TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 6313 ~ 6323
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.611
0
6313
Re
cei
v
ed Fe
brua
ry 20, 20
14; Re
vised
April 17, 201
4; Acce
pted
May 3, 201
4
Handover Scen
arios for Mobile WiMAX and Wireless
LAN He
terogeneous Network
N.M.A.E.D. Wiras
t
uti*
1
, C.C.W. Em
e
h
el
2
1
Departme
n
t of Electrical En
gi
neer
ing, F
a
cu
lt
y of Eng
i
ne
eri
n
g, Uda
y
a
na U
n
iversit
y
,
Bukit Jimbar
an
Campuss, Ba
dun
g, Ba
li, Ind
ones
ia, T
e
lp/Fax: 0
361-
70
33
15
2
Geotech T
e
chnol
og
y Lim
i
ted,
Herb
ert Macau
l
a
y
W
a
y, W
u
se
Z
one 4, Abuj
a, Neger
ia, T
e
lp: 09-62
30
364
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: de
w
i
.
w
ir
astuti
@ee.u
nud.
ac.i
d
A
b
st
r
a
ct
T
h
is p
a
p
e
r pr
esents
pro
pos
ed
ha
ndov
er
scenar
ios f
o
r
a h
e
tero
gen
eo
us n
e
tw
ork co
mpr
i
sin
g
mo
bil
e
w
o
rldw
i
de inter
o
p
e
rab
ility for Micro
w
ave Access and W
i
re
less
Loca
l
Area N
e
tw
ork segme
n
ts.
Ho
mo
gen
ous
h
and
over sce
na
rios for a
mo
bi
l
e
W
i
MAX net
w
o
rk are
also c
o
nsid
ered to
all
o
w
a comp
arativ
e
ana
lysis. A mo
bile
no
de su
pp
orting vo
ice tra
ffic is
analys
ed
, w
hen oper
ati
ng in
a ha
lf-cell
overla
p cover
a
g
e
scenar
io, for b
o
th pe
destri
a
n
and v
ehic
u
l
a
r
spee
ds. All
pr
opos
ed
han
do
ver scen
a
rios
are ass
e
ssed
and
valid
ated thr
o
ugh syste
m
-
l
e
v
el Me
dia In
d
epe
nd
ent H
a
n
dover netw
o
rk
simulati
ons. Results
for b
o
th
ho
mo
gen
ous
and
het
erog
en
eous
ha
nd
ove
r
show
that
t
he
han
dov
er
del
ay a
n
d
jitt
e
r ar
e w
i
thin
the
accepta
b
l
e
va
l
ues
pub
lish
e
d
by th
e W
i
MA
X F
o
ru
m.
F
o
r
heter
oge
ne
ou
s ha
ndov
er, the
packet
los
s
is
neg
lig
ibl
e
for
all
cases;
how
ever, ther
e w
e
re si
gnific
ant
occurre
nces
of
pack
e
t l
o
ss i
n
thro
ug
hput
for
ho
mo
gen
ous
h
and
over at v
e
h
i
cular s
p
e
eds.
T
h
is is d
ue to t
he fact that the
im
ple
m
entati
o
n of an
ad
aptiv
e
chan
nel sc
ann
i
ng al
gorith
m
to
alloc
a
te scan
n
i
ng
intervals can lim
i
t comm
uni
ca
ti
on
d
i
srup
tio
n
s
.
Ke
y
w
ords
: bro
adb
an
d, w
i
rele
ss commu
n
ic
ation, ha
nd
over
sche
m
es, mob
i
le co
mmu
n
icati
on, VoIP
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The ITU
sta
ndardisation
of mobile
World
w
ide i
n
te
rope
ra
bility for Mi
cro
w
av
e Access
(WiMAX
)
a
s
a third
ge
neration (3G
)
ne
twork h
a
s
giv
en n
e
two
r
k
operators
with the o
ppo
rtu
n
ity
to provide
a
new
mean
s f
o
r the m
obil
e
user to
gai
n acce
ss to l
o
w-co
st b
r
oa
dban
d Intern
et
servi
c
e
s
[1].
Whe
n
co
m
b
ined with Wirel
e
ss-Lo
cal
Area Net
w
ork (W-LA
N
) solutio
n
s,
widely
referred
to a
s
WiFi, it b
e
co
mes
po
ssi
ble
to prov
ide
seamle
ss wi
re
less In
ternet acce
ss
thro
u
gh
an hie
r
archi
c
al heteroge
n
eou
s net
work architectu
re
that is inde
pend
ent of traditional
cell
ular
netwo
rk
soluti
ons.
The literatu
r
e cont
ains
several prop
osal
s for th
e archite
c
ture and p
e
rfo
r
man
c
e
evaluation cri
t
eria
fo
r WiM
AX
and WiFi integratio
n [2
-8]. A VHT
C
(Vertical
Han
doff Tra
n
sl
ation
Centre)
archit
ecture for
Wi
MAX and Wi
Fi heterogen
eou
s networks is p
r
o
p
o
s
ed
in [2] to improve
the tran
smi
s
sion
quality
of se
rvice
(QoS
) g
uarantee
s. Thi
s
pape
r al
so
introd
uces
new
approa
che
s
and a
r
chite
c
t
u
re
s for pa
cket tran
sl
atio
n, QoS map
p
ing, ban
dwi
d
th borro
win
g
management and vertic
al handover
protoc
ols
to achieve advan
ced s
e
amles
s
heterogeneous
wirel
e
ss
networks. In
[3], a
ne
w d
e
si
gn f
o
r
a
WiMAX
and
WiFi
ad
a
p
tation laye
r i
s
int
r
od
uce
d
t
o
redu
ce the d
e
l
ay in the protocol laye
r.
A new u
s
er-centric alg
o
rith
m for ve
rtical
hand
over i
n
e
x
isting
stand
a
r
d te
chn
o
logi
es, li
ke
802.11
and
8
02.16, which
com
b
ine
s
a
trigge
r to
con
t
inuou
sly mai
n
tain the
co
n
nectio
n
an
d t
o
maximise
the
user throug
hput i
s
pro
p
o
se
d in
[4],
while
an
inte
grated
a
r
chitecture
utilisin
g a
novel WiMA
X/WiFi Acce
ss Poi
n
t (AP) device to effectively co
mbine the
WiMAX and
WiFi
techn
o
logie
s
is stu
d
ied
i
n
[5], where
the
WiMAX/WiFi
AP dev
ice and
the
extended
Me
dia
Acce
ss Co
ntrol (MAC) fun
c
tionality ena
ble ea
ch
Wi
Fi hotspot to
supp
ort co
n
nectio
n
-o
rient
ed
transmissio
ns and differenti
a
ted se
rvice
s
.
Furthe
rmo
r
e,
the pro
pose
d
QoS provisioni
ng m
e
cha
n
ism
s
for int
egrate
d
WiM
AX/WiFi
system
s a
r
e i
n
trodu
ce
d in [
6
]. This
wo
rk
pre
s
ent
s the
module
s
req
u
ired to
provid
e an i
n
tegrat
ed
QoS app
roa
c
h over the 80
2.16 network, and add
re
sses
main im
pl
ementation
re
sults in terms of
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 631
3 –
6323
6314
QoS perform
ance and mo
bility with QoS support for conv
erged networks com
p
risi
ng
WiMA
X
and Wi
Fi tech
nologi
es.
A quantitative evaluation
of in
tegrating
WiMAX and
WiFi ca
pa
ci
ty is given in [7].
A
resou
r
ce ma
nagem
ent scheme for
Wi
MAX and Wi
Fi hand
over
sup
portin
g
vo
ice ove
r
IP (VoIP)
is p
r
o
p
o
s
ed
and
analy
s
ed
, based
on
the bl
ockin
g
prob
ability of
ne
w
call
s
while
redu
cin
g
the
drop
ping
pro
bability of ha
ndover
call
s.
While i
n
[8], a propo
sed
model fo
r op
timal pri
c
ing
for
band
width
sharin
g in an
integrated
WiMAX/WiFi
network is
pre
s
ente
d
, where the li
ce
nse
d
WiMAX sp
ect
r
um is
sha
r
e
d
by WiFi APs/route
r
s to
provide Intern
et conn
ectivity to mobile WiFi
use
r
s.
The pro
p
o
s
al
s
fo
r WiMAX and WiFi
inte
gration
a
r
chitecture
a
nd p
e
rform
a
n
c
e e
v
aluation
crite
r
ia previously mentio
ned
are m
o
st
ly analysed
for fixed
Wi
M
AX and
WiFi
acce
ss
network
integratio
n. T
o
the b
e
st o
f
our
kno
w
le
dge,
ho
weve
r, no m
obile
WiMAX a
n
d
WiFi
hand
o
v
er
scena
rio ha
s
been a
nalyse
d.
In this
pap
er, VoIP traffic is
used
as
a u
s
e
r
appl
ication
mod
e
l
. Even for
WiMAX
techn
o
logy p
r
imarily focu
sed on mo
bile
Internet
se
rv
ice
s
, spe
c
ial
handli
ng of VoIP traffic in the
physi
cal a
nd
MAC laye
rs i
s
requi
red
to
maximise
vo
ice ca
pa
city.
Also,
the efficient su
ppo
rt
of
voice traffic h
a
s
always
be
en o
ne
of the
key
metri
c
s
for evalu
a
ting
and
sele
ctin
g ra
dio
acce
ss
tec
h
nologies
[9].
The achievement of seam
less mobility in an
integrated mobile
Wi
MAX/WiFi network wil
l
depe
nd, to a large extent, on maintaini
n
g tolerabl
e sy
stem thro
ugh
put, delay, jitter and p
a
cke
t
loss du
ring
h
o
moge
nou
s
and h
e
tero
ge
neou
s h
and
o
v
er bet
ween
netwo
rks
at pede
stria
n
a
nd
vehicul
a
r sp
e
eds.
Th
ese perfo
rman
ce
crite
r
ia
will f
o
rm th
e b
a
si
s of
the
sim
u
lation
analy
s
is
pre
s
ente
d
in this pa
per.
The p
ape
r i
s
org
ani
sed
a
s
follo
ws. In
se
ction
two,
the u
nde
rlying te
chn
o
log
y
and
foundatio
ns
o
f
mobile Wi
M
AX are con
s
i
dere
d
. Sectio
n three
discu
s
ses
han
dov
er types in m
o
re
detail with
an
empha
si
s o
n
heteroge
ne
ous
han
dove
r
from a
mob
ile WiMAX to
a WiFi a
c
ce
ss
netwo
rk. T
h
e
desi
gn of th
e han
dover
scen
ario
s a
nd
t
he simul
a
tio
n
with voice traffic at different
spe
e
d
s
for h
a
lf-cell
ove
r
la
p covera
ge
a
r
e
ca
rrie
d
o
u
t in
se
ction fo
ur. Se
ction fi
ve analy
s
e
s
t
he
simulatio
n
re
sults an
d, finally, section six draw
s con
c
lusio
n
s an
d indicate
s the in
tended di
re
ction
of future res
e
arch.
2. Rese
arch
Metho
d
2.1. Introduc
tion
A system-l
evel MIH netwo
rk
simulatio
n
for homo
gen
ous a
nd hete
r
oge
neo
us h
andov
e
r
scena
rio
s
wi
th half-cell
overlap
coverag
e
i
s
u
s
ed to
study
mobile
Wi
MAX hand
o
v
er
perfo
rman
ce.
Five cell
s
a
r
e u
s
e
d
in t
he si
mulatio
n
, with e
a
ch
cell’
s
coverage ove
r
la
pp
ing
anothe
r
by 2
50m. Th
e
distance
bet
wee
n
the
centre
s of two ove
r
l
appin
g
cell
s i
s
7
50m
an
d
a
cell’
s di
amet
er i
s
500m.
The
simul
a
te
d traffic is consta
nt bit
rate voice
with u
s
e
r
d
a
tag
r
am
proto
c
ol a
s
the tran
spo
r
t layer protocol
and with
a voice pa
cket size of 160 by
tes (e.g. 5 voice
packet
s
=
80
0 bytes)
and
a voice p
a
cket interval
o
f
0.02s. An
MN supp
ortin
g
voice traffic is
observed
at
a ped
est
r
ian
spe
ed
(5
km
/h), low ve
hi
cula
r
spe
ed
(60
k
m/h) an
d
high ve
hicul
a
r
spe
ed
(120
km/h). The
MIH ha
ndove
r
p
e
rform
a
n
c
e i
s
asse
ssed a
n
d
analy
s
ed
u
s
ing th
e net
work
s
i
mulator NS
-2.
2.2. Handov
er Scenarios
2.2.1. Homoge
nou
s
Hand
ov
er
The hom
oge
neou
s mobil
e
WiMAX han
dover sce
n
a
r
i
o
is modell
e
d
as in Figu
re
1. Five
BSs (define
d
as BS1, BS2, BS3, BS4 an
d BS5), an ASN-G
W ro
ute
r
and a CS
N node involvin
g
a CN
are m
o
delled. An M
N
traverse
s t
he five
BSs starting from
the Hom
e
Ne
twork BS1 (HN
BS1) to Foreign Net
w
ork
B
S
s
(FN BSs
), whic
h are BS2 to BS5.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Han
d
o
v
er S
c
enari
o
s fo
r Mobile WiMAX
and Wi
rele
ss LAN… (N.M.
A
.E.D. Wirast
uti)
6315
Figure 1. Ho
megen
eou
s
Han
dover S
c
enari
o
at Half
-cell Ove
r
la
p Coverage
2.2.2.
Heterog
e
neo
u
s Han
dov
er
This scenari
o
is illust
rated in Fi
gure
2.
At
point
“A”
(i.e. within the coverage
area of
a
WiFi AP (AP1)), a mobile u
s
er
start
s
a voice se
ssio
n with anothe
r use
r
in the CN usin
g an M
M
T.
From
point
“A” to p
o
int
“B”, the u
s
e
r
is at
a pede
strian
spee
d of
5km/h
a
n
d
expe
rien
ce
s a
hand
over to
a WiMAX net
work in BS1.
Then, the u
s
er
move
s from point
“B”
to point “C”
a
t
a
spe
ed
of 60
km/h, han
ding
over from
B
S
1 to BS2.
A
fterwards
, from point
“C
” to point “D
”
,
the
use
r
a
c
cele
ra
tes to 12
0km/h, handi
ng ov
er fro
m
BS2 to BS3 and
m
a
intain
s this
spe
ed to p
o
in
t
“E” in BS4. The user then
moves to poi
nt “F” han
di
n
g
over from B
S
4 to BS5 at
60km/h. At point
“G”, th
e u
s
e
r
’
s
spee
d redu
ce
s to 5
k
m/h
and h
and
s
over to AP2. In
this
scena
rio,
it is a
s
sume
d
that WiFi and
WiMAX servi
c
e
s
are offe
re
d by the sam
e
servi
c
e p
r
o
v
ider.
Figure 2. Het
e
rog
ene
ou
s Han
dover S
c
enar
i
o
at Half
-cell Ove
r
la
p Coverage
2.2.3.
The Ha
ndov
er Simulation Flo
w
c
h
ar
t
The
simul
a
tio
n
an
d MIH ha
ndover flow charts
a
r
e
give
n in
Figu
re
s 3
and
4,
re
spe
c
tively,
whi
c
h illu
strate the
co
nfigu
r
ation
and
be
hav
iour of th
e ha
ndove
r
script
s in
NS
-2.
The
Wi
M
A
X
controlle
r age
nt
messag
es
are m
app
ed
betwe
en the
BSs via the
MAC ‘0’
chan
nel for effe
ctive
updatin
g of the routing t
able an
d for sendi
ng
ne
ighbo
ur ad
vertisem
ent
,
Uplin
k Chan
nel
De
sc
ripto
r
(
U
CD
)
,
Downlin
k Chan
nel De
scripto
r
(DCD)
an
d
synchro
n
isatio
n
me
ssage
s bet
wee
n
the BSs throu
gh the ba
ckb
one lin
k.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
0
46
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 631
3 –
6323
6316
Figure 3. Han
dover Flo
w
Chart for the A
P
I Script
Figure 4. Simulation Flo
w
Cha
r
t
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Han
d
o
v
er S
c
enari
o
s fo
r Mobile WiMAX
and Wi
rele
ss LAN… (N.M.
A
.E.D. Wirast
uti)
6317
2.3.
Simulation Parameters a
nd Ne
t
w
o
r
k Con
f
igura
t
ion
The sim
u
latio
n
para
m
eters are sh
own in
Table 1. T
he MIHF ro
uting proto
c
ol
Noa
h
is
use
d
to han
dl
e nod
e ID ch
ange
and int
e
rworkin
g
bet
wee
n
WiFi
an
d WiMAX inte
rface
s
, an
d th
e
WiMAX and
mobility modules used in
the NS
-2
sim
u
lations are
desi
gned by
NIST [10]. T
he
NIST ap
plication p
r
og
ram
i
n
terface
(API) ha
ndove
r
script
is modifi
ed in
orde
r to
implem
ent t
he
hand
over sce
nario
s.
Table 1. Simulation Para
meters
Simula
tion
para
meter
Values
MAC/802_16 sca
n iterations
5
MAC/802_16 sca
n duration
50 s
MAC/802_16 int
e
rleaving interval
40 s
MAC/802_16 link going do
w
n
fact
or
1.1
MAC/802_16
UC
D interval
5 s
MAC/802_16
DC
D interval
5 s
MAC/802_16 ch
annel number
0
WiMAX Frequen
cy
band
w
i
dth
5 MHz
WiMAX bit rate band
w
i
dth
10 Mbps
WiFi frequenc
y
b
and
w
i
dth
5 MHz
WiFi bit rate ban
dw
idth
11 Mbps
Number of cha
n
n
e
ls per base station
5 (0-4
)
Modulation and code rate
OFDM
16
QAM
3/4
Vehicular speeds
60 km/h and 120
km/h
Pedestrian spee
d
5 km/h
Number of
packets sent per second
50
Freque
nc
y
ban
d
3.5 GHz
Cy
clic Pr
efix
0
Base station tran
smit pow
e
r
15 W
Base station coverage a
r
ea (
H
igh
dense Urban
)
500 m
Channel t
y
pe
Wireless channel
Radio propa
gatio
n model
T
w
o ra
y g
r
ound
Wireless interface queue length
50
Antenna model
Omni directional
antenna
Routing protocol
Noah
(mo
d
ified DSDV
for inter technolo
g
y
routing)
Number
of base stations
5
Number of
access points
2
Number of sub
n
e
t
for horizontal h
andover
13
Number of sub
n
e
t
for vertical hand
over
15
Scheduling algorithm
Round ro
bin
2.3.1.
Homoge
neo
u
s Han
dov
er MIP Addres
sing
Figure 5. Hori
zontal
Han
d
o
v
er with No
de
ID and IP Addre
ssi
ng
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
0
46
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 631
3 –
6323
6318
At the sta
r
t of
the
simul
a
tio
n
, the M
N
80
2.
16 inte
rfa
c
e
is a
ssi
gned
I
P
add
re
ss 2.
0.2 an
d
node ID 18. T
h
is is the PoA
paramete
r
at
the HN
BS1. The virtual m
u
lti-interfa
c
e
node, sh
own in
Figure 5, i
s
assign
ed IP
addr
ess
12.0
.
0 and
nod
e
ID 7. Thi
s
model
s CMIPv6
IP
address
assignm
ent o
n
the MS. T
he remaini
n
g
IP addr
e
s
se
s an
d no
de I
D
a
ssi
gnme
n
t
s on the
oth
e
r
interfaces are
sho
w
n
in Fi
g
u
re
5. Virtual
initia
lising
cel
l
s an
d multi
-
i
n
terfaces ma
ke the
M
N
MI
H
cap
able. Th
e
BSs, multi-i
n
terface no
d
e
s, ASN
-G
W and
CSN-CN, are
assig
n
ed to different
sub
nets to gi
ve a total
of t
h
irteen
subn
e
t
s (0 to
12
). E
a
ch
subn
et h
a
s
differe
nt cl
usters an
d e
a
c
h
clu
s
ter ha
s di
fferent node
s.
From the
sim
u
lation, it can
be ob
serve
d
that
as the
MS traverse
s the BSs
, the PoA IP
address
chan
ges to the n
e
w
CCoA in e
a
ch
sub
net.
This cau
s
e
s
h
andove
r
in La
yer 3 (i.e. the
IP
address of no
de 18 ke
ep
s cha
ngin
g
unt
il it becomes
6.0.2 in the last
sub
n
et or FN of BS5). This
is a
s
a
re
sult
of statele
s
s
auto-config
uration by the
CMIPv6
in th
e MN
wh
en
a ne
w net
wo
rk
prefix is d
e
te
cted by the
BSs with the
sup
por
t
of route adve
rtisement b
r
oa
d
c
a
s
ts. Th
e m
u
lti-
interface no
d
e
on the MS (nod
e 7) m
a
i
n
tains IP
add
ress 1
2
.0.0 throu
gho
ut the journey wit
h
the
clu
s
ter an
d the node ID re
maining u
n
ch
ange
d.
2.3.2.
Heterog
eneo
us Han
dov
er MIP Addres
s
ing
The IP add
resse
s
a
n
d
node ID
assignm
ents netwo
r
k fo
r the MMT
used in
hetero
gen
eo
us net
work si
mulation are illustrate
d in Figure 6. The MMT PoA IP addre
ss a
n
d
node
ID
(for the virtu
a
l
multi-interfa
c
e no
de)
a
r
e
14.0.0 a
nd
7
,
re
spe
c
tively; for the
Wi
MAX
interface, the subnet a
ssi
g
ned is IP add
ress 2.
0.2 an
d node ID 18
; and for the WiFi interfa
c
e,
the sub
net assign
ed is IP
addre
s
s 2.0.3 and no
de ID
21.
Figure 6. Het
e
rog
ene
ou
s Han
dover
with Nod
e
ID an
d IP Addressi
ng
Figure 7. Co
A IP Addresses Chan
ge in
Hetero
gen
eo
us Hand
over
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Han
d
o
v
er S
c
enari
o
s fo
r Mobile WiMAX
and Wi
rele
ss LAN… (N.M.
A
.E.D. Wirast
uti)
6319
The M
M
T
op
erate
s
fo
ur a
gents:
MIHF,
CMIP
v6, Ha
n
dover (HA) a
nd Inte
rface
Manag
er
Flow (IFA
CE
MGR). The
CoA IP address ch
ang
es of the MMT durin
g the
hetero
gen
e
ous
hand
over p
r
o
c
e
ss i
s
sh
own in Figure 7. The ND m
o
dule
s
are in
st
alled in the two interfa
c
e
s
of
the MMT,
viz
.
:
interface 0 (i
face0 –
WiFi i
n
terface) a
n
d
interface 1
(iface
1 – WiMA
X interface
)
.
Starting from
AP1 covera
g
e
area (Figu
r
e 7),
sub
net 12.0.0, the ND modul
e periodically
sen
d
s
bea
co
n sig
nal
s an
d Ro
ute Advertise
m
ent (R
A) b
r
oa
dca
s
ts
con
s
tantl
y
in its cove
rag
e
area.
The
M
M
T is set in
“P1” (Figu
r
e
7
)
. On
ente
r
in
g this covera
ge a
r
ea, th
e
MN
con
n
e
c
ts to a
cha
nnel, follo
wing time
an
d frequ
en
cy synchro
n
is
ation. The
ND
module i
n
th
e WiFi inte
rf
ace
receives RA f
r
om
sub
net 1
2
.0.0 of AP1
with info
rmati
on (e.g. ro
ute
r
life-time, n
e
twork
prefix lif
e-
time, netwo
rk prefix (in thi
s
ca
se 1
2
.0.0)
and BS RA
in
terval). If the CMIPv6 age
n
t
in the MMT i
s
enabl
ed, this
informatio
n is used to
ca
rry out st
atele
s
s a
u
to-config
uration
an
d a
ssi
gn
s a
CoA
IP
address of 1
2
.0.1 on the WiFi interfa
c
e. This
is the
n
followed by
a binding up
date, whe
r
e the
MN se
nd
s the autoconfigu
r
ed IP addr
e
ss ove
r
this i
n
terface to
the netwo
rk. In
the event when
the MN ente
r
s AP1 coverage area wit
hout re
ce
ivin
g an RA bro
adcast, the CMIPv6 agent will
requ
est
the
ND m
odule
in
iface
0
to
se
nd
a Rout
e S
o
licitation (RS) b
r
oad
ca
st. Th
e
ND m
odule
i
n
sub
net 12.0.
0 re
ceive
s
RS from the
WiFi inte
rface, pro
c
e
s
ses it and send
s an RA b
r
o
a
dca
s
t
contai
ning B
S
router net
work info
rmatio
n, which is u
s
ed to obtain a
CoA.
At “P2” (Fig
u
r
e 7
)
, the MMT moves from AP1 to BS1. On leavi
ng the AP1
coverage
area, the net
work
prefix 12.0.0 on the
ND
module
of the MN
will
expire. At the sam
e
time, t
h
e
MIHF a
gent i
n
subn
et 12.
0.0 of the
AP1 an
d
sub
net
2.0.0 of th
e
BS1 add
s M
A
C
chan
nel
s
for
MPDU
comm
unication; the
MMT sub
net
14.0.0 add
s
IFACEMGR
agent. In add
ition, the MIHF
agent add
s
MAC ch
annel
s to the WiFi
interface IP
address (12.
0.1) and
Wi
MAX interface IP
address (2.0.
2
) to comm
un
icate with t
he
MAC cha
nnel
s created in the AP1 and BS1.
At perio
dic
times,
subnet 14.0.0 of t
he MM
T
will receiv
e the status of the local MI
H
using the
MIH-
Get_Status functio
n
me
ssage i
n
ifa
c
e0
and
iface1
with lin
k i
den
tification (I
D) inform
ation
(i.e.
link type), M
A
C MN num
ber an
d MAC PoA number.
In the MMT
subn
et 14.0.0, the MIHF and
HA agent
s re
ceive a
link d
e
t
e
ct
ed
trigger, while the
IFACEMGR
agent re
ceive
s
MIH events. If
the new inte
rface is o
p
timal, a conn
ecti
on is l
aun
ch
e
d
over the lin
k, makin
g
the
MIHF and HA
agent
s to
re
ceive a
li
nk up
trigg
e
r
and
IFACEMG
R
a
gent to
re
ceiv
e MIH event
s. This chan
ge
s
the link
ID parameters
. A
fterwards
, during the
li
nk up
tri
gge
r a
n
d du
ring
h
a
n
dover in
su
b
net
14.0.0 of M
M
T, the HA
agent
re
ceiv
es th
e ne
w
pr
efix 2.0.0 f
r
om th
e BS1
su
ch th
at th
e old
address is 1
2
.0.1 (on th
e WiFi interf
ace
)
and th
e new a
ddre
ss i
s
2.0.2 (on the WiM
A
X
interface).
At some poi
nt in subnet 14.0.0 of t
he MMT, the MIHF agent
sends a
capability
discovery
re
q
uest,
whi
c
h
is re
ceive
d
in
subnet
2.0.0
o
f
BS1. It then
sen
d
s a
ca
pa
bility discovery
respon
se to
sub
net 14.0.
0 of MMT. If the ne
w Wi
M
AX interface
offers
a bette
r option, it
starts
che
c
king fo
r f
l
ows in o
r
d
e
r
to redi
re
ct pa
ckets.
Th
e M
M
T studi
es SFID 0 u
s
in
g if
ace
0
an
d SFI
D
1
us
in
g ifa
c
e1
. If ifa
c
e1
is
be
tte
r
th
an ifa
c
e0
,
the f
l
ow i
s
redi
re
cted to
it. Su
bse
que
ntly, the
CMIPv6 ag
en
t in the M
M
T
sen
d
s re
directed me
ss
age
s u
s
in
g ifa
c
e
1
. The
MIPv6 age
nt in
CN
IP
address of 0.
0.0 re
ceive
s
redire
cted MP
DU p
a
cket
s from ifac
e
1
. Th
e CMIPv6 ag
ent in the MM
T
rec
e
iv
es
ACK
for
redi
re
cted p
a
cket
s from
CN IP a
ddre
s
s
0.0.0. The
exchan
ge of
ca
pabil
i
ty
discovery bet
wee
n
su
bnet
2.0.0 of BS1
and subn
et 14.0.0 of MMT will contin
ue.
From
“P4” to
“P7”
(Fig
ure
7), the IP a
ddre
s
s of the
MMT inte
rfa
c
e
cha
nge
s i
t
s CoA
based o
n
th
e dom
ain p
r
efix broa
dca
s
ts
re
ceived
from the
BSs (BS2 to
BS5) a
s
the
MN
traverse
s the
s
e BS’s cove
rage a
r
e
a
s. At “P8” (Fig
ure
7), iface1 i
s
in the covera
ge are
a
of BS5
but iface0, on
receivin
g a b
eacon si
gnal
and net
wo
rk
prefix bro
a
d
c
ast from AP2
, wake
s up th
e
interface and
assume
s a CoA IP address of 13.
0.1. The flows
are mo
nitore
d to obtain the
optimum inte
rface. In AP2
coverage
are
a
, the flow
i
s
fully redirecte
d
to iface0. T
he MIHF
ag
e
n
t
contin
ue
s to sen
d
link
sca
n
sign
als to t
he covera
ge
area
and
re
ceives a
scan
respon
se
whi
l
e
contin
uing to study flows u
n
til MIHF
and
HA agents in
iface1 re
ceiv
e the
link goi
ng down
trigger
with the IFACEMGR event
[35-37]
.
3. Results a
nd Analy
s
is
The sim
u
lati
on of the MAC layer ha
s bee
n ca
rri
ed out for the homo
gen
ous a
n
d
hetero
gen
eo
us han
dove
r
scena
rio
s
. These
simu
latio
n
s have mea
s
ured the MA
C PDU of voice
packet
s
that
are
sent by th
e MS at
the variou
s
spe
e
d
s
previou
s
ly i
dentified. In this
se
ction, th
ree
hand
over pe
rforman
c
e
crit
eria a
r
e an
alysed,
vi
z
.: han
dover del
ay, jitter and thro
ughp
ut.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 631
3 –
6323
6320
3.1.
Homoge
neo
u
s Han
dov
er Scenario
3.1.
1. Pedestria
n
Speed
Figure 8 sho
w
s th
e thro
u
ghput p
e
rfo
r
manc
e of ho
mogen
eou
s
hand
over at
pede
stria
n
spe
ed. It can
be seen th
a
t
a uniform t
h
rou
ghp
ut
(5
0pa
ckets/s) o
c
curs du
rin
g
the interle
a
ving
interval
with b
o
th the tran
smit and
re
cei
v
e vo
ice MA
C PDU p
a
cke
t
s having
the
same
thro
ugh
put
for the
jou
r
n
e
y from
a
HN to
FNs.
Th
e throug
hput
falls to a
b
o
u
t 45p
acket
s
/s d
u
ri
ng th
e
first
hand
over (4
0
0
s of simulat
i
on time) an
d to about
46pa
ckets/s d
u
ring the se
con
d
(95
0
s of
simulatio
n
time), third
(1500
s of si
mulation tim
e
) an
d fourt
h
(20
5
0
s
of simulatio
n
time)
hand
overs. From ob
se
rvati
ons d
u
ri
ng th
e simul
a
tion, this occu
rs d
ue to lowe
r p
a
cket loss d
u
r
ing
synchro
n
isation and resum
ed ch
ann
el scan
ning.
Figure 8. Thr
ough
put for Pede
strian Sp
eed at Half-cell Overlap
Coverag
e
There wa
s a
small in
cide
nce of p
a
cke
t
loss
in tran
smit and
re
ceive throu
g
h
put in the
first inte
rleavi
ng inte
rval
(le
s
s than
25
0s
of sim
u
lation
time) in
the
coverag
e
a
r
e
a
of BS1
due
to
errors intro
d
u
c
ed by the ra
dio pro
pag
ation enviro
n
me
nt.
3.1.2. Lo
w
V
e
hicular Spe
e
d
Figure 9. Through
put for L
o
w Vehi
cula
r
Speed at Half
-cell Ove
r
la
p Coverage
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Han
d
o
v
er S
c
enari
o
s fo
r Mobile WiMAX
and Wi
rele
ss LAN… (N.M.
A
.E.D. Wirast
uti)
6321
From Fig
u
re
9, it can be seen that the
tran
smit voice MAC
PDU ha
s no
n-unifo
rm
throug
hput, i
n
the
regi
on
of 60 p
a
cket
s/s, whil
e uni
fo
rm throug
hpu
t is pe
rforme
d by the
re
cei
v
er
voice MA
C PDU. Th
e no
n-uniform th
rou
ghput o
c
curs
due to the im
pairm
ents i
n
trodu
ced by th
e
radio
propa
g
a
tion envi
r
on
ment (e.g.
de
lay and
Dop
p
l
er
spread
ca
use
d
by the
relative motio
n
of
the MN and t
he BSs), which affects the
OFDM
symb
ols of the voice MAC PDU
packet
s
.
Duri
ng a han
dover, the pa
cket loss rate
is
about 50 p
a
ckets/
s or th
e equivalent
of 8000
bytes/s. Th
ese pa
cket losses o
c
cur
du
ring time
an
d frequ
en
cy syn
c
hroni
sation i
n
the targ
et BS
at network
re
-entry. At the
begi
nnin
g
of
tran
smi
ssi
on
, it is
ob
se
rved that
the i
n
itial pa
cket lo
ss
rate i
s
app
rox
i
mately 5
pa
ckets/
s d
u
e
to
delayed
net
work e
n
try d
u
ri
ng the
start
o
f
the
simulati
on
at the HN. After the final h
andove
r
, the throug
hput
s are in
crea
se
d grad
ually a
nd then rema
in
stable. T
he rapid in
crea
se
of
throu
ghp
ut occu
rs
be
cau
s
e
of an i
n
crea
se in v
o
ice MA
C P
D
Us
due to
pa
cke
t
redi
re
ction
on the
wi
rele
ss inte
rfac
e
buffer
of the
BSs. Wh
erea
s, a fai
r
ly
sta
b
le
throug
hput
o
c
curs d
ue to
the wi
red li
nk betwe
en
th
e
BSs an
d the
CN,
whi
c
h i
s
not affecte
d
by
radio p
r
o
pag
ation effects.
The e
nd-to
-e
nd del
ay du
ring the inte
rl
eaving inte
rval varie
s
b
e
twee
n 30
an
d 45m
s,
risin
g
to 47.5
m
s du
ring h
a
ndover. Th
e end-to
-e
nd jitter varie
s
bet
wee
n
0 to 15
ms, and, aga
in,
run
s
to 47.5m
s duri
ng ha
nd
over. Example simulatio
n
outputs
can b
e
see
n
in Fig
u
re
s 10 an
d 1
1
.
Figure 10. Ha
ndover
Delay
for Low Vehi
cula
r Spee
d
Figure 11. Ha
ndover
Jitter for Lo
w Vehi
cular Spe
ed
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 631
3 –
6323
6322
3.1.3.
High Vehicul
a
r Speed
The
simulati
on results
show th
at the
throu
ghp
ut follows the
same p
a
ttern
as l
o
w
vehicul
a
r
sp
e
ed ex
cept th
at the inte
rle
a
ving inte
rv
al
is
sho
r
te
r in
the
coverag
e
area
of BS1 to
BS4 due to the MN travell
i
ng at a hig
h
e
r
vehicula
r
sp
eed. Thi
s
re
sult can b
e
se
en in Figu
re
12.
The MN
spe
n
d
s mo
re time
in BS5 having traversed B
S
1 to BS4 at
a faster
simul
a
tion time.
Figure 12. Th
roug
hput for
High Vehi
cul
a
r
Spee
d at Half-cell Ove
r
lap Cove
rag
e
The en
d-to
-e
nd delay a
n
d
jitter cha
r
a
c
t
e
risti
cs
are the sam
e
a
s
th
ose fo
r lo
w vehicular
spe
ed.
3.2.
Heterog
e
neo
u
s Han
dov
er Scenario
The th
rou
g
h
put pe
rform
a
nce
of h
e
terogen
eou
s h
a
ndover is illu
strated
in
Fi
gure
13,
whi
c
h sho
w
s an
in
stantan
e
ous pa
cket
lo
ss
o
c
curin
g
d
u
ring
the
swit
ch m
ode. T
h
i
s
i
s
du
e to a
n
addition
al pa
cket flow, an
d the re
dire
ct
ion of
MAC P
D
Us b
e
twee
n
WiFi an
d Wi
MAX interfaces
and al
so at t
he interfa
c
e
buffer of the
BS. Du
ring
h
andove
r
an
d MMT switchi
ng from the
WiFi
interface to t
he WiMAX in
terface
on le
aving AP1 to
BS1, the pa
cket loss
rate
is 1 p
a
cket/s. At
the CN, w
h
ic
h rec
e
iv
es lo
wer v
o
i
c
e MA
C PDU,
the p
a
cket loss rat
e
is 4 pa
ckets/s.
Figure 13. Wi
Fi-Wi
MAX Ha
ndover T
h
ro
u
ghput
On leaving BS5 and entering AP2, the MMT
experi
ences an im
provem
ent in packet
loss rate by 1
packet/s d
u
e
to entering t
he WiFi n
e
twork. At the CN, the pa
cket loss
rate is
a
l
so
improve
d
by about 4 pa
ckets/s.
Evaluation Warning : The document was created with Spire.PDF for Python.