I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineerin
g
a
nd
Co
m
p
u
t
er
Science
Vo
l.
10
,
No
.
1
,
A
p
r
il
2
0
1
8
,
p
p
.
1
~
9
I
SS
N:
2
5
0
2
-
4
7
5
2
,
DOI
: 1
0
.
1
1
5
9
1
/i
j
ee
cs.v
1
0
.
i1
.
p
p
1
-
9
1
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e.
co
m/jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
ijeec
s
Vo
ltag
e St
a
bility
Predic
tion o
n P
o
w
er Ne
tw
o
rk
s usi
ng
Art
i
ficial
Neura
l Ne
tw
o
rk
s
G
it
a
nja
li Sa
ha
,
K
a
bir C
ha
k
r
a
bo
rt
y
,
P
ri
y
a
na
t
h Da
s
T
rip
u
ra
In
stit
u
te o
f
T
e
c
h
n
o
lo
g
y
,
Na
rsin
g
a
rh
,
T
rip
u
ra
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
9
,
2
0
1
8
R
ev
i
s
ed
Mar
2
,
2
0
1
8
A
cc
ep
ted
Mar
18
,
2
0
1
8
T
h
e
o
b
jec
ti
v
e
o
f
th
is
p
a
p
e
r
is
t
o
p
re
d
ict
th
e
se
c
u
re
o
r
th
e
in
se
c
u
re
s
tate
o
f
th
e
p
o
w
e
r
s
y
ste
m
n
e
t
w
o
rk
u
sin
g
a
h
y
b
rid
tec
h
n
iq
u
e
w
h
ich
is
a
c
o
m
b
in
a
ti
o
n
o
f
A
rti
f
icia
l
N
e
u
ra
l
Ne
t
w
o
rk
(
A
N
N)
a
n
d
v
o
lt
a
g
e
sta
b
il
it
y
in
d
e
x
e
s.
V
o
lt
a
g
e
c
o
ll
a
p
se
o
r
a
n
u
n
c
o
n
tr
o
ll
a
b
le d
ro
p
in
v
o
lt
a
g
e
o
c
c
u
rs i
n
a
sy
ste
m
wh
e
n
t
h
e
re
is
a
c
h
a
n
g
e
in
th
e
c
o
n
d
it
io
n
o
f
th
e
sy
st
e
m
o
r
a
s
y
ste
m
is
o
v
e
r
lo
a
d
e
d
.
A
T
ra
n
s
f
e
re
n
c
e
In
d
e
x
(T
I)
w
h
ich
a
c
ts
a
s
a
v
o
lt
a
g
e
sta
b
il
it
y
in
d
ica
to
r
h
a
s
b
e
e
n
f
o
r
m
u
late
d
f
ro
m
t
h
e
e
q
u
iv
a
len
t
tw
o
-
b
u
s
n
e
tw
o
rk
o
f
a
m
u
lt
i
-
b
u
s
p
o
w
e
r
s
y
ste
m
n
e
tw
o
rk
,
w
h
ich
h
a
s
b
e
e
n
tes
ted
o
n
a
sta
n
d
a
rd
IEE
E
3
0
-
b
u
s
s
y
ste
m
a
n
d
th
e
re
su
lt
is
v
a
li
d
a
ted
w
it
h
a
sta
n
d
a
rd
F
a
st
V
o
lt
a
g
e
S
tab
il
it
y
In
d
e
x
(F
V
S
I)
.
F
A
CT
S
d
e
v
ice
s
in
th
e
c
rit
ica
l
b
u
s
h
a
v
e
b
e
e
n
c
o
n
si
d
e
r
e
d
f
o
r
th
e
im
p
ro
v
e
m
e
n
t
o
f
th
e
v
o
lt
a
g
e
s
tab
il
it
y
o
f
th
e
s
y
ste
m
.
A
n
AN
N
b
a
se
d
su
p
e
rv
ise
d
lea
rn
in
g
a
lg
o
rit
h
m
h
a
s
b
e
e
n
c
o
n
f
e
rre
d
in
th
is
p
a
p
e
r
a
lo
n
g
sid
e
Co
n
ti
n
g
e
n
c
y
A
n
a
l
y
sis
(C
A
)
f
o
r
t
h
e
p
re
d
i
c
ti
o
n
o
f
v
o
lt
a
g
e
s
e
c
u
rit
y
in
a
n
IEE
E
30
-
b
u
s
p
o
w
e
r
s
y
ste
m
n
e
t
w
o
rk
.
Ke
ywo
r
d
s
:
A
r
ti
f
icial
n
e
u
r
al
n
et
w
o
r
k
(
A
NN)
C
o
n
ti
n
g
en
c
y
an
a
l
y
s
is
C
r
itical
b
u
s
F
A
C
T
S d
ev
ices
V
o
ltag
e
s
ec
u
r
it
y
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Gitan
j
ali
Sah
a
,
T
r
i
p
u
r
a
I
n
s
tit
u
te
o
f
T
ec
h
n
o
lo
g
y
,
Nar
s
in
g
ar
h
,
T
r
ip
u
r
a,
I
n
d
ia
.
E
m
ail:
g
ita
n
j
ali_
n
it
@
y
a
h
o
o
.
co
.
in
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
o
p
e
r
atio
n
o
f
th
e
p
o
w
er
u
tili
tie
s
ca
n
ac
h
iev
e
i
ts
e
f
f
i
cien
c
y
a
n
d
r
eliab
ilit
y
i
f
t
h
e
f
o
llo
w
in
g
o
b
j
ec
tiv
es a
r
e
s
atis
f
ied
[
1
]
:
a.
Min
i
m
izatio
n
o
f
t
h
e
r
ea
ctiv
e
p
o
w
er
f
lo
w
s
o
t
h
at
t
h
e
r
esis
ti
v
e
an
d
r
ea
ctiv
e
lo
s
s
e
s
ar
e
r
ed
u
ce
d
.
b.
T
h
e
s
tab
ilit
y
o
f
th
e
s
y
s
te
m
s
h
o
u
ld
b
e
en
h
an
ce
d
s
o
as
to
m
a
x
i
m
ize
th
e
u
t
ilizatio
n
o
f
th
e
tr
an
s
m
i
s
s
io
n
s
y
s
te
m
.
c.
T
h
e
ter
m
i
n
al
v
o
ltag
e
o
f
al
l th
e
eq
u
ip
m
en
ts
i
n
th
e
s
y
s
te
m
s
h
o
u
ld
b
e
w
it
h
i
n
th
e
ac
ce
p
tab
l
e
li
m
it
s
.
T
h
e
ab
o
v
e
o
b
jectiv
es
en
s
u
r
e
t
h
at
th
e
p
o
w
er
s
y
s
te
m
n
et
w
o
r
k
m
ai
n
l
y
o
p
er
ates
f
o
r
ac
tiv
e
p
o
w
er
.
An
in
cr
ea
s
e
i
n
th
e
lo
ad
d
e
m
an
d
o
r
d
ec
r
ea
s
e
in
g
en
er
atio
n
o
r
t
r
an
s
m
is
s
io
n
f
ac
i
liti
es
ca
u
s
es
v
o
ltag
e
d
r
o
p
,
w
h
ich
f
u
r
t
h
er
r
ed
u
ce
s
t
h
e
r
ea
ctiv
e
p
o
w
er
f
r
o
m
t
h
e
ca
p
ac
ito
r
an
d
lin
e
ch
ar
g
i
n
g
,
w
h
ic
h
f
u
r
t
h
er
r
ed
u
ce
s
th
e
v
o
lta
g
e
ca
u
s
i
n
g
a
v
o
ltag
e
co
llap
s
e
o
f
th
e
p
o
w
er
s
y
s
te
m
n
et
w
o
r
k
.
T
h
u
s
b
y
co
n
tr
o
llin
g
t
h
e
r
ea
ctiv
e
p
o
w
er
th
e
v
o
ltag
e
p
r
o
f
ile
o
f
th
e
s
y
s
te
m
ca
n
b
e
m
ain
tain
ed
w
it
h
i
n
th
e
ac
ce
p
tab
le
li
m
it
s
w
h
ic
h
ca
n
r
ed
u
c
e
th
e
tr
an
s
m
i
s
s
io
n
lo
s
s
es.
T
h
is
ca
n
b
e
d
o
n
e
b
y
t
h
e
i
n
s
ta
llatio
n
o
f
F
lex
ib
le
AC
T
r
an
s
m
is
s
io
n
S
y
s
te
m
(
F
A
C
T
S)
d
ev
ices
i
n
t
h
e
w
ea
k
est
r
e
g
io
n
s
o
f
th
e
s
y
s
te
m
w
h
ich
r
ed
u
ce
s
th
e
p
o
w
er
f
lo
w
i
n
h
ea
v
il
y
lo
ad
ed
lin
es,
i
m
p
r
o
v
in
g
t
h
e
s
tab
ilit
y
o
f
th
e
s
y
s
te
m
w
it
h
r
ed
u
ce
d
p
r
o
d
u
ctio
n
co
s
t
[
2
]
.
A
r
ev
ie
w
o
f
t
h
e
liter
atu
r
e
i
m
p
ar
ts
t
h
at
t
h
er
e
is
a
co
n
tin
u
o
u
s
in
v
e
s
ti
g
atio
n
f
o
r
d
ev
elo
p
in
g
v
ar
io
u
s
v
o
ltag
e
s
tab
ili
t
y
i
n
d
ices
b
y
th
e
p
o
w
er
s
y
s
te
m
r
e
s
ea
r
ch
er
s
to
in
v
es
tig
at
e
th
e
v
ar
io
u
s
asp
ec
t
s
o
f
s
tat
ic
l
o
ad
f
lo
w
a
n
al
y
s
is
an
d
to
ass
e
s
s
t
h
e
p
r
o
x
i
m
it
y
to
v
o
lta
g
e
c
o
llap
s
e
o
f
a
p
o
w
e
r
s
y
s
te
m
n
et
w
o
r
k
a
n
d
v
o
lta
g
e
s
e
cu
r
it
y
o
f
a
s
y
s
te
m
[
3
-
7
]
.
B
ec
au
s
e
o
f
t
h
eir
p
atter
n
cla
s
s
if
icatio
n
a
n
d
o
b
j
ec
t
r
ec
o
g
n
iti
o
n
ca
p
ab
ilit
y
A
r
ti
f
icial
Ne
u
r
al
Net
w
o
r
k
(
A
NN)
h
a
s
b
ee
n
s
u
cc
e
s
s
f
u
ll
y
ap
p
lied
in
m
a
n
y
p
o
w
er
en
g
i
n
e
e
r
in
g
p
r
o
b
le
m
s
.
B
ec
au
s
e
o
f
t
h
e
ab
ilit
y
o
f
ANN
to
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
1
,
A
p
r
il 2
0
1
8
:
1
–
9
2
h
an
d
le
n
o
n
-
li
n
ea
r
d
ep
en
d
en
cies
A
N
N
h
as
attai
n
ed
in
cr
ea
s
in
g
i
m
p
o
r
tan
ce
i
n
th
e
s
y
s
te
m
s
e
cu
r
ities
as
s
es
s
m
e
n
t
.
A
N
N
ca
n
b
e
ap
p
lied
to
p
r
o
b
lem
s
,
f
o
r
w
h
ic
h
an
al
y
tica
l
m
et
h
o
d
s
d
o
n
o
t
y
et
ex
i
s
t
an
d
th
e
n
et
w
o
r
k
s
ar
e
ea
s
y
to
m
ai
n
tai
n
.
T
h
e
o
b
j
ec
tiv
e
o
f
th
e
p
r
esen
t
w
o
r
k
is
to
d
ev
elo
p
a
h
y
b
r
id
tech
n
iq
u
e
co
m
p
r
is
i
n
g
o
f
A
r
ti
f
i
cial
Neu
r
al
Net
w
o
r
k
(
A
NN)
b
y
a
s
u
p
er
v
is
ed
lear
n
in
g
a
lg
o
r
it
h
m
an
d
v
o
lt
ag
e
s
tab
ilit
y
i
n
d
ex
es
f
o
r
th
e
p
r
ed
ictio
n
o
f
v
o
lta
g
e
s
ec
u
r
it
y
s
tate
o
f
a
p
o
w
er
n
et
wo
r
k
.
Fo
r
th
is
p
u
r
p
o
s
e
a
n
e
w
a
n
d
ef
f
icien
t
v
o
lta
g
e
s
tab
ilit
y
i
n
d
ex
ter
m
ed
as
t
h
e
T
r
an
s
f
er
en
ce
I
n
d
e
x
(
T
I
)
h
as
b
ee
n
d
ev
elo
p
ed
.
T
h
e
ef
f
ec
tiv
e
n
ess
o
f
th
e
p
r
o
p
o
s
ed
in
d
ex
h
a
s
b
ee
n
is
co
m
p
ar
ed
w
it
h
a
s
ta
n
d
ar
d
v
o
ltag
e
s
tab
il
it
y
i
n
d
icato
r
k
n
o
w
n
a
s
Fas
t
V
o
ltag
e
Stab
il
it
y
I
n
d
ex
(
FV
SI)
[
8
]
.
T
h
e
p
ap
er
is
ca
talo
g
u
ed
as
f
o
llo
w
s
:
T
h
e
f
ir
s
t
s
ta
g
e
co
m
p
r
is
e
s
o
f
t
h
e
f
o
r
m
u
lat
io
n
o
f
t
h
e
p
r
o
p
o
s
ed
T
r
an
s
f
er
en
ce
I
n
d
ex
(
T
I
)
an
d
it
is
u
s
ed
f
o
r
th
e
v
o
lta
g
e
s
tab
ilit
y
as
s
es
s
m
en
t
o
f
a
s
ta
n
d
ar
d
I
E
E
E
3
0
-
b
u
s
s
y
s
te
m
co
n
s
id
er
in
g
co
n
ti
n
g
en
cies.
Or
d
in
ar
il
y
,
in
Mo
d
er
n
E
n
er
g
y
Ma
n
ag
e
m
e
n
t
S
y
s
te
m
s
(
E
MS)
t
h
e
w
ell
k
n
o
w
n
f
u
n
ctio
n
is
t
h
e
C
o
n
t
in
g
e
n
c
y
An
al
y
s
i
s
w
h
ich
g
iv
e
s
in
f
o
r
m
at
io
n
ab
o
u
t
th
e
s
t
atic
s
ec
u
r
it
y
o
f
th
e
s
y
s
te
m
to
th
e
p
o
w
er
s
y
s
te
m
o
p
er
ato
r
[
9
-
1
0
]
.
Fu
r
th
er
FAC
T
S
d
ev
ices
h
av
e
b
ee
n
i
n
co
r
p
o
r
ated
in
t
h
e
cr
itical
b
u
s
an
d
i
ts
e
f
f
ec
t
o
n
t
h
e
o
v
er
all
s
y
s
te
m
s
ta
b
ilit
y
h
as
also
b
ee
n
s
h
o
w
n
i
n
t
h
e
s
t
u
d
y
.
T
h
e
s
ec
o
n
d
s
ta
g
e
i
n
cl
u
d
es
t
h
e
ap
p
licatio
n
o
f
A
r
ti
f
ic
ial
Ne
u
r
al
Net
wo
r
k
(
A
N
N)
to
th
e
s
y
s
te
m
f
o
r
p
r
ed
ictio
n
o
f
v
o
lta
g
e
s
tab
ilit
y
s
tate
o
f
th
e
s
y
s
te
m
f
o
r
an
y
u
n
k
n
o
w
n
lo
ad
in
g
p
atter
n
s
o
f
t
h
e
s
y
s
te
m
[
1
0
-
1
6
]
.
I
n
th
e
p
r
esen
t
w
o
r
k
m
u
ltil
a
y
er
Feed
Fo
r
w
ar
d
Neu
r
al
Net
w
o
r
k
(
FF
NN)
h
a
s
b
ee
n
u
s
ed
i.e
.
w
e
h
a
v
e
u
s
ed
a
s
u
p
er
v
i
s
ed
lear
n
i
n
g
a
lg
o
r
ith
m
to
e
s
ti
m
ate
t
h
e
T
I
f
o
r
v
ar
io
u
s
lo
ad
in
g
co
n
f
i
g
u
r
atio
n
s
o
f
th
e
s
y
s
te
m
.
T
h
e
n
et
w
o
r
k
w
as
tr
ai
n
ed
u
s
i
n
g
er
r
o
r
b
ac
k
p
r
o
p
ag
atio
n
lear
n
i
n
g
alg
o
r
it
h
m
i.e
.
tr
ain
in
g
o
f
t
h
e
in
p
u
t
d
ata
s
e
t
f
o
r
ex
p
lo
itatio
n
b
y
t
h
e
A
NN
p
atte
r
n
r
ec
o
g
n
itio
n
en
g
i
n
e
to
p
r
ed
ict
th
e
v
o
lta
g
e
s
tab
ili
t
y
m
ar
g
in
[
1
1
-
1
5
]
.
2.
I
NDIC
E
S F
O
RM
UL
AT
I
O
N
2
.
1
.
F
a
brica
t
io
n o
f
t
he
P
ro
p
o
s
ed
P
ro
ble
m
I
n
t
h
e
p
r
o
p
o
s
ed
eq
u
iv
ale
n
t
π
m
o
d
el
o
f
2
-
b
u
s
n
et
w
o
r
k
th
e
g
en
er
ated
p
o
w
er
o
f
s
lack
b
u
s
is
d
en
o
ted
a
s
Sg
=
P
g
+j
Qg
an
d
t
h
at
o
f
lo
ad
b
u
s
is
S
L
=
P
L
+j
Q
L
.
T
h
e
s
lack
b
u
s
v
o
lta
g
e
is
V
g
an
d
t
h
e
p
o
w
er
tr
an
s
m
i
s
s
io
n
r
ec
eiv
in
g
e
n
d
v
o
lta
g
e
is
V
L
.
T
h
e
eq
u
iv
ale
n
t
i
m
p
ed
a
n
ce
o
f
th
e
li
n
e
is
Z
eq
a
n
d
th
e
p
o
w
er
an
g
le
in
r
ad
ia
n
is
δ
.
T
h
e
s
h
u
n
t b
r
an
c
h
cu
r
r
en
t a
t t
h
e
s
en
d
in
g
e
n
d
an
d
at
th
e
r
ec
ei
v
in
g
e
n
d
ar
e
I
s
s
an
d
I
s
r
r
esp
ec
tiv
el
y
.
Fro
m
Fi
g
u
r
e
1
,
at
n
o
d
e
n
:
(
)
Fig
u
r
e
1
.
E
q
u
iv
ale
n
t π
m
o
d
el
o
f
2
-
b
u
s
n
et
w
o
r
k
f
o
r
th
e
p
r
o
p
o
s
ed
m
e
th
o
d
o
lo
g
y
Ag
ai
n
,
(
)
(
)
(
)
(
1
)
V
g
I
1
m
n
I
2
I
I
sr
S
L
Y
ss
Y
sr
L
o
ad
V
L
I
ss
S
g
Z
eq
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
V
o
lta
g
e
S
ta
b
ilit
y
P
r
ed
ictio
n
o
n
P
o
w
er N
etw
o
r
k
s
u
s
in
g
A
r
tifi
cia
l Neu
r
a
l Netw
o
r
ks
(
Gita
n
ja
li S
a
h
a
)
3
A
r
r
an
g
i
n
g
E
q
u
atio
n
(
1
)
g
i
v
es t
h
e
q
u
ad
r
atic
eq
u
atio
n
f
o
r
th
e
r
ec
eiv
i
n
g
e
n
d
b
u
s
w
h
ic
h
is
g
iv
en
b
y
,
(
)
(
2
)
I
n
o
r
d
er
to
m
ain
tain
r
ea
l
r
o
o
ts
o
f
VL
,
t
h
e
d
is
cr
i
m
in
a
n
t
o
f
E
q
u
atio
n
(
2
)
m
u
s
t
b
e
g
r
ea
ter
th
an
o
r
eq
u
al
to
ze
r
o
.
E
q
u
atio
n
(
2
)
is
in
th
e
f
o
r
m
o
f
a
x
2
+b
x
+c
=0
,
h
e
n
ce
b
2
-
4
ac
≥
0
.
A
f
ter
r
ea
r
r
an
g
i
n
g
t
h
e
eq
u
atio
n
is
g
i
v
e
n
as
:
(
)
(
3
)
(
)
(
4
)
(
)
(
5
)
T
ak
in
g
j
as
th
e
r
ec
eiv
in
g
e
n
d
b
u
s
an
d
i
as
th
e
s
en
d
in
g
e
n
d
b
u
s
th
e
T
r
an
s
f
er
e
n
ce
I
n
d
ex
f
o
r
an
y
tr
an
s
m
is
s
io
n
li
n
e
i
s
g
i
v
e
n
b
y
,
(
)
(
6
)
w
h
er
e
(
)
an
d
R
,
X,
Z
ar
e
th
e
r
e
s
is
ta
n
ce
,
r
ea
ctan
ce
an
d
i
m
p
e
d
an
ce
o
f
th
e
tr
an
s
m
i
s
s
io
n
lin
e
r
esp
ec
tiv
el
y
.
Y
s
r
is
t
h
e
eq
u
i
v
a
len
t li
n
e
ch
ar
g
i
n
g
s
u
s
ce
p
tan
ce
.
A
cc
o
r
d
in
g
l
y
E
q
u
atio
n
(
6
)
ex
h
ib
its
th
at
i
f
t
h
e
T
r
an
s
f
er
e
n
c
e
I
n
d
ex
f
o
r
an
y
tr
a
n
s
m
i
s
s
io
n
lin
e
is
clo
s
e
to
1
.
0
th
en
th
at
p
ar
tic
u
l
ar
lin
e
w
ill
b
e
ap
p
r
o
ac
h
in
g
to
w
ar
d
s
i
n
s
tab
ilit
y
p
o
in
t
w
h
ic
h
m
a
y
lead
to
s
y
s
te
m
v
io
latio
n
.
He
n
ce
,
in
o
r
d
er
to
r
etain
t
h
e
s
tab
ilit
y
o
f
t
h
e
s
y
s
te
m
,
T
I
s
h
o
u
ld
b
e
m
a
in
ta
in
ed
le
s
s
t
h
an
u
n
it
y
.
2
.
2
.
F
a
s
t
Vo
lt
a
g
e
Sta
bil
it
y
I
nd
ex
(
F
VS
I
)
T
h
e
lin
e
s
tab
ilit
y
i
n
d
ex
F
VSI
w
as
f
ir
s
t
i
n
tr
o
d
u
ce
d
b
y
Dr
.
I
s
m
ail
M
u
s
ir
i
n
(
et
al)
in
2
0
0
2
w
h
ic
h
is
b
ased
o
n
t
w
o
-
b
u
s
eq
u
i
v
ale
n
t
n
et
w
o
r
k
[
8
]
.
T
h
e
ca
lcu
latio
n
i
s
d
o
n
e
f
r
o
m
th
e
co
n
ce
p
t
o
f
p
o
w
er
f
lo
w
t
h
r
o
u
g
h
a
tr
an
s
m
is
s
io
n
li
n
e
a
n
d
is
f
o
r
m
u
lated
as g
i
v
en
b
elo
w
(
7
)
w
h
er
e
Z
an
d
X
ar
e
t
h
e
i
m
p
ed
an
ce
an
d
r
ea
cta
n
ce
o
f
t
h
e
li
n
e
r
esp
ec
tiv
el
y
.
Vi
i
s
t
h
e
s
e
n
d
in
g
en
d
v
o
lta
g
e
an
d
Qj
is
th
e
r
ec
ei
v
in
g
e
n
d
r
ea
ctiv
e
p
o
w
er
f
lo
w
.
2
.
3
.
M
o
delin
g
o
f
SVC
A
S
tatic
V
AR
C
o
m
p
e
n
s
ato
r
i
s
a
s
et
o
f
elec
tr
ical
d
ev
ice
f
o
r
p
r
o
v
id
in
g
f
ast
ac
ti
n
g
r
ea
ctiv
e
p
o
w
er
o
n
h
ig
h
v
o
ltag
e
e
lectr
icit
y
tr
an
s
m
is
s
io
n
n
et
w
o
r
k
s
.
SV
C
’
s
ar
e
p
ar
t
o
f
th
e
Fle
x
ib
le
A
C
T
r
an
s
m
is
s
io
n
s
y
s
te
m
(
FAC
T
S)
d
ev
ice
f
a
m
il
y
w
h
ic
h
p
r
o
v
id
es
f
as
t
r
eg
u
latio
n
o
f
v
o
ltag
e
an
d
p
o
w
er
f
ac
t
o
r
,
als
o
p
r
o
v
id
es
v
o
lta
g
e
s
u
p
p
o
r
t d
u
r
in
g
co
n
ti
n
g
en
c
y
e
v
en
ts
w
h
ich
w
o
u
ld
o
th
er
w
i
s
e
e
x
h
a
u
s
t t
h
e
v
o
lta
g
e
f
o
r
an
elo
q
u
en
t
p
er
io
d
o
f
t
i
m
e
.
SVC
is
al
s
o
h
e
lp
f
u
l
i
n
d
a
m
p
in
g
o
f
p
o
w
er
s
w
in
g
s
a
n
d
r
ed
u
ctio
n
in
tr
an
s
m
is
s
io
n
lo
s
s
es
b
y
r
ea
cti
v
e
p
o
w
e
r
co
n
tr
o
l.
T
h
e
m
o
d
elli
n
g
o
f
S
VC
is
d
o
n
e
w
i
th
t
h
e
h
elp
o
f
r
ea
cto
r
s
an
d
ca
p
ac
ito
r
s
w
h
ic
h
ar
e
co
n
tr
o
lled
b
y
th
y
r
i
s
to
r
v
a
lv
e
s
i
n
p
ar
allel
with
a
f
i
x
ed
ca
p
ac
ito
r
b
an
k
.
I
n
a
tr
a
n
s
m
i
s
s
io
n
li
n
e
i
t
is
co
n
n
ec
ted
in
p
ar
allel
th
r
o
u
g
h
a
s
h
u
n
t
tr
an
s
f
o
r
m
er
.
T
h
e
f
ir
s
t
u
s
e
o
f
s
tatic
v
ar
co
m
p
e
n
s
ato
r
s
in
E
HV/UHV
tr
a
n
s
m
i
s
s
io
n
s
tar
ted
in
1
9
6
0
s
an
d
w
as
b
a
s
ed
o
n
s
at
u
r
ated
r
ea
cto
r
s
.
T
h
e
f
ir
s
t
s
w
i
tc
h
ed
co
m
p
e
n
s
ato
r
s
w
er
e
i
n
s
tal
led
in
late
1
9
7
0
s
.
Sin
ce
th
at
ti
m
e
t
h
e
u
s
e
o
f
S
VC
h
as
b
ec
o
m
e
v
er
y
p
o
p
u
la
r
to
r
ep
lace
s
y
n
ch
r
o
n
o
u
s
co
m
p
e
n
s
atio
n
(
u
s
i
n
g
s
y
n
ch
r
o
n
o
u
s
p
h
a
s
e
m
o
d
i
f
ier
s
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
1
,
A
p
r
il 2
0
1
8
:
1
–
9
4
Fig
u
r
e
2
(
a)
.
SVC
f
ir
i
n
g
a
n
g
le
m
o
d
el
Fig
u
r
e
2
(
b
)
.
SVC
eq
u
iv
ale
n
t s
u
s
ce
p
ta
n
ce
p
r
o
f
ile
Fig
u
r
e
2
(
a)
r
ep
r
esen
ts
th
e
S
VC
f
ir
in
g
an
g
le
m
o
d
el
an
d
Fig
u
r
e
2
(
b
)
r
ep
r
esen
ts
t
h
e
eq
u
iv
ale
n
t
s
u
s
ce
p
tan
ce
p
r
o
f
ile
o
f
t
h
e
S
V
C
[
1
5
]
.
I
n
p
r
ac
tice
th
e
S
VC
c
an
b
e
s
ee
n
as
a
n
ad
j
u
s
tab
le
r
e
ac
tan
ce
w
it
h
ei
th
er
f
ir
in
g
a
n
g
le
l
i
m
i
ts
o
r
r
ea
cta
n
c
e
li
m
its
.
T
h
e
eq
u
iv
ale
n
t
cir
cu
i
t
o
f
t
h
e
SVC
is
u
s
ed
to
d
er
iv
e
th
e
S
VC
n
o
n
-
l
in
ea
r
p
o
w
er
eq
u
atio
n
s
an
d
th
e
li
n
ea
r
ized
eq
u
atio
n
s
r
eq
u
ir
ed
b
y
Ne
w
to
n
’
s
Me
t
h
o
d
.
T
h
e
m
a
g
n
it
u
d
e
o
f
t
h
e
SV
C
s
u
s
ce
p
tan
ce
B
SV
C
[
1
4
]
is
a
f
u
n
ctio
n
o
f
t
h
e
f
ir
i
n
g
a
n
g
le
α
a
n
d
is
o
b
tain
ed
as
:
A
cc
o
r
d
in
g
l
y
B
SV
C
is
co
n
tr
o
llab
le
u
s
i
n
g
SV
C
at
an
y
n
o
d
e
o
f
th
e
p
o
w
er
n
et
w
o
r
k
.
T
h
e
cu
r
r
en
t
d
r
a
wn
b
y
t
h
e
SV
C
is
g
i
v
en
b
y
:
Ass
u
m
in
g
t
h
e
SVC
b
ein
g
co
n
n
ec
ted
at
t
h
e
k
th
b
u
s
.
T
h
e
r
ea
ctiv
e
p
o
w
er
d
r
a
w
n
b
y
th
e
SV
C
i
n
j
ec
ted
at
b
u
s
k
i
s
o
b
tain
ed
as
:
w
h
er
e
V
k
is
th
e
k
th
b
u
s
v
o
lt
ag
e.
T
h
e
ch
a
n
g
i
n
g
s
u
s
ce
p
ta
n
c
e
r
ep
r
esen
ts
th
e
to
tal
SVC
s
u
s
ce
p
tan
ce
n
ec
e
s
s
ar
y
to
m
a
in
ta
in
t
h
e
n
o
d
al
v
o
lta
g
e
m
ag
n
it
u
d
e
at
th
e
s
p
ec
i
f
ied
b
u
s
.
O
n
ce
th
e
le
v
el
o
f
co
m
p
e
n
s
atio
n
is
co
m
p
u
ted
,
th
en
t
h
e
t
h
y
r
is
to
r
f
ir
i
n
g
an
g
l
e
ca
n
b
e
ca
lc
u
lated
.
Ho
w
ev
e
r
,
th
e
ad
d
itio
n
a
l
ca
lc
u
latio
n
r
eq
u
ir
es
a
n
i
ter
ativ
e
s
o
lu
tio
n
b
ec
au
s
e
t
h
e
S
VC
s
u
s
ce
p
tan
ce
a
n
d
th
e
t
h
y
r
i
s
to
r
f
i
r
in
g
a
n
g
le
ar
e
n
o
n
-
li
n
ea
r
l
y
r
elate
d
.
T
h
e
r
ea
ctiv
e
p
o
w
er
is
a
f
u
n
ctio
n
o
f
th
e
s
q
u
ar
e
o
f
t
h
e
b
u
s
v
o
lta
g
e.
He
n
c
e,
w
it
h
t
h
e
d
ec
r
ea
s
e
i
n
t
h
e
v
o
ltag
e
t
h
e
g
en
er
ated
r
ea
ctiv
e
p
o
w
er
also
d
ec
r
ea
s
es.
T
h
e
SVC
i
m
p
ed
an
ce
i
s
in
it
ial
ized
at
th
e
r
eso
n
an
ce
p
o
in
t
i.
e.
XT
C
R
=
XC
w
h
en
Q
SV
C
=
0
w
h
ic
h
co
r
r
esp
o
n
d
s
to
a
f
ir
in
g
a
n
g
le
o
f
1
0
8
o
an
d
th
e
p
ar
am
eter
s
ad
o
p
ted
ar
e
XL
=
0
.
0
1
2
9
p
.
u
an
d
X
C
=
0
.
0
4
0
6
p
.
u
.
T
h
u
s
th
e
m
a
x
i
m
u
m
r
ea
cti
v
e
p
o
w
er
w
h
ic
h
t
h
e
SV
C
ca
n
i
n
j
ec
t is 0
.
2
4
6
p
.
u
.
i.e
.
2
4
.
6
MV
ar
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
V
o
lta
g
e
S
ta
b
ilit
y
P
r
ed
ictio
n
o
n
P
o
w
er N
etw
o
r
k
s
u
s
in
g
A
r
tifi
cia
l Neu
r
a
l Netw
o
r
ks
(
Gita
n
ja
li S
a
h
a
)
5
3.
RE
SU
L
T
AND
DI
SCUS
SI
O
N
T
h
e
p
r
o
p
o
s
ed
Vo
ltag
e
s
tab
ilit
y
I
n
d
ices
h
a
s
b
ee
n
test
ed
o
n
a
s
tan
d
ar
d
I
E
E
E
3
0
-
b
u
s
s
y
s
te
m
.
T
h
e
s
tatic
p
o
w
er
f
lo
w
a
n
al
y
s
is
i
s
d
o
n
e
b
y
Ne
w
to
n
R
ap
h
s
o
n
m
et
h
o
d
in
Ma
tlab
s
o
f
t
w
ar
e
to
id
en
ti
f
y
t
h
e
w
ea
k
e
s
t,
w
ea
k
er
an
d
th
e
w
ea
k
b
u
s
o
f
th
e
s
y
s
te
m
u
s
i
n
g
(
r
ea
ctiv
e
p
o
w
er
s
e
n
s
it
iv
it
y
)
in
d
icato
r
w
h
ic
h
i
s
s
h
o
wn
in
T
ab
le
1
.
T
ab
le
1
.
Stab
ilit
y
r
a
n
k
i
n
g
o
f
b
u
s
e
s
B
u
s
N
o
.
d
Q
i
/
d
V
i
v
a
l
u
e
R
a
n
k
i
n
g
13
1
.
7
2
0
7
W
e
a
k
e
st
2
2
.
8
6
2
3
W
e
a
k
e
r
5
3
.
4
7
6
6
W
e
a
k
T
ab
le
1
in
d
icate
s
th
at
b
u
s
n
o
.
1
3
is
th
e
cr
itica
l
b
u
s
o
f
th
e
s
y
s
te
m
w
it
h
th
e
s
m
al
lest
v
alu
e
o
f
an
d
th
e
n
e
x
t
s
m
aller
v
a
lu
e
i
s
o
f
b
u
s
n
o
.
2
w
h
ic
h
is
t
h
e
w
ea
k
er
b
u
s
an
d
b
u
s
n
o
.
5
is
th
e
w
ea
k
b
u
s
o
f
th
e
s
y
s
te
m
.
Sin
ce
lo
w
v
alu
e
o
f
d
Q/d
V
m
e
an
s
d
V/d
Q
w
ill
b
e
h
ig
h
,
in
d
ic
atin
g
lar
g
e
c
h
an
g
e
i
n
v
o
lta
g
e
f
o
r
v
ar
iatio
n
o
f
th
e
r
ea
ctiv
e
p
o
w
er
o
f
t
h
e
b
u
s
.
3
.
1
.
I
nte
rpre
t
a
t
io
n
o
f
T
I
a
nd
F
VSI
o
n I
E
E
E
3
0
-
bu
s
s
y
s
t
e
m
T
h
e
p
r
o
p
o
s
ed
T
r
an
s
f
er
en
ce
I
n
d
ex
(
T
I
)
is
n
o
w
co
o
r
d
in
ated
to
th
e
v
ar
io
u
s
tr
an
s
m
i
s
s
io
n
l
in
es
o
f
t
h
e
I
E
E
E
3
0
-
b
u
s
s
y
s
te
m
an
d
its
p
er
f
o
r
m
an
ce
i
s
co
m
p
ar
ed
w
it
h
th
e
s
ta
n
d
ar
d
Fas
t
Vo
ltag
e
Sta
b
ilit
y
I
n
d
ex
(
FV
SI)
.
Fro
m
E
q
u
atio
n
(
6
)
an
d
eq
u
atio
n
(
7
)
it
is
clea
r
th
at
th
e
tr
an
s
m
is
s
io
n
li
n
es
h
av
in
g
v
al
u
es
o
f
T
I
an
d
FVSI
clo
s
e
to
u
n
it
y
w
ill
b
e
m
o
r
e
r
ec
u
m
b
en
t
to
i
n
s
tab
ilit
y
t
h
an
t
h
o
s
e
h
av
in
g
less
er
v
al
u
es.
T
h
u
s
b
as
ed
o
n
th
e
m
ax
i
m
u
m
v
alu
e
s
o
f
T
I
,
th
e
r
an
k
i
n
g
o
f
d
i
f
f
er
en
t tr
a
n
s
m
i
s
s
io
n
li
n
es
h
a
s
b
ee
n
m
ad
e
u
n
d
er
h
ea
v
y
lo
ad
in
g
o
f
th
e
cr
itical
b
u
s
i.e
.
b
u
s
n
o
.
1
3
an
d
co
n
ce
alin
g
th
e
o
th
er
b
u
s
es
f
i
x
ed
at
th
eir
r
esp
ec
tiv
e
b
ase
lo
ad
s
.
T
h
e
ef
f
ec
t
in
th
e
v
alu
e
o
f
T
I
w
ith
t
h
e
e
m
b
o
d
i
m
e
n
t
o
f
SVC
in
t
h
e
cr
itical
b
u
s
h
a
s
also
b
ee
n
d
ep
icted
.
T
h
e
r
an
k
i
n
g
o
f
d
if
f
er
en
t
tr
an
s
m
is
s
io
n
li
n
es
ar
e
th
e
n
co
m
p
ar
ed
w
i
th
t
h
e
s
ta
n
d
ar
d
FVSI
v
alu
e
s
u
n
d
er
h
ea
v
y
lo
ad
in
g
co
n
d
it
io
n
o
f
th
e
cr
itical
b
u
s
.
T
h
e
v
alu
es
o
f
T
I
w
ith
a
n
d
w
it
h
o
u
t
th
e
p
lace
m
en
t
o
f
SVC
i
n
th
e
cr
itic
al
b
u
s
f
o
r
v
ar
io
u
s
tr
an
s
m
is
s
io
n
l
in
e
s
h
a
s
also
b
ee
n
co
m
p
ar
ed
w
i
th
t
h
e
v
a
lu
e
s
o
f
FVSI
.
T
h
e
co
m
p
ar
is
o
n
h
as
b
ee
n
d
ep
icted
in
T
ab
le
2
an
d
T
ab
le
3
.
T
ab
le
2
d
em
o
n
s
tr
ate
s
th
e
v
al
u
es
o
f
T
I
an
d
FVSI
f
o
r
a
p
ar
tic
u
lar
tr
an
s
m
i
s
s
io
n
li
n
e
w
h
e
n
t
h
e
cr
itical
b
u
s
is
h
ea
v
il
y
lo
ad
ed
w
ith
o
u
t
an
y
in
c
lu
s
io
n
o
f
SV
C
.
I
t
d
ep
icts
th
at
th
e
v
al
u
es
o
f
b
o
th
t
h
e
in
d
ex
e
s
(
T
I
an
d
FVSI)
ar
e
h
ig
h
er
f
o
r
t
h
e
tr
a
n
s
m
is
s
io
n
li
n
e
3
8
w
h
ic
h
s
h
o
w
s
t
h
at
l
in
e
3
8
is
m
o
r
e
v
u
l
n
er
ab
le
to
v
o
lta
g
e
co
llap
s
e
in
t
h
e
s
y
s
te
m
.
W
h
en
th
e
p
r
o
p
o
s
ed
T
I
is
co
m
p
ar
ed
w
i
th
th
e
s
tan
d
ar
d
FVSI
it
s
h
o
w
s
th
at
th
e
r
an
k
i
n
g
o
f
t
h
e
tr
an
s
m
is
s
io
n
li
n
e
s
ar
e
s
i
m
ilar
w
it
h
b
o
th
t
h
e
in
d
e
x
es
w
h
ic
h
j
u
s
ti
f
ie
s
th
e
f
ea
s
ib
ilit
y
o
f
th
e
p
r
o
p
o
s
ed
T
I
.
T
ab
le
2
.
R
an
k
i
n
g
o
f
T
r
an
s
m
i
s
s
io
n
li
n
es
w
it
h
o
u
t SV
C
f
o
r
h
e
av
il
y
lo
ad
ed
cr
i
tical
b
u
s
1
3
L
o
a
d
i
n
g
a
t
c
r
i
t
i
c
a
l
b
u
s
1
3
L
i
n
e
F
r
o
m
To
TI
F
V
S
I
R
a
n
k
P
=
0
.
3
5
Q
=
0
.
0
2
3
38
11
2
0
.
3
7
4
8
0
.
0
6
8
5
1
39
5
2
0
.
2
9
5
7
0
.
0
5
4
0
2
20
14
15
0
.
1
1
2
0
0
.
0
4
6
1
3
27
10
21
0
.
0
7
8
4
0
.
0
4
2
4
4
37
11
5
0
.
0
6
1
4
0
.
0
2
3
4
5
26
10
17
0
.
0
4
4
5
0
.
0
2
2
3
6
19
12
16
0.
0
3
8
1
0
.
0
1
7
5
7
4
3
4
0
.
0
1
3
4
0
.
0
0
2
8
8
T
ab
le
3
d
em
o
n
s
tr
ate
s
th
e
e
f
f
e
ct
o
n
th
e
v
a
lu
e
s
o
f
T
I
an
d
FVSI
b
y
p
laci
n
g
a
n
SV
C
at
t
h
e
cr
itical
b
u
s
.
I
t
is
o
b
s
er
v
ed
th
at
f
o
r
th
e
s
a
m
e
lo
ad
in
g
o
n
th
e
cr
itica
l
b
u
s
t
h
e
s
tab
ili
t
y
o
f
t
h
e
s
y
s
te
m
w
i
th
b
o
th
th
e
p
r
o
p
o
s
ed
T
I
an
d
FVSI
h
as
i
m
p
r
o
v
ed
as
th
er
e
i
s
a
d
ec
r
ea
s
e
i
n
t
h
e
v
al
u
es
o
f
T
I
an
d
FV
SI
f
o
r
th
e
r
esp
ec
tiv
e
tr
an
s
m
i
s
s
io
n
lin
es.
Ag
ai
n
th
e
e
x
p
ed
ien
c
y
o
f
th
e
p
r
o
p
o
s
ed
T
r
an
s
f
er
e
n
ce
I
n
d
ex
(
T
I
)
h
as b
ee
n
estab
lis
h
ed
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
1
,
A
p
r
il 2
0
1
8
:
1
–
9
6
T
ab
le
3
.
R
an
k
i
n
g
o
f
T
r
an
s
m
i
s
s
io
n
li
n
es
w
it
h
S
VC
f
o
r
h
ea
v
i
l
y
lo
ad
ed
cr
itical
b
u
s
1
3
L
o
a
d
i
n
g
a
t
c
r
i
t
i
c
a
l
b
u
s
1
3
L
i
n
e
F
r
o
m
To
TI
F
V
S
I
R
a
n
k
P
=
0
.
3
5
Q
=
0
.
0
2
3
w
i
t
h
S
V
C
38
11
2
0
.
3
5
3
3
0
.
0
6
4
6
1
39
5
2
0
.
2
5
2
8
0
.
0
4
6
2
2
20
14
15
0
.
1
1
0
0
0
.
0
4
5
1
3
27
10
21
0
.
0
7
4
6
0
.
0
4
0
3
4
37
11
5
0
.
0
5
7
9
0
.
0
2
2
2
5
26
10
17
0
.
0
424
0
.
0
2
1
0
6
19
12
16
0
.
0
3
6
6
0
.
0
1
6
8
7
4
3
4
0
.
0
1
3
3
0
.
0
0
2
8
8
A
s
t
u
d
y
h
as
b
ee
n
m
ad
e
o
n
h
o
w
th
e
i
n
d
ex
v
alu
e
s
ch
a
n
g
e
w
it
h
t
h
e
ch
a
n
g
e
i
n
lo
ad
.
T
h
is
is
d
o
n
e
b
y
ch
an
g
i
n
g
t
h
e
ac
ti
v
e
lo
ad
o
n
t
h
e
cr
itical
b
u
s
n
o
.
1
3
,
k
ee
p
in
g
t
h
e
lo
ad
o
n
o
th
er
b
u
s
e
s
f
ix
e
d
at
t
h
eir
r
esp
ec
tiv
e
b
ase
lo
ad
s
.
I
n
it
iall
y
t
h
e
te
s
t
i
s
s
tar
ted
f
r
o
m
t
h
e
b
ase
v
al
u
e
o
f
P
o
r
ac
tiv
e
lo
ad
an
d
i
s
g
r
a
d
u
all
y
i
n
cr
ea
s
ed
i
n
s
tep
s
o
f
5
%
o
f
t
h
e
b
ase
v
al
u
e
f
o
r
lin
e
3
9
u
n
ti
l
th
e
s
y
s
te
m
f
ai
ls
to
co
n
v
er
g
e
a
n
d
th
e
v
a
lu
e
s
o
f
T
I
an
d
FVSI
ar
e
co
m
p
u
ted
.
L
i
n
e
n
o
.
3
9
h
as
b
e
en
c
h
o
s
en
as
it
co
m
p
r
i
s
es
o
f
b
o
th
th
e
w
ea
k
er
a
n
d
t
h
e
w
ea
k
b
u
s
.
T
h
e
s
tep
s
ar
e
b
ein
g
r
ep
ea
ted
b
y
co
n
n
ec
ti
n
g
an
SV
C
in
t
h
e
cr
itical
b
u
s
1
3
.
Fig
u
r
e
3
.
P
lo
t o
f
T
I
ag
ain
s
t a
ct
iv
e
p
o
w
er
lo
ad
in
g
f
o
r
lin
e
3
9
Fig
u
r
e
4
.
P
lo
t o
f
FVS
I
ag
ain
s
t
ac
tiv
e
p
o
w
er
lo
ad
in
g
f
o
r
lin
e
3
9
Fig
u
r
e
3
an
d
Fi
g
u
r
e
4
r
esp
ec
ti
v
el
y
d
i
v
u
lg
e
s
t
h
e
p
lo
ttin
g
o
f
p
r
o
p
o
s
ed
T
I
an
d
FVSI
w
ith
a
n
d
w
it
h
o
u
t
th
e
in
co
r
p
o
r
atio
n
o
f
SVC
at
b
u
s
1
3
ag
ain
s
t
ac
ti
v
e
o
r
P
lo
ad
in
g
in
b
u
s
1
3
f
o
r
tr
an
s
m
is
s
io
n
li
n
e
3
9
.
I
f
a
co
m
p
ar
is
o
n
i
s
b
ei
n
g
m
ad
e
b
et
w
ee
n
Fi
g
u
r
e
3
an
d
Fig
u
r
e
4
it
ca
n
b
e
m
a
n
i
f
ested
th
at
t
h
e
v
al
u
e
o
f
FVSI
i
s
r
ed
u
ce
d
b
y
a
s
m
all
a
m
o
u
n
t
w
it
h
th
e
ap
p
licatio
n
o
f
SV
C
w
h
er
ea
s
t
h
e
v
al
u
e
o
f
th
e
p
r
o
p
o
s
ed
T
I
is
g
r
ea
tl
y
r
ed
u
ce
d
w
ith
t
h
e
ap
p
licatio
n
o
f
SVC
.
T
h
u
s
it
ca
n
b
e
co
n
clu
d
ed
th
at
th
e
s
tab
il
it
y
m
ar
g
in
o
f
th
e
s
y
s
te
m
ca
n
b
e
ea
s
il
y
d
ia
g
n
o
s
ed
f
r
o
m
th
e
v
al
u
es
o
f
th
e
p
r
o
p
o
s
ed
T
I
.
Sin
ce
in
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
o
lo
g
y
t
h
e
ef
f
ec
t
o
f
li
n
e
ch
ar
g
i
n
g
s
u
s
ce
p
tan
ce
h
a
s
b
ee
n
co
n
s
id
er
ed
th
r
o
u
g
h
π
m
o
d
el
o
f
th
e
eq
u
iv
ale
n
t
cir
cu
it,
th
e
ef
f
icien
c
y
an
d
s
tab
ilit
y
o
f
th
e
s
y
s
te
m
i
n
cr
ea
s
es
b
y
r
ed
u
cin
g
t
h
e
p
o
w
er
lo
s
s
es.
A
l
s
o
th
e
p
o
w
er
f
ac
to
r
o
f
t
h
e
s
y
s
te
m
i
m
p
r
o
v
es
w
h
ic
h
r
ed
u
ce
s
t
h
e
K
V
A
d
r
a
w
n
f
r
o
m
t
h
e
s
u
p
p
l
y
.
He
n
ce
f
o
r
t
h
,
th
e
p
r
o
p
o
s
ed
T
r
an
s
f
er
en
ce
I
n
d
ex
(
T
I
)
h
as
b
ee
n
p
r
o
v
ed
to
b
e
m
o
r
e
ad
v
an
tag
eo
u
s
w
it
h
r
esp
ec
t to
FVSI.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
V
o
lta
g
e
S
ta
b
ilit
y
P
r
ed
ictio
n
o
n
P
o
w
er N
etw
o
r
k
s
u
s
in
g
A
r
tifi
cia
l Neu
r
a
l Netw
o
r
ks
(
Gita
n
ja
li S
a
h
a
)
7
Fig
u
r
e
5
.
P
lo
t o
f
T
I
ag
ain
s
t r
ea
ctiv
e
p
o
w
er
lo
ad
in
g
f
o
r
lin
e
3
9
Fig
u
r
e
4
.
P
lo
t o
f
FVS
I
ag
ain
s
t
re
ac
tiv
e
p
o
w
er
lo
ad
in
g
f
o
r
lin
e
3
9
Si
m
i
lar
l
y
,
th
e
p
r
o
p
o
s
ed
T
I
v
alu
es
ca
n
b
e
co
m
p
u
ted
b
y
i
n
cr
e
asin
g
th
e
Q
o
r
r
ea
ctiv
e
p
o
w
er
lo
ad
in
g
o
f
b
u
s
1
3
k
ee
p
in
g
t
h
e
P
lo
ad
f
ix
e
d
at
th
e
b
ase
v
alu
e
till
th
e
s
y
s
t
e
m
co
llap
s
es.
Fig
u
r
e
5
an
d
Fig
u
r
e
6
r
esp
ec
tiv
el
y
s
h
o
w
s
t
h
e
v
ar
iatio
n
o
f
th
e
p
r
o
p
o
s
ed
T
I
an
d
FV
SI
ag
ai
n
s
t
Q
lo
ad
in
g
o
f
cr
itical
b
u
s
1
3
w
i
th
a
n
d
w
it
h
o
u
t
t
h
e
ap
p
licatio
n
o
f
SVC
at
b
u
s
1
3
.
T
ab
le
4
.
C
h
an
g
e
s
i
n
th
e
cr
itica
l v
alu
e
s
f
o
r
I
E
E
E
3
0
-
B
u
s
s
y
s
t
e
m
d
u
e
to
SV
C
C
r
i
t
i
c
a
l
P
a
r
a
me
t
e
r
s
W
i
t
h
o
u
t
S
V
C
W
i
t
h
S
V
C
P
c
r
i
0
.
3
9
0
.
5
1
Q
c
r
i
0
.
3
0
.
5
4
6
T
ab
le
4
s
h
o
w
s
t
h
at
th
e
P
lo
a
d
in
g
a
n
d
Q
lo
ad
in
g
o
f
t
h
e
s
y
s
te
m
h
a
s
i
n
cr
ea
s
ed
d
u
e
to
p
la
ce
m
en
t
o
f
SVC
at
t
h
e
cr
it
ical
b
u
s
1
3
.
T
h
e
ac
tiv
e
p
o
w
er
lo
ad
in
g
h
as
b
e
en
i
n
cr
ea
s
ed
b
y
0
.
1
2
p
.
u
.
a
n
d
th
e
r
ea
ctiv
e
p
o
w
e
r
lo
ad
in
g
h
a
s
b
ee
n
i
n
cr
ea
s
ed
b
y
0
.
2
4
6
p
.
u
.
4.
ANN
ARCH
I
T
E
CT
U
RE
T
h
e
Neu
r
al
Net
w
o
r
k
b
ased
tech
n
iq
u
e
h
as
b
ec
o
m
e
a
m
o
s
t
i
m
ag
in
ab
l
y
a
s
s
er
tab
le,
a
v
er
y
ap
p
ea
lin
g
an
d
an
ac
cr
u
al
b
en
e
f
icial
tr
en
d
in
t
h
e
r
ec
en
t
d
ev
elo
p
m
en
t
o
f
t
h
e
p
o
w
er
s
y
s
te
m
.
I
n
t
h
is
n
e
t
w
o
r
k
t
h
e
in
f
o
r
m
atio
n
m
o
v
es
u
n
id
ir
ec
ti
o
n
all
y
i
n
t
h
e
f
o
r
w
ar
d
d
ir
ec
tio
n
s
tar
tin
g
f
r
o
m
t
h
e
in
p
u
t
n
o
d
es
th
r
o
u
g
h
t
h
e
h
id
d
en
n
o
d
es
an
d
f
i
n
all
y
to
t
h
e
o
u
tp
u
t
n
o
d
es
[
1
6
-
1
7
]
.
Fig
u
r
e
7
s
h
o
w
s
t
h
e
ar
c
h
itect
u
r
e
o
f
Fe
ed
Fo
r
w
ar
d
Neu
r
al
Net
w
o
r
k
(
FF
NN)
.
Fig
u
r
e
7
.
A
r
ch
itectu
r
e
o
f
AN
N
4
.
1
.
L
ea
rning
Alg
o
rit
h
m
T
h
e
FF
NN
u
s
es
a
s
u
p
er
v
is
ed
lear
n
in
g
al
g
o
r
ith
m
.
T
h
e
lear
n
in
g
co
m
p
r
i
s
es
o
f
a
p
atter
n
p
r
esen
ted
at
th
e
i
n
p
u
t
s
w
h
ich
g
et
s
tr
an
s
f
o
r
m
ed
in
its
p
as
s
ag
e
th
r
o
u
g
h
t
h
e
la
y
er
s
o
f
th
e
n
et
w
o
r
k
till
i
t
r
ea
ch
es
t
h
e
o
u
tp
u
t
la
y
er
.
T
h
e
o
u
tp
u
ts
o
f
t
h
e
n
et
wo
r
k
ar
e
th
en
co
m
p
ar
ed
w
i
th
t
h
e
o
u
tp
u
ts
as
t
h
e
y
id
ea
ll
y
w
o
u
l
d
h
av
e
b
ee
n
i
f
th
i
s
p
atter
n
w
er
e
clas
s
i
f
ied
co
r
r
ec
tl
y
.
I
n
th
is
p
ap
er
m
u
lti
la
y
er
FF
NN
lear
n
in
g
al
g
o
r
ith
m
h
a
s
b
ee
n
u
s
ed
w
h
ic
h
u
s
e
s
0.2
0.4
0.6
0.8
1
0
0.2
0.4
0.6
Tr
an
fer
e
n
c
e
In
d
e
x(TI)
R
e
ac
tiv
e
Lo
ad
in
p
.u
.
w
ith
o
u
t
SV
C
w
ith
S
VC
0.0
4
0.0
6
0.0
8
0.1
0
0.2
0.4
0.6
FVS
I
R
e
ac
tiv
e
Lo
ad
in
p
.u
.
w
ith
o
u
t
SV
C
w
ith
S
VC
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
1
,
A
p
r
il 2
0
1
8
:
1
–
9
8
th
e
tech
n
iq
u
e
o
f
b
ac
k
p
r
o
p
ag
atio
n
.
Of
te
n
w
e
u
s
e
t
h
e
ter
m
b
ac
k
p
r
o
p
ag
atio
n
b
ec
au
s
e
th
e
d
if
f
er
en
ce
s
b
et
w
ee
n
th
e
ac
t
u
al
a
n
d
t
h
e
id
ea
lized
o
u
tp
u
t
s
ar
e
b
ac
k
p
r
o
p
ag
ated
f
r
o
m
t
h
e
to
p
to
t
h
e
lo
w
er
la
y
er
s
to
co
m
p
u
te
s
o
m
e
p
r
ed
ef
in
ed
er
r
o
r
f
u
n
ctio
n
.
Af
t
er
p
er
f
o
r
m
in
g
m
a
n
y
ep
o
ch
s
a
n
d
at
t
h
e
ter
m
i
n
atio
n
o
f
th
e
l
ea
r
n
in
g
p
h
ase,
t
h
e
n
eu
r
al
n
et
w
o
r
k
w
i
ll
b
e
ab
le
to
g
en
er
alize
a
n
d
class
if
y
co
r
r
ec
tl
y
a
n
y
u
n
k
n
o
w
n
p
atter
n
co
n
f
er
r
ed
to
it
an
d
th
e
n
et
w
o
r
k
h
as lea
r
n
ed
a
ce
r
tain
t
ar
g
et
f
u
n
c
tio
n
.
4
.
2
.
ANN
T
ra
ini
ng
a
nd
E
x
p
lo
it
a
t
io
n
T
h
e
n
et
w
o
r
k
w
as
tr
ai
n
ed
w
it
h
“
er
r
o
r
b
ac
k
p
r
o
p
ag
atio
n
”
s
u
p
er
v
is
ed
lear
n
i
n
g
alg
o
r
it
h
m
.
T
h
e
tr
ain
ed
n
et
w
o
r
k
is
e
x
p
lo
ited
to
p
r
ed
ict
th
e
T
r
an
s
f
er
e
n
ce
I
n
d
ex
i
n
d
icato
r
v
alu
e.
“
T
an
s
i
g
”
an
d
“
p
u
r
eli
n
”
tr
an
s
f
er
f
u
n
ctio
n
s
w
er
e
u
s
ed
d
u
r
i
n
g
tr
a
in
i
n
g
o
f
n
et
w
o
r
k
.
T
h
e
p
r
o
ce
s
s
o
f
f
i
n
d
in
g
a
s
et
o
f
w
e
ig
h
ts
s
u
ch
t
h
at
f
o
r
a
g
iv
e
n
in
p
u
t
th
e
n
et
w
o
r
k
p
r
o
d
u
ce
s
th
e
d
esire
d
o
u
tp
u
t
is
ca
lled
tr
ain
in
g
.
I
n
t
h
is
s
t
u
d
y
t
h
e
tr
ai
n
in
g
o
f
th
e
in
p
u
t
d
ata
s
e
t
is
d
o
n
e
o
n
d
i
f
f
er
en
t
co
n
f
ig
u
r
atio
n
s
o
f
t
h
e
s
y
s
te
m
b
ased
o
n
th
e
b
as
e
co
n
f
ig
u
r
atio
n
o
f
t
h
e
s
y
s
te
m
a
n
d
h
ea
v
y
lo
ad
in
g
o
n
t
h
e
w
ea
k
er
s
ec
tio
n
s
o
f
th
e
s
y
s
te
m
.
I
t a
l
s
o
i
n
clu
d
e
s
s
i
n
g
le
a
n
d
d
o
u
b
le
o
u
ta
g
es
o
f
tr
an
s
m
i
s
s
io
n
li
n
es,
g
en
er
ato
r
o
u
ta
g
es,
p
lace
m
e
n
t
o
f
SV
C
i
n
t
h
e
cr
itical
b
u
s
a
n
d
th
e
co
r
r
esp
o
n
d
in
g
T
I
an
d
FVSI
v
alu
e
s
w
er
e
ca
lcu
lated
u
n
d
er
all
t
h
e
p
r
o
b
ab
le
lo
ad
in
g
a
n
d
s
y
s
te
m
p
atter
n
s
.
T
h
is
h
as
co
m
e
u
p
w
ith
th
e
g
en
er
atio
n
o
f
1
5
d
if
f
er
e
n
t
s
y
s
te
m
to
p
o
lo
g
ies,
2
0
d
if
f
er
en
t
co
m
b
i
n
atio
n
s
o
f
b
u
s
lo
ad
in
g
an
d
alto
g
e
th
er
2
1
0
0
s
a
m
p
les
o
f
d
ata.
E
ac
h
d
ata
h
av
in
g
its
o
w
n
to
p
o
lo
g
y
co
d
e,
ac
tiv
e
an
d
r
ea
cti
v
e
p
o
w
er
lo
ad
in
g
a
n
d
th
e
co
r
r
esp
o
n
d
en
t T
I
v
alu
e.
Af
ter
th
e
ter
m
i
n
atio
n
o
f
tr
ain
i
n
g
lear
n
i
n
g
al
g
o
r
ith
m
o
f
t
h
e
d
ata
s
et,
th
e
A
NN
ar
ch
i
tectu
r
e
is
f
i
n
all
y
o
p
tim
ized
f
o
r
7
in
p
u
t
la
y
er
n
eu
r
o
n
s
i.e
.
v
o
lta
g
e,
ac
tiv
e
an
d
r
ea
ctiv
e
p
o
w
er
lo
ad
i
n
g
f
o
r
t
h
e
w
e
a
k
,
w
ea
k
er
an
d
w
ea
k
est
b
u
s
es,
4
h
id
d
en
la
y
er
n
eu
r
o
n
s
an
d
1
o
u
tp
u
t
la
y
er
n
eu
r
o
n
s
u
s
i
n
g
th
e
tar
g
e
t
T
I
d
at
a.
T
h
e
class
i
f
icatio
n
ca
p
ab
ilit
y
o
f
t
h
e
p
r
o
p
o
s
ed
A
NN
is
ch
ec
k
ed
in
to
t
h
o
r
o
u
g
h
l
y
b
y
u
s
i
n
g
3
5
0
ep
o
ch
s
.
T
h
e
ex
ec
u
tio
n
o
f
th
e
A
N
N
w
a
s
test
ed
o
n
I
E
E
E
3
0
-
b
u
s
s
y
s
te
m
f
o
r
1
0
u
n
k
n
o
w
n
lo
ad
in
g
p
atter
n
s
b
y
co
m
p
u
tin
g
t
h
e
er
r
o
r
f
o
r
ev
er
y
tes
tin
g
p
atter
n
.
T
h
e
er
r
o
r
is
f
ab
r
icate
d
b
y
co
r
r
elati
n
g
th
e
ac
tu
a
l
v
a
lu
es
o
f
T
I
w
i
th
th
e
ANN
g
e
n
er
ated
v
alu
e
s
o
f
T
I
an
d
th
e
en
u
m
er
ated
test
r
es
u
lt
s
ar
e
g
iv
e
n
i
n
T
ab
le
5
.
T
ab
le
5
.
A
cc
u
r
ac
y
o
f
t
h
e
p
r
o
p
o
s
ed
A
NN
P
atter
n
E
n
g
i
n
e
S
y
st
e
m C
o
n
f
i
g
u
r
a
t
i
o
n
A
c
t
u
a
l
TI
v
a
l
u
e
A
N
N
g
e
n
e
r
a
t
e
d
TI
v
a
l
u
e
%
Er
r
o
r
C
o
n
f
i
g
u
r
a
t
i
o
n
1
w
i
t
h
l
i
n
e
3
5
o
u
t
a
g
e
0
.
2
5
3
2
0
.
2
5
2
8
-
0
.
1
5
C
o
n
f
i
g
u
r
a
t
i
o
n
2
w
i
t
h
l
i
n
e
2
5
o
u
t
a
g
e
0
.
2
5
8
9
0
.
2
5
9
4
0
.
1
9
C
o
n
f
i
g
u
r
a
t
i
o
n
3
w
i
t
h
G
e
n
1
o
u
t
a
g
e
0
.
2
5
4
9
0
.
2
5
5
0
.
0
4
C
o
n
f
i
g
u
r
a
t
i
o
n
4
w
i
t
h
G
e
n
2
o
u
t
a
g
e
0
.
2
5
6
0
0
.
2
5
6
6
0
.
2
3
C
o
n
f
i
g
u
r
a
t
i
o
n
5
w
i
t
h
l
i
n
e
1
1
&
2
2
o
u
t
a
g
e
0
.
2
5
7
3
0
.
2
5
7
3
0
C
o
n
f
i
g
u
r
a
t
i
o
n
6
w
i
t
h
S
V
C
i
n
c
r
i
t
i
c
a
l
b
u
s
0
.
2
3
1
9
0
.
2
3
1
4
-
0
.
2
2
C
o
n
f
i
g
u
r
a
t
i
o
n
7
w
i
t
h
S
V
C
i
n
t
h
e
c
r
i
t
i
c
a
l
b
u
s
a
n
d
l
i
n
e
1
4
o
u
t
a
g
e
0
.
2
3
6
5
0
.
2
3
6
5
0
C
o
n
f
i
g
u
r
a
t
i
o
n
8
w
i
t
h
S
V
C
i
n
t
h
e
c
r
i
t
i
c
a
l
b
u
s
a
n
d
l
i
n
e
2
3
o
u
t
a
g
e
0
.
2
3
1
8
0
.
2
3
2
0
.
0
9
C
o
n
f
i
g
u
r
a
t
i
o
n
9
w
i
t
h
h
e
a
v
y
l
o
a
d
i
n
t
h
e
c
r
i
t
i
c
a
l
b
u
s
a
n
d
l
i
n
e
2
3
o
u
t
a
g
e
0
.
2
9
5
6
0
.
2
9
5
3
-
0
.
1
0
C
o
n
f
i
g
u
r
a
t
i
o
n
1
0
w
i
t
h
h
e
a
v
y
l
o
a
d
i
n
t
h
e
c
r
i
t
i
c
a
l
b
u
s
a
n
d
G
e
n
2
o
u
t
a
g
e
0
.
3
0
8
1
0
.
3
0
7
6
-
0
.
1
6
Fro
m
T
ab
le
5
it
is
o
b
s
er
v
ed
t
h
at
th
e
m
o
s
t
co
n
ti
n
g
en
t
co
n
f
i
g
u
r
ed
is
No
.
1
0
,
i.e
.
th
e
co
n
f
ig
u
r
atio
n
1
0
w
it
h
h
ea
v
y
lo
ad
o
n
th
e
cr
it
ica
l
b
u
s
w
h
e
n
Ge
n
er
ato
r
2
is
tr
i
p
p
ed
b
ec
au
s
e
in
t
h
is
co
n
d
itio
n
t
h
e
v
a
lu
e
o
f
T
I
is
m
ax
i
m
ized
.
W
h
ile
t
h
e
m
i
n
i
m
u
m
v
al
u
e
o
f
T
I
is
at
C
o
n
f
ig
u
r
atio
n
8
w
it
h
SV
C
i
n
t
h
e
cr
iti
ca
l
b
u
s
a
n
d
li
n
e
2
3
o
u
tag
e,
w
h
ic
h
i
s
leas
t
co
n
ti
n
g
en
t
co
n
f
i
g
u
r
atio
n
.
T
ab
le
5
also
d
em
o
n
s
tr
ate
s
t
h
e
ac
cu
r
ac
y
a
n
d
r
eliab
ilit
y
o
f
th
i
s
A
N
N
b
ased
p
atter
n
r
ec
o
g
n
iti
o
n
en
g
in
e.
Fro
m
T
ab
le
5
it
is
e
x
p
er
ien
ce
d
t
h
at
th
e
er
r
o
r
in
esti
m
atio
n
lie
s
b
et
w
ee
n
+0
.
2
3
to
-
0
.
6
4
,
w
h
ic
h
is
b
r
illi
an
t a
n
d
s
u
f
f
icie
n
t f
o
r
t
h
is
p
u
r
p
o
s
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
V
o
lta
g
e
S
ta
b
ilit
y
P
r
ed
ictio
n
o
n
P
o
w
er N
etw
o
r
k
s
u
s
in
g
A
r
tifi
cia
l Neu
r
a
l Netw
o
r
ks
(
Gita
n
ja
li S
a
h
a
)
9
5.
CO
NCLU
SI
O
N
A
m
et
h
o
d
o
lo
g
y
f
o
r
m
o
n
ito
r
in
g
an
d
p
r
ed
icti
n
g
o
f
v
o
ltag
e
s
t
ab
ilit
y
s
tate
o
f
a
m
u
lt
i
b
u
s
p
o
w
er
s
y
s
te
m
n
et
w
o
r
k
h
as
b
ee
n
co
n
f
er
r
ed
in
t
h
is
p
ap
er
u
s
i
n
g
A
NN
b
a
s
ed
p
atter
n
class
i
f
ica
tio
n
e
n
g
in
e.
T
h
e
p
r
o
p
o
s
ed
T
r
an
s
f
er
en
ce
I
n
d
ex
(
T
I
)
h
as
b
ee
n
f
o
r
m
u
lated
f
r
o
m
a
t
w
o
b
u
s
eq
u
i
v
ale
n
t
n
et
w
o
r
k
a
n
d
tes
t
ed
o
n
I
E
E
E
-
3
0
b
u
s
s
y
s
te
m
.
Si
m
u
latio
n
r
es
u
lt
s
al
s
o
s
h
o
w
th
a
t e
m
b
o
d
i
m
e
n
t o
f
a
co
m
p
e
n
s
at
in
g
d
e
v
ice
at
t
h
e
cr
i
tical
b
u
s
d
y
n
a
m
ize
s
th
e
o
v
er
all
s
y
s
te
m
s
tab
ili
t
y
.
F
u
r
th
er
A
N
N
h
a
s
b
ee
n
e
x
p
lo
ited
to
an
ticip
ate
th
e
v
o
ltag
e
s
ec
u
r
it
y
s
tate
o
f
th
e
s
y
s
te
m
w
i
th
t
h
e
aid
o
f
th
e
p
r
o
p
o
s
ed
in
d
ex
.
T
h
e
p
r
o
p
o
s
ed
t
ec
h
n
iq
u
e
h
as
b
ee
n
te
s
ted
o
n
I
E
E
E
3
0
-
b
u
s
s
y
s
te
m
an
d
its
w
o
r
k
ab
ilit
y
ar
e
s
h
o
w
n
in
b
o
th
lear
n
i
n
g
a
n
d
tr
ain
i
n
g
s
tag
es
o
f
A
NN.
T
h
e
p
r
o
ce
d
u
r
e
d
ep
icted
in
th
is
p
ap
er
h
as
s
h
o
w
n
a
h
ig
h
d
eg
r
e
e
o
f
f
ac
t
u
al
n
es
s
b
et
w
ee
n
th
e
t
ar
g
eted
an
d
th
e
ANN
o
u
tp
u
t.
Af
ter
tr
ai
n
in
g
o
n
l
y
a
f
e
w
s
ec
o
n
d
s
ar
e
r
eq
u
ir
ed
to
p
r
ed
ict
th
e
o
u
tp
u
t
d
u
r
i
n
g
t
h
e
v
er
if
icatio
n
s
tag
e.
T
h
e
p
r
o
p
o
s
e
d
ap
p
r
o
ac
h
h
as
th
u
s
p
r
o
v
ed
to
b
e
ef
f
icie
n
t,
p
r
ec
is
e
an
d
f
a
s
t
f
o
r
th
e
co
m
p
u
tatio
n
o
f
th
e
T
I
i.e
.
th
e
s
tab
ilit
y
s
tat
e
o
f
th
e
s
y
s
te
m
f
o
r
an
y
u
n
k
n
o
w
n
lo
ad
in
g
p
atter
n
s
an
d
co
n
tin
g
en
c
ies
w
h
ich
will
h
elp
th
e
p
o
w
er
s
y
s
te
m
o
p
er
ato
r
to
ad
o
p
t
an
y
n
ec
es
s
ar
y
ac
tio
n
i
f
r
eq
u
ir
ed
in
S
m
ar
t G
r
id
Scen
ar
io
.
RE
F
E
R
E
NC
E
S
[1
]
I.
O.
Ak
w
u
k
w
a
e
g
b
u
a
n
d
O.
G
e
r
a
ld
Ib
e
,
“
Co
n
c
e
p
ts
o
f
Re
a
c
ti
v
e
P
o
w
e
r
Co
n
tro
l
a
n
d
V
o
lt
a
g
e
S
tab
il
it
y
M
e
th
o
d
s
in
P
o
w
e
r
S
y
ste
m
Ne
t
w
o
rk
”
,
IOS
R
J
o
u
rn
a
l
o
f
C
o
mp
u
ter
En
g
in
e
e
rin
g
,
v
o
l
.
1
1
,
Iss
u
e
2
(M
a
y
-
Ju
n
e
.
2
0
1
3
),
p
p
.
1
5
-
25
[2
]
G
.
S
a
h
a
,
K.
Ch
a
k
ra
b
o
rty
a
n
d
P
.
Da
s
,
“
De
tec
ti
o
n
o
f
P
ro
x
im
it
y
to
V
o
lt
a
g
e
Co
ll
a
p
se
o
f
M
u
lt
i
-
B
u
s
P
o
w
e
r
Ne
t
w
o
rk
u
sin
g
T
ra
n
sm
is
sio
n
L
in
e
V
o
lt
a
g
e
S
tab
il
i
ty
In
d
ica
to
r.
”
,
AR
PN
J
o
u
rn
a
l
o
f
E
n
g
in
e
e
rin
g
a
n
d
Ap
p
li
e
d
S
c
ien
c
e
s
,
v
o
l
.
1
1
,
n
o
.
1
7
,
S
e
p
tem
b
e
r
2
0
1
6
,
p
p
.
1
0
6
8
9
-
1
0
6
9
4
.
[3
]
S
.
S
i
n
g
h
,
J.
Ha
m
m
a
n
t
a
n
d
A
.
Ka
sh
iv
,
“
A
p
p
li
c
a
ti
o
n
o
f
S
V
C
o
n
I
EE
E
6
B
u
s
S
y
ste
m
f
o
r
Op
ti
m
iza
ti
o
n
o
f
Vo
lt
a
g
e
S
tab
il
it
y
”
,
T
EL
KOM
NIKA
(
In
d
o
n
e
sia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
in
e
e
rin
g
a
n
d
C
o
mp
u
ter
S
c
ien
c
e
)
,
v
o
l.
3
,
No
.
1
,
p
p
.
1
-
6
,
M
a
rc
h
2
0
1
5
[4
]
P
.
P
o
u
r
b
e
ik
,
P
.
Ku
n
d
u
r
a
n
d
C.
W
.
T
a
y
lo
r,
“
T
h
e
a
n
a
to
m
y
o
f
a
p
o
we
r
g
rid
b
lac
k
o
u
t
–
Ro
o
t
c
a
u
se
s
a
n
d
d
y
n
a
m
ic
s
o
f
re
c
e
n
t
m
a
jo
r
b
lac
k
o
u
ts,
”
IEE
E
P
o
we
r a
n
d
En
e
rg
y
M
a
g
a
zi
n
e
,
p
p
.
2
2
-
2
9
,
S
e
p
t.
-
Oc
t.
2
0
0
6
[5
]
P
.
P
a
v
it
h
re
n
,
R.
R.
Ra
m
a
n
,
P
.
Na
ir
a
n
d
K.
Nit
h
iy
a
n
a
n
th
a
n
,
“
V
o
lt
a
g
e
S
tab
il
it
y
A
n
a
l
y
sis
a
n
d
S
tab
il
it
y
I
m
p
ro
v
e
m
e
n
t
o
f
P
o
w
e
r
S
y
ste
m
”
,
T
EL
KOM
NI
KA
(
In
d
o
n
e
si
a
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
i
n
e
e
rin
g
a
n
d
C
o
mp
u
ter
S
c
ien
c
e
)
,
v
o
l.
5
,
No
.
2
,
p
p
.
1
8
9
-
1
9
7
,
A
p
ril
2
0
1
5
[6
]
P
.
A
.
L
o
f
,
G
.
A
n
d
e
rso
n
a
n
d
D.
J.
Hill
,
“
V
o
l
t
a
g
e
S
tab
il
it
y
In
d
ice
s
fo
r
stre
ss
e
d
p
o
w
e
r
s
y
ste
m
s
”
,
IEE
E
T
ra
n
s.
P
o
we
r
S
y
ste
m
.
,
v
o
l.
8
No
.
1
,
p
p
.
3
2
6
-
3
3
5
,
1
9
9
3
[7
]
A
.
F
.
M
o
h
a
m
a
d
No
r
,
M
.
S
.
A
.
F
.
A
.
Ka
d
ir
a
n
d
R.
Om
a
r,
“
V
o
lt
a
g
e
In
sta
b
il
it
y
A
n
a
l
y
sis
f
o
r
El
e
c
tri
c
a
l
P
o
w
e
r
S
y
ste
m
Us
in
g
V
o
lt
a
g
e
S
tab
il
i
ty
M
a
rg
i
n
a
n
d
M
o
d
a
l
A
n
a
ly
sis
”
,
T
EL
KOM
NIKA
(
In
d
o
n
e
si
a
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
i
n
e
e
rin
g
a
n
d
C
o
mp
u
ter
S
c
ien
c
e
)
,
v
o
l.
3
,
N
o
.
3
,
p
p
.
6
5
5
-
6
6
2
,
S
e
p
tem
b
e
r
2
0
1
6
[8
]
I.
M
u
siri
n
a
n
d
T
.
K
.
A
.
Ra
h
m
a
n
,
“
No
v
e
l
Fa
st
Vo
lt
a
g
e
S
t
a
b
il
it
y
In
d
e
x
(
FV
S
I)
fo
r
v
o
lt
a
g
e
sta
b
il
it
y
a
n
a
lys
is
in
Po
we
r
T
ra
n
s
miss
io
n
S
y
ste
m”
,
2
0
0
2
S
tu
d
e
n
t
Co
n
f
e
re
n
c
e
o
n
Re
se
a
rc
h
a
n
d
De
v
e
lo
p
m
e
n
t
P
ro
c
e
e
d
in
g
s,
S
h
a
h
A
la
m
,
M
a
l
a
sia
,
Ju
l
y
2
0
0
2
[9
]
T
.
M
a
n
d
l
o
i
a
n
d
A
.
K.
Ja
i
n
,
“
A
S
t
u
d
y
o
f
P
o
w
e
r
S
y
ste
m
S
e
c
u
rit
y
a
n
d
Co
n
ti
n
g
e
n
c
y
A
n
a
l
y
sis
”
,
IJ
S
RE
T
,
v
o
l.
3
,
Iss
u
e
4
,
Ju
ly
2
0
1
4
[1
0
]
A
.
n
a
a
z
,
L
.
S
a
y
y
e
d
,
P
.
M
.
G
a
d
g
e
a
n
d
R.
U.
S
h
e
ik
h
,
“
Co
n
ti
n
g
e
n
c
y
A
n
a
l
y
sis
a
n
d
I
m
p
ro
v
e
m
e
n
t
o
f
P
o
w
e
r
S
y
ste
m
S
e
c
u
rit
y
b
y
lo
c
a
ti
n
g
F
A
C
T
S
De
v
ice
s
“
T
CS
C
a
n
d
T
CP
A
R”
a
t
Op
ti
m
a
l
L
o
c
a
ti
o
n
”
,
IOS
R
J
o
u
rn
a
l
o
f
El
e
c
trica
l
a
n
d
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
,
p
-
I
S
S
N :
2
3
2
0
-
3
3
3
1
,
p
p
.
1
9
-
2
7
,
2
0
1
4
[1
1
]
K.
Ch
a
k
ra
b
o
rty
a
n
d
G
.
S
a
h
a
,
“
O
ff
-
L
in
e
Vo
lt
a
g
e
S
e
c
u
rity
Asse
ss
m
e
n
t
o
f
Po
we
r
T
ra
n
sm
issio
n
S
y
ste
ms
u
sin
g
UVS
I
th
ro
u
g
h
Arti
fi
c
i
a
l
Ne
u
r
a
l
Ne
two
r
k
.
”
,
2
0
1
6
ICIC
P
I
IEE
E
,
v
o
l.
9
7
8
-
1
-
5
0
9
0
-
2
6
3
8
-
8
/
1
6
,
p
p
.
1
5
9
-
1
6
3
.
[1
2
]
K.
Ch
a
k
ra
b
o
rty
,
A
.
Ch
a
k
ra
b
a
rti
a
n
d
A
.
De
,
“
A co
m
b
in
e
d
A
NN
-
IV
S
I
a
p
p
r
o
a
c
h
f
o
r
a
ss
e
ss
m
e
n
t
o
f
v
o
lt
a
g
e
sta
b
il
it
y
in
a
p
o
w
e
r
s
y
ste
m
.
”
IJ
M
RA
E,
v
o
l.
3
,
No
.
I
(Ja
n
u
a
ry
2
0
1
1
),
p
p
.
1
9
7
-
2
1
2
[1
3
]
S
.
Ka
n
a
laa
sa
d
a
n
,
A
.
K
.
S
riv
a
sta
v
a
a
n
d
D.
T
u
k
a
ra
m
,
“
No
v
e
l
A
lg
o
rit
h
m
f
o
r
On
li
n
e
Vo
lt
a
g
e
S
tab
i
li
ty
A
ss
e
ss
m
e
n
t
b
a
se
d
o
n
F
e
e
d
F
o
rw
a
rd
Ne
u
ra
l
Ne
tw
o
rk
”
,
IEE
E
T
ra
n
s.
On
P
o
w
e
r
En
g
in
e
e
rin
g
S
o
c
iety
Ge
n
e
ra
l
M
e
e
ti
n
g
,
p
p
.
1
-
7
,
2
0
0
6
.
[1
4
]
K.
Ch
a
k
ra
b
o
rty
,
A
.
De
a
n
d
A
.
Ch
a
k
ra
b
a
rti
,
“
A
ss
e
ss
m
e
n
t
o
f
v
o
l
tag
e
se
c
u
rit
y
in
a
m
u
lt
i
b
u
s
p
o
w
e
r
s
y
ste
m
u
sin
g
A
rti
f
icia
l
Ne
u
ra
l
Ne
t
w
o
rk
a
n
d
v
o
lt
a
g
e
sta
b
il
it
y
in
d
ica
to
rs.”
J
o
u
rn
a
l
o
f
El
e
c
trica
l
S
y
ste
ms
, 6
-
4
(
2
0
1
0
)
:
5
1
7
-
5
2
9
[1
5
]
O.
P
.
Ra
h
i
,
A
.
Kr
Ya
d
a
v
,
H.
M
a
li
k
,
A
.
A
z
e
e
m
a
n
d
B.
Kr,
“
P
o
we
r
s
y
ste
m
v
o
lt
a
g
e
sta
b
il
it
y
A
ss
e
s
s
m
e
n
t
th
ro
u
g
h
A
rti
f
icia
l
Ne
u
ra
l
Ne
t
w
o
rk
.
”
EL
S
EV
IER
Pro
c
e
d
i
a
E
n
g
i
n
e
e
rin
g
,
v
o
l.
3
0
(
2
0
1
2
),
p
p
.
5
3
-
60
[1
6
]
K.
Ch
a
k
ra
b
o
rty
,
A
.
De
a
n
d
A.
Ch
a
k
ra
b
o
rty
,
“
V
o
lt
a
g
e
S
tab
il
it
y
As
se
ss
m
e
n
t
in
P
o
w
e
r
Ne
t
wo
rk
u
sin
g
S
e
lf
Org
a
n
izin
g
F
e
a
tu
re
M
a
p
a
n
d
Ra
d
ial
Ba
sis
F
u
n
c
ti
o
n
”
,
Co
m
p
u
ter
s
a
n
d
El
e
c
trica
l
En
g
in
e
e
rin
g
,
El
se
v
ier,
v
o
l.
-
3
8
,
No
.
–
4
,
p
p
.
8
1
9
-
8
2
6
,
Ju
ly
2
0
1
2
.
[1
7
]
K.
Ch
a
k
ra
b
o
rty
,
A
.
Ch
a
k
r
a
b
o
rti
,
a
n
d
A
.
De
,
“
In
teg
ra
ted
Vo
lt
a
g
e
sta
b
il
it
y
in
d
ica
to
r
b
a
se
d
A
ss
e
ss
m
e
n
t
o
f
v
o
lt
a
g
e
sta
b
il
it
y
a
n
d
a
p
p
li
c
a
ti
o
n
o
f
AN
N.
”
Ira
n
ia
n
J
o
u
rn
a
l
o
f
e
lec
trica
l
a
n
d
Co
mp
u
ter
En
g
in
e
e
rin
g
,
v
o
l.
1
0
,
No
.
2
,
S
u
m
m
e
r
-
F
a
ll
2
0
1
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.