TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 6047 ~ 6054
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.529
4
6047
Re
cei
v
ed
De
cem
ber 6, 20
13; Re
vised
April 4, 2014;
Accept
ed Ap
ril 20, 2014
Modeling and Simulation of Silicon Solar Cell in
MATLAB/SIMULINK for Optimization
Ehsan Hoss
eini
Sama techn
i
ca
l and voc
a
tio
n
a
l
traini
ng col
l
e
g
e
, Islamic Azad
Universit
y
, T
e
hran Bra
n
ch,
Te
h
r
a
n
,
Ir
a
n
Emai
l
:
Ho
sseiny
.e
@g
mail
.com
A
b
st
r
a
ct
One of the mo
st significa
nt curr
ent disc
ussi
ons in life is s
o
lar e
nergy a
n
d
has be
en in
use sinc
e
the b
egi
nn
ing
of time. Increa
singly,
man
is
lear
ni
ng
how
to yoke t
h
is im
portant
r
e
source and use it to
repl
ace trad
itio
nal e
ner
gy sou
r
ces. Recent d
e
vel
o
p
m
e
n
ts in
the field of so
l
a
r ener
gy hav
e
led to a re
new
ed
interest in So
l
a
r cells to store this ener
gy and re
pr
od
uce
electricity. Unfortunat
e
l
y the amou
nt of ene
rgy
converte
d is v
e
ry less, that i
s
t
he efficienc
y of conversi
o
n
is po
or. T
h
e
ma
jor pr
obl
e
m
is to i
m
prov
e the
efficiency s
o
th
at the loss
es c
an b
e
min
i
mi
zed. In
this pr
oj
ect the Maxi
mum P
o
w
e
r Poi
n
ts are fou
nd
an
d
the Fill
Factor i
s
calcu
l
ate
d
. In
this p
a
p
e
r usi
ng MATLAB
a
nd SIMULINK
mo
de
l
the c
o
mparis
on
of silic
on
solar ce
ll an
d type of pa
nels i
s
done.
Ke
y
w
ords
: ma
ximu
m pow
er p
o
int, Photo
e
lec
t
ric, solar
radi
a
t
ion, solar ce
ll
mo
de
l, photov
oltaic
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g an
d
Scien
ce. All righ
ts reser
ved
.
1. Introduc
tion
Studies of ph
otovoltaic ge
ner
atio
n syst
ems a
r
e activ
e
ly being pro
m
oted in ord
e
r
to cope
with enviro
n
m
ent issue
s
su
ch a
z
the g
r
een h
o
u
s
e
e
ffect and air
pollution. In p
a
rticul
ar, the
use
of natural e
n
e
rgy, espe
cia
lly
the solar
energy is in
crea
singly em
pha
sized an
d
rega
rde
d
as an
importa
nt resource of po
wer ene
rgy in
the future
. By definition, solar en
ergy is that beami
n
g
light and he
at that is generated from the
sun [1].
2. Rese
arch
Metho
d
2.1. The Photoelec
t
ric Effect
A sol
a
r
cell
o
r
photovoltai
c
cell i
s
a
simpl
e
PN jun
c
tion
photo
d
iod
e
t
hat can
ab
so
rb sun’
s
radiatio
n. Th
e photovoltai
c
effect
sho
w
n in Figu
re
1
is the ba
si
c p
h
ysical proce
ss th
rou
gh
which
a PV cell
co
nverts sunlig
ht into el
ect
r
i
c
ity. Sun
light
is
co
mpo
s
e
d
of p
hoton
s--pa
c
kets of
solar
energy.
Whe
n
photon
s strike a PV cell, they may
be reflected o
r
absorb
ed, or
they may pass
right throug
h
[2]. The ab
sorbed
phot
ons
gen
erat
e
ele
c
tricity. The en
ergy of a photo
n
is
transfe
rred t
o
an
ele
c
tro
n
in a
n
ato
m
of the
se
micon
d
u
c
tor
device. An
a
rray
of sol
a
r cel
l
s
conve
r
ts
sola
r ene
rgy into a usa
b
le amo
unt
of direct
current (DC) el
ectri
c
ity.
Figure 1. The
Photoelect
r
ic Effect
Different
mat
e
rial
have te
nden
cy to a
b
s
orb
different
amou
nt of li
ght ene
rgy d
epen
ding
upon th
e ba
n
d
gap
of ea
ch
material. Sili
con
ha
s ba
nd
gap of 1.1
e
V
so it ab
so
rb
s light ene
rgy
o
f
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
0
46
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 604
7 –
6054
6048
minimum
1.1eV but it gives out energy t
hat is le
ss than 1.1eV. Simi
larly, Gallium
arsenide
whi
c
h
has ba
nd ga
p of 1.43eV absorb
s
en
ergy more th
a
n
1.43eV bu
t delivers en
ergy less th
an
1.43eV.
2.2. One Dio
d
e Solar Cell Model
Solar
cell
is a
PN j
u
n
c
tion
diode
an
d
ca
n be
mo
deled
as a
diod
e
with a p
h
oto
ge
nerate
d
curre
n
t so
urce in pa
rallel [
3
, 8]. The di
ode itself ha
s shu
n
t and
serie
s
resi
stan
ce a
s
sho
w
n
in
Figure 2.
R
sh
I
sh
I
D
I
sh
I
L
R
s
+
_
V
Figure 1. Solar Cell Ele
c
tri
c
al Equivale
n
t
Circuit
To unde
rstan
d
the elect
r
on
ic beh
avior of
a sola
r cell, it is useful to create a
mo
del
which
is ele
c
tri
c
ally
equivalent. A
n
ideal
sola
r
cell may b
e
modele
d
by a
curre
n
t sou
r
ce in pa
rallel
with
a
diode. In pra
c
tice n
o
sola
r cell is ideal, so
a
shunt
resi
sta
n
ce an
d a seri
es resi
st
ance
comp
one
nt are adde
d to the model.
2.3. Solar Paramete
rs
Irradi
an
ce (S): The amount
of
solar e
nergy reaching t
h
e cell i
s
irra
dian
ce given
in Watts
per mete
r sq
uare
(W/m
2
)
Open
Circuit Voltage (V
OC
): It is the maximum voltage
available fro
m
a solar
cell
at zero
c
u
rrent.
Short Ci
rcuit
Cu
rre
nt (I
SC
): It is the
current throug
h the
sola
r cell wh
en the
voltage
across the
ce
ll is zero.
Figure 2. IV curve by joinin
g I
SC
and V
OC
The I-V
cu
rve
of the
sola
r
cell follo
ws th
e sa
me
sha
p
e
as it is i
n
Fi
gure.
3 by m
a
kin
g
a
curve joi
n
ing
I
SC
and V
OC
.
Input Power
(Pin): The in
put to a solar cell
is the radiation from
sun. Thu
s
the input
power to a
so
lar cell de
pen
ds u
pon its
effective ar
e
a
(Ae) an
d the radiation
(S).
The inp
u
t po
we
r
is given by (A
e × S).
Output Po
we
r (P
0): T
he
o
u
tput po
we
r
of a
sola
r
cell
is th
e give
n
by the p
r
od
u
c
t of the
output voltag
e and outp
u
t curre
n
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modeling and Sim
u
lation of Silicon Solar
Cell
in MATLAB/SIMULINK for… (E
h
s
a
n
H
o
s
s
e
i
n
i
)
6049
Maximum Po
wer Point (M
PP): The voltage at
whi
c
h
the high
est
power i
s
ob
served
a
s
s
h
ow
n
in
F
i
gu
r
e
4
Fill Factor
(F
F): This i
s
the available powe
r at the maximum power point (M
PP) divided
by the produ
ct of open circuit voltage (V
OC
) and the short circuit cu
rre
nt (I
SC
) Typical commercial
solar
cell
s have a fill fact
or
>0
.70.
Cel
l
s with high fill factor
hav
e
less curren
t dissi
pated
as
internal loss
.
Effic
i
enc
y (
η
): The efficien
cy of a solar cell is determined a
s
the
fraction of incid
ent
power which is co
nverted t
o
elec
tri
c
ity and is defin
ed
as [4, 7]:
%
100
in
o
P
P
(1)
Figure 3. Maximum Power
Point and Fill Factor
2.4. Solar Cell Si
mulation in MATLAB
As di
scussed
earlie
r, a
sol
a
r
cell is noth
i
ng but
a
sim
p
le PN ju
ncti
on dio
de al
on
g with
a
photo
c
urre
nt sou
r
ce, a se
ries a
nd sh
u
n
t resi
st
or. T
he entire en
ergy
co
nversion system h
a
s
been de
sig
n
e
d
in MATLB environm
ent. MATLAB® is a high-l
e
vel tech
nical com
puting lang
ua
ge
and i
n
teractiv
e envi
r
onm
e
n
t for algo
rith
m devel
opm
ent, data
visualization, d
a
t
a analy
s
is,
a
n
d
nume
r
ical co
mputation [5].
For calculatin
g the total current
I
Equatio
n (2) i
s
used:
(
2
)
In this equ
ation, I
ph
is the photo
c
urre
nt, I
s
is the reve
rse
satu
ratio
n
curre
n
t of the diode,
q is the electron ch
arg
e
, V
t
is the thermal voltage,
k is the Boltzmann
'
s
con
s
tant, T is the
junctio
n
temp
eratu
r
e, n is the idealit
y factor of the d
i
ode, and Rs and R
sh
a
r
e th
e
s
e
r
i
es
an
d
shu
n
t
re
sist
o
r
s of
t
he cell,
res
p
e
c
t
i
v
e
ly
.
A
s
a re
sult
,
t
h
e co
mplet
e
phy
si
cal be
h
a
v
i
our of
t
h
e
PV
cell is in rel
a
tion with I
ph
, I
s
, Rs
and R
sh
from one ha
nd and with t
w
o environm
ental parame
t
ers
as the tempe
r
ature an
d the
solar
radi
atio
n from the other ha
nd.
2.5. Effec
t
s
of Solar Rad
i
ation Variati
on
The mo
st important pa
ra
meter on
whi
c
h the
outp
ut of a solar ce
ll depend
s is
the sola
r
radiatio
n whi
c
h i
s
its
only
input. The
ch
ange i
n
r
adia
t
ion varie
s
th
e output
para
m
eters
of sol
a
r
cell [5, 7]. The radiatio
n de
pend
en
cy on sola
r cell i
s
gi
ven by:
(
3
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 604
7 –
6054
6050
Whe
r
e,
Ki
is t
he cell'
s
sho
r
t
cir
c
uit
cu
rr
en
t temperature c
oeffic
i
ent (A/°C),
β
is the
sola
r ra
diatio
n
(W/m
2
) a
nd
I
ph
is the photo
c
urre
nt.
Figure 4. Solar Cell I-V Cu
rve for Variati
on in
Radi
ation
Figure 5. Solar Cell P-V
Curve for Vari
a
t
ion in
Radi
ation
The output re
sults for vari
a
t
ion in solar radi
ation is gi
ven in Figure
5 for voltage versu
s
c
u
rr
en
t wh
er
e it is o
b
s
e
r
v
ed
th
a
t
for
th
e
in
c
r
e
a
s
e
in
ra
diation, the
current of
the
sola
r
cell
is al
so
increa
sing. With resp
ect to the Equat
ion
(3), it is clea
r that the cu
rrent is dire
ctly propo
rtional
to
the
radiation. The cha
r
a
c
te
ristic
I-V
cu
rve tells that th
ere
are two
region
s i
n
the
curve:
one
is
the
curre
n
t sou
r
ce regi
on an
d anothe
r is th
e voltage s
o
u
r
ce
regi
on. In the voltage source regio
n
(in
the right sid
e
of the curve),
the internal i
m
peda
nc
e is
low and in th
e curre
n
t sou
r
ce
regio
n
(in
the
left side of th
e cu
rve), the
impeda
nce is high. Irra
dia
n
ce tem
perat
ure pl
ays an i
m
porta
nt role
in
predi
cting
th
e I-V cha
r
a
c
teristic,
and
effects
of bo
th factors
ha
ve to be
co
nsid
ere
d
whi
l
e
desi
gning the
PV system.
Whe
r
ea
s the
irra
dian
ce af
f
e
cts the o
u
tp
ut, temperatu
r
e mainly affe
cts
the termin
al
voltage. Figu
re 6
whi
c
h
shows vo
ltag
e
versus po
wer
curve
is
u
s
ed to
find t
he
maximum p
o
w
er poi
nt that
is th
e voltag
e at
whi
c
h th
e maximum
p
o
we
r o
b
serve
d
. Fro
m
the I
-
V,
it is ob
se
rve
d
that the
short
cir
c
uit
c
u
rr
ent
in
cr
ea
se
s wit
h
in
crease in i
r
rad
i
ance at a
fixed
temperature.
More
over, fro
m
the I-V an
d
P-V cu
rves
a
t
a fixed irra
di
ance, it is ob
serve
d
that th
e
open
ci
rcuit
voltage d
e
creases with
i
n
crea
se
in
te
mperature.
In
Figu
re
7 th
e current
versu
s
power curve i
s
plot.
Figure 6. Solar Cell P-I Cu
rve for Variati
on in Ra
diatio
n
2.6. Effec
t
s
of Temper
ature Variation
The
sola
r rad
i
ation is the
only input fo
r the so
lar cel
l
, but the oth
e
r in
dire
ct in
put that
cha
nge
s the
output ch
ara
c
teri
stic
s of the sol
a
r cell is the temp
e
r
ature. Equati
on (3
) sh
ows the
relation
between the temp
eratu
r
e an
d the photo
c
u
r
rent [5]. The chang
e in phot
ocu
r
rent ch
an
ge
s
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modeling and Sim
u
lation of Silicon Solar
Cell
in MATLAB/SIMULINK for… (E
h
s
a
n
H
o
s
s
e
i
n
i
)
6051
the outp
u
t voltage an
d
cu
rrent. Th
e Fig
u
re
8, Figu
re
9 an
d Fi
gure
10 give
the I
-
V, P-V an
d
P-I
cha
r
a
c
t
e
ri
st
ic
s f
o
r v
a
rio
u
s t
e
mpe
r
at
ur
es
at a fixed irra
dian
ce at 100
0W/m
2
.
Figure 7. Solar Cell I-V Cu
rve for Variati
on in
T
e
mp
er
a
t
ur
e
Figure 8. Solar Cell P-V
Curve for Vari
a
t
ion in
T
e
mp
er
a
t
ur
e
2
2.
2
2.
4
2.
6
2.
8
3
3.
2
3.
4
3.
6
3.
8
4
T
=
25°
C
T
=
35°
C
T
=
45°
C
T
=
50°
C
T
=
55°
C
1.
6
1.
5
1.
4
1.
3
1.
2
1.
1
1
0.
9
CU
RRE
N
T
(
A
)
PO
W
E
R
(
W
)
Figure 9. Solar Cell P-I Cu
rve for Variati
on in Temp
erature
Figure 10. Simulated Mo
d
e
l
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 604
7 –
6054
6052
2.7. PV Cell
Model in SIMULINK
The MATLA
B
/SIMULINK [6] model o
f
a Sola
r
cel
l
to measure
the output
voltage,
curre
n
t, po
we
r is sho
w
n in
Figure 11.
Th
is mo
del
use
s
the
main
bl
ock “S
olar Cell” in
which
the
values are
predefine
d
. Fo
r V
OC
the d
e
fa
ult value i
s
0.6V. The
I
SC
is set
to 7.3
4
A. The
value
s
can
be chan
ged
once a m
ode
l is cre
a
ted a
nd pla
c
e th
e
block in it. T
he termi
nal
s
of the blo
c
k
are
Incide
nt irra
di
ance (I
r
), Po
sitive electri
c
al
voltage (+)
and
Negative
electri
c
al vol
t
age(-). Th
e Ir
terminal i
s
co
nne
cted to th
e Irradian
ce
block
(C)
wh
ere
a
con
s
tan
t
value of radi
ance fro
m
su
n in
W/m
2
ca
n b
e
set. The
current
sen
s
o
r
a
nd voltage
sensors a
r
e
u
s
ed to
mea
s
ure
cu
rrent a
nd
voltage re
spe
c
tively. Further, to plot the
curve of
voltage versus current XY plotter block is u
s
e
d
.
The
pl
ots of output cha
r
a
c
teri
stics can
be see
n
in
belo
w
figu
re
s whi
c
h
are te
sted
at Stand
ard
Test Conditio
n
s (ST
C
). Th
e STC ha
s S=10
00
W/m
2
, T=
25
o
C an
d Air Mass (AM
)
= 1.5.
VOL
T
A
G
E (V)
CU
RR
EN
T
(
A
)
CU
RRE
N
T
(A)
PO
W
E
R
(
W
)
Figure 11. Solar I-V Cu
rve in SIMULINK
Figure 12. Solar P-I Cu
rve in SIMULINK
Figure 13. Solar P-V Cu
rve
in SIMULINK
2.8. Efficienc
y
of Solar Cell
The
efficien
cy of solar cell
is given
in E
quation
(1
). T
he o
u
tput p
o
w
er a
nd i
npu
t power
are
cal
c
ul
ated. Since power i
s
di
re
ctly proportional t
o
radiance, t
he effici
en
cy will increase
as
the radia
n
ce
incre
a
ses.
Figure 1
5
sh
ows the
curv
e of
efficien
cy versus the
ra
dian
ce.
T
h
e
efficien
cy at STC of the so
lar
cell i
s
foun
d out to be 14
.185%
POWER (W)
VOLT
A
G
E (V)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modeling and Sim
u
lation of Silicon Solar
Cell
in MATLAB/SIMULINK for… (E
h
s
a
n
H
o
s
s
e
i
n
i
)
6053
Figure 14. Efficien
cy versu
s
Ra
diation
Curve at STC
3. Results a
nd Conclu
sion
3.1. Maximum Po
w
e
r Poi
n
t and Fill Factor
For a solar cell,
the
more
the Fill F
a
ctor, the m
o
re is the
reliability
.
So it is one of the
importa
nt factors afte
r efficien
cy. For a
good
so
la
r
cell, the effici
ency ha
s to
be greater th
an
70%. Tabl
e 1 shows the
calcul
ation
of
fill factor at
different
radi
ations.
From thi
s
it i
s
observ
ed
that the fill fa
ctor i
s
consta
nt for different radiation.
Table 1. Fill F
a
ctor
S (W/m
2
) V
ma
x
(V)
I
ma
x
(A)
V
oc
(V)
I
sc
(A)
V
ma
x
× I
ma
x
(W
)
V
oc
× I
sc
(
W
)
F
ill F
a
ctor
1000
0.53
7.5370
0.661
8.174
3.995
5.403
0.74
800 0.53
5.9020
0.650
6.539
3.128
4.248
0.74
600 0.51
4.4730
0.635
4.904
2.281
3.112
0.73
400 0.49
3.0610
0.614
3.270
1.500
2.007
0.75
200 0.45
1.5010
0.578
1.635
0.675
0.945
0.71
Figure 15. Plot for MPP and FF versus
Radi
ation
The graph in
Figure 1
6
which i
s
plotted from
the d
a
ta in Table
1 sho
w
s that the MPP
increa
se
s lin
early and th
e FF rem
a
in
s co
nsta
nt
for the variat
ion in su
n’s radiation. T
h
e
simulate
d fill factor i
s
nea
rl
y same a
s
the datasheet fill factor.
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0
200
400
600
800
1000
1200
MPP
FF
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 604
7 –
6054
6054
By the formul
a of fill factor,
the FF for
differ
ent methods i
s
compared
and is found to be
nearly the sa
me.
3.2. Efficienc
y
Efficiency b
e
i
ng the
main
p
a
ram
e
ter
of solar
ce
ll, it is
necess
a
ry to
try to have maximum
efficien
cy for
maximum e
n
e
rgy
conve
r
si
on. Tabl
e 2
g
i
ves
comp
ari
s
on
of efficie
n
cy by all
three
method
s and
are ne
arly sa
me.
Table 2. Co
m
pari
s
on of Efficien
cy
paramete
r
MATLAB
SIMULINK
Output p
o
w
er
3.452W
3.6W
Input Po
w
e
r
24.336W
24.336W
Efficiency 14.185%
14.8%
The o
pen
ci
rcuit P-V, P-I,
I-V curve
s
were
obtain
ed
from the
sim
u
lation
of the
PV cell
desi
gne
d in
MATLAB environm
ent expl
ains in
deta
il i
t
s depe
nde
nce on the irradi
ation levels
a
nd
temperature
s
. The entire
energy
co
nve
r
sio
n
sy
stem has bee
n
de
sign
ed in MA
TLB-SIMULINK
environ
ment.
The variou
s
values of the
volt
age and
curre
n
t obtai
ned have b
e
en plotted in
th
e
open
circuit I-V cu
rves of
the PV cell a
t
insolation le
vels ra
nging
from 200
W/
m
2
to 1000
W/
2
.
Ho
wever
the
perfo
rman
ce
of
the photov
oltaic devic
e
depe
nd
s o
n
t
he
spe
c
tral di
stributio
n
of the
sola
r
radiatio
n. The val
u
es fo
r all
th
e outp
u
t pa
rameters
are
found to
b
e
satisfa
c
tori
ly
comp
arable.
Referen
ces
[1]
Mutoh
N, Inou
e T
.
A control
method
to ch
a
r
ge
s
e
ries-c
on
nected
ultra
e
l
e
ctric do
ubl
e-la
yer ca
pacitor
s
suitab
le for
p
h
o
tovolta
i
c g
e
n
e
r
ation
s
y
st
ems
combi
n
in
g MP
PT
control met
hod.
IEEE Transactions on
Industry. Electron
. 200
7; 54(1)
: 374–3
83.
[2]
Rud
berg
E. T
he e
nerg
y
d
i
stri
butio
n of
el
ectrons
in th
e
phot
oel
ectric e
ff
ect.
Physic
a
l. Review.
19
35;
48(1
0
): 811-
81
7.
[3]
T
s
ai HL,
T
u
C
S
, Su YJ.
Develo
p
m
ent of Gener
ali
z
e
d
Ph
o
t
ovoltaic Mo
del
Using MAT
L
A
B
/SIMULINK
.
Procee
din
g
s of
the W
o
rld Co
ngress o
n
En
gi
neer
i
ng
and
C
o
mputer Sci
e
n
c
e W
C
ECS. San F
r
ancisc
o
,
USA. 2008; 8
4
6
-85
1
.
[4]
Emery
KA, Oster
w
ald CR. Sola
r Ce
ll Effici
en
c
y
M
easur
eme
n
ts.
Solar E
ner
gy Res
earc
h
In
stitute
. 161
7
Cole B
l
vd., Golden, CO 80
401
(U.S.A.). 1985
: 253-27
4.
[5]
Salmi T
,
Bouzgue
nd
a M, Gastli A, Masmoud
i A. MAT
L
AB/Simulink
Ba
sed Mo
de
ling
of Solar
Photovo
l
taic C
e
ll.
Internatio
n
a
l Jour
nal of R
enew
ab
le En
er
gy Rese
arch.
2
012: 2(2).
[6]
W
eeks M. Introductio
n
T
o
Matlab®
& SIMULI
NK A Project Appro
a
ch T
h
ird Editio
n.20
07.
[7]
Sur
y
a Kumar
i
J, Sai Babu C
h
.
Mathematic
al Mod
e
li
ng a
nd Simu
lati
on
of Photovo
l
taic
Cell us
in
g
Matlab-S
i
mul
i
n
k
Environm
ent.
Internatio
nal J
ourn
a
l of Elect
r
ical
a
nd C
o
mputer En
gin
eer
ing (IJECE)
.
201
2; 2(1); 26-
34.
[8]
Soeted
jo A, L
o
mi A, Nak
h
o
da YI, Krisma
nto AU. Mod
e
ling
of Ma
xim
u
m Po
w
e
r Po
int T
r
acking
Controller for S
o
lar Po
w
e
r S
y
s
t
em.
T
E
LKOMNIKA Indon
esi
an Jo
urna
l
of E
l
ectrical E
ngi
ne
erin
g.
201
2;
10(3): 41
9-4
3
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.