.
Jurnal
Informati
ka
P
ertani
an
.
20
11;
2(2):58
-
64
.
[23]
Kus
nadi
,
Ja
y
a
INS
,
Pus
pani
ngs
ih
N,
Basuki
M,
Hakim
L.
Model
Penduga
Kuali
ta
s
Te
m
pat
Tumbuh
Jat
i
(Te
c
tona
g
ran
di
s)
Menggunakan
Cit
r
a
Resolus
i
Sanga
t
T
inggi
Pesawat
Ti
d
ak
Bera
wak
di
KP
H
Nganjuk.
Jurnal
P
ene
l
it
ia
n
Kehut
anan
Wa
ll
ac
ea
.
2016;
5(2
):
185
-
194.
[24]
W
ah
y
uni
S,
Ja
ya
INS
,
Pus
pani
n
gsih
N
.
Model
f
or
Esti
m
at
ing
A
bove
Ground
Bi
om
ass
of
Rec
lam
at
ion
Forest
using
Unm
anne
d
Aeri
a
l
Veh
ic
l
e
s.
Indone
sian
Jo
urnal
of
El
e
ct
ri
c
al
Eng
ine
ering
and
Computer
S
ci
en
ce
.
2016;
4(3):
586
-
593
.
[25]
Ja
y
a
INS
,
Kle
in
n
C,
Mel
at
i
D,
Fehrm
ann
L,
Pe
rez
-
Cruz
ado
C
,
Sept
y
awa
rda
n
i
E,
Dhan
i
FA
R,
W
ah
y
uni
S
.
Util
izing
Multi
-
Score
Data
for
Sus
ta
nai
bl
e
Forest
Mana
gem
ent
in
Indon
esi
a.
Proce
edi
ngs
of
the
5th
Inte
rna
ti
ona
l
DA
AD
W
ork
shop
:
Bridgi
ng
th
e
Gap
bet
wee
n
in
form
at
ion
nee
ds
and
fore
st
inv
e
ntor
y
ca
p
aci
t
y
.
Durban
and
Pieterm
ari
tz
burg
.
20
15;
p.
163
-
181
.
[26]
Ghoza
li,
Im
an.
Aplika
si
Anali
si
s
Multi
var
iate
d
enga
n
Program
SP
S
S.
Sem
ara
ng:
Bada
n
Pener
bit
Univer
sit
as
Diponegor
o
Sem
ara
ng.
2006.
[27]
Santoso
S.
L
atih
an
SP
SS
Stat
isti
k
Para
m
et
rik
.
J
a
kar
ta:
Gram
edia. 2000.
[28]
Kafa
bih,
Fikr
i.
Penent
uan
Kual
i
ta
s
Te
m
pat
Tum
buh
Sengon
(Para
seria
n
the
s
falca
ta
ri
a
(L)
Niel
sen
)
pada
Area
l
IUP
HHK
-
HTI
Tra
ns PT
Be
la
n
ta
r
a
Subur Kal
iman
ta
n
B
ara
t
.
Skrips
i.
Bogor
:
Inst
it
ut
Perta
n
ia
n
Bogor
;
2017.
Evaluation Warning : The document was created with Spire.PDF for Python.