TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5699 ~ 5708
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.620
5
5699
Re
cei
v
ed Ap
ril 5, 2014; Re
vised Ma
y 13
, 2014; Accep
t
ed May 25, 2
014
IR-UWB: An Ultra Low Power Consumption Wireless
Communication Technologie for WSN
Anou
ar Dari
f*
1
, Rachid Saadan
e
2
, Driss Aboutajdi
n
e
1
1
LRIT
-GSCM Associate
d
Unit
to CNRST
(URAC 29)
, FSR Mohamm
ed V-A
gda
l Univ
ersit
y
, BP 1014 Ra
b
a
t
Morocco
2
SIR2C2S/LAS
I
-EHT
P, Hassania Sch
ool
of Public
Lab
ors, Km 7 El Jadid
a
Roa
d
, B.P 810
8 Casa-Oas
is,
Casablanca M
o
rocco
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: anou
ar.dar
if@gmai
l
.com
A
b
st
r
a
ct
W
i
reless
Sens
or N
e
tw
ork (W
SN) h
a
s
gai
ne
d p
o
p
u
lar
i
ty in
recent ti
mes i
n
resi
denti
a
l, c
o
mmerc
i
a
l
and
in
dustria
l
app
licati
ons. S
e
vera
l w
i
rel
e
ss
techn
o
lo
gi
es
have
e
m
er
ge
d
rang
in
g fro
m
short a
nd
medi
u
m
distanc
es. Blu
e
t
ooth, Z
i
gBe
e
a
nd I
m
pu
lse
Ra
dio
Ultra
W
i
d
e
Band (IR-
UW
B) are thre
e sh
o
r
t range
w
i
rele
ss
communic
a
tio
n
s
. T
here
are
s
e
vera
l feat
ures
of IR-UW
B
sig
n
a
l
s
wh
i
c
h
ma
ke
them
attractive
for a
short
rang
e of w
i
rel
e
ss ap
plic
ation
s
. Some
of the major
adva
n
t
ages of IR-U
W
B
are low
compl
e
xity, ultra lo
w
pow
er co
nsu
m
ption,
and
go
o
d
ti
me-d
o
m
ai
n
resol
u
tio
n
a
llo
w
i
ng for l
o
cati
on a
n
d
trackin
g
ap
pl
icatio
ns. I
n
this pa
per, w
e
provi
de
a p
e
r
forma
n
ce stu
d
y of t
hes
e p
opu
lar w
i
rel
e
s
s
co
mmun
icati
on tec
hno
lo
gie
s
,
eval
uatin
g th
e
ma
in f
eatures
and
adv
anta
g
e
s
of IR-UW
B
f
o
r WSN in term
s
of the transm
ission tim
e
and
pow
er cons
u
m
ption. W
e
us
ed
MiXiM pl
atform u
n
d
e
r OM
Net+
+
simul
a
tor
to ana
ly
z
e
a
n
d
evalu
a
te the
ma
i
n
features of IR-UW
B
.
Ke
y
w
ords
: W
S
N, Bluetoot
h, Z
i
gbe
e, IR-UW
B
, E
nergy cons
umptio
n, T
r
ansmiss
ion ti
me
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Wirel
e
ss Sen
s
or
Network (WSN) is com
posed of a la
rge nu
mbe
r
o
f
coope
rative sen
s
o
r
node
s, whi
c
h
are den
sely
deployed ei
ther insi
de the phe
nome
non or ve
ry clo
s
e to it, can
comm
uni
cate
in broad
ca
st fashion.
Th
e num
ber
o
f
s
e
ns
or
no
de
s
de
p
l
o
y
ed in
s
t
ud
yin
g
a
phen
omen
on
may be i
n
th
e order of hu
ndre
d
s or
tho
u
sa
nd
s. De
p
endin
g
on th
e appli
c
atio
n, the
numbe
r may
rea
c
h a
n
e
x
treme value
of millions.
A sen
s
o
r
no
de is m
ade
up of four b
a
si
c
comp
one
nts
namely se
nsi
ng unit, pro
c
essing uni
t, tran
sceiver u
n
it and power unit. Sensor
netwo
rks m
a
y con
s
ist of d
i
fferent types of sen
s
o
r
s.
They are abl
e to monito
r
a wid
e
variet
y of
ambient
con
d
i
tions
su
ch a
s
tempe
r
atu
r
e, vehicu
la
r
movement, li
ghtning
con
d
i
t
ion, noise l
e
vels
[1] have sug
geste
d that wirel
e
ss sen
s
ors c
an be
use
d
whe
r
e
wire
d line sy
stem
s can
not
b
e
deploye
d
. Th
e rapi
d depl
o
y
ment, self o
r
gani
zatio
n
a
nd fault-tole
rance ch
ar
act
e
risti
cs of
WSNs
make them versatile for
military, medical, envir
onm
ental, entertainment,
transportation, cri
s
is
manag
eme
n
t and sm
art sp
ace
s
.
Wirel
e
ss
sen
s
or
networks are inte
nde
d to monito
r eve
n
ts an
d phe
n
o
mena i
n
a
specifie
d
environ
ment
[2] such as p
h
ysical wo
rld,
a bi
ologi
cal
system [3], o
r
an info
rmati
on tech
nolo
g
y
frame
w
ork
u
s
ing autono
mous
[4] coll
ection of
se
n
s
or
nod
es
wi
th limited en
ergy, sto
r
ag
e
and
pro
c
e
ssi
ng
capabilitie
s.
While trying
to
sen
d
the
mo
nitored
info
rmation to
the
ba
se
station
or
admini
s
trato
r
to rea
c
t to events a
nd p
henom
ena i
n
spe
c
ific
envi
r
onm
ent con
gestio
n
o
c
cu
rs.
Gene
rally
se
nso
r
s are de
ployed in l
a
rge qu
antities
with hi
gh d
e
n
sity. So co
n
gestio
n
is a li
kely
event. Cont
rolling
con
g
e
s
tion is difficu
lt due to
dy
namically time varying
wi
rele
ss chann
el
con
d
ition an
d conte
n
tion
cau
s
ed
due
to interfere
n
c
e by con
c
urren
c
e tra
n
sm
issi
on an
d al
so
traffic pattern
in WSN is entirely different fr
om tra
d
itional networks. In tradi
tional netwo
rks
destin
a
tion
s are rando
m hen
ce avoidi
ng con
g
e
s
ti
o
n
is easy but
WSN deliver myriad types of
traffic ,its de
nsity increa
ses when
su
d
den event
o
c
curs a
nd so
me nod
es m
a
y worn out
their
battery po
we
r rem
o
val of su
ch no
de
s i
n
the
network ma
ke u
n
co
nge
sted pa
rt
of the network
become e
a
sil
y
conge
sted.
This
will de
grad
e the ne
twork qu
ality, increa
se the
loss rate a
n
d
unfairn
ess to
ward no
de
s
who
s
e
data
has to t
r
av
erse a l
a
rge n
u
mbe
r
of ho
ps. Obvio
u
sl
y,
redu
cin
g
the
cabl
e re
stri
ction is o
ne of the ben
ef
its o
f
wirele
ss wit
h
re
spe
c
t to cabl
ed devi
c
es.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 569
9 –
5708
5700
Other b
enefit
s in
clude th
e
dynamic
net
work fo
rmat
io
n, low cost, a
nd ea
sy depl
oyment. Gen
e
ral
spe
a
ki
ng, the
sho
r
t-rang
e
wirel
e
ss
scen
e is
curr
ently
held by three
techn
o
logie
s
are a
wirele
ss
comm
uni
cati
on for Wi
rele
ss Sen
s
o
r
Ne
twork: Blueto
o
th, ZigBee a
nd IR-UWB.
The rest
of this p
ape
r i
s
orga
nized a
s
follows. In
Section
2 we
pre
s
e
n
t the
wirel
e
ss
comm
uni
cati
on
te
chn
o
logi
es with a det
ailing of
IR
-UWB, the t
r
an
smissi
on
time
are
presente
d
in
Section 3. T
h
en in Se
ction
4 we
present
ed the e
n
e
r
g
y
con
s
umptio
n and lifetime
;
finally, Section
5 con
c
lu
de
s the pap
er.
2. Wireless
Communica
tion Technol
ogies
2.1. Bluetoo
t
h
Bluetooth is
a Radi
o Fre
q
uen
cy (RF
)
specifi
c
ation f
o
r sh
ort
-ra
ng
e, point-to-po
int and
point-to-multi-point voice
and dat
a transfer. Bluetooth will enabl
e users to
connect to a wi
de
rang
e of com
puting an
d telecom
m
uni
cat
i
ons d
e
vice
s
without the n
eed for p
r
op
ri
etary cabl
es t
hat
often fall
sh
ort in t
e
rm
s
of ea
se-of-u
s
e. Th
e
techn
o
logy rep
r
e
s
ents
an
opp
ortunity for the
indu
stry
to d
e
liver wirele
ss solutio
n
s
th
at
are
u
b
iquit
ous a
c
ross
a
broad
ra
nge
of d
e
vice
s.
The
stren
g
th an
d
dire
ction of t
he un
derlyin
g
Bluetoot
h
standa
rd
will e
n
su
re that
all solutio
n
s m
e
et
string
ent exp
e
ctation
s
for
ease-of
-u
se
and inte
ro
p
e
rability [5]. The Bluetooth core
spe
c
ification
contai
ns both
ha
rdware a
n
d
a
software
descri
p
tion.
T
he fo
rme
r
p
e
rtains to
the
l
o
we
st laye
rs
of
the proto
c
ol
stack, like the
radio
and the
base
ban
d,
while the latter
pertain
s to hi
gher l
a
yers that
are
typi
cally execute
d
by dedi
cated mi
cro
p
rocess
o
r
s a
nd/or the
pro
c
e
s
sor o
f
a ho
st devi
c
e.
These co
mpo
nents a
r
e illu
strated in Fi
g
u
re 1:
Figure 1. Bluetooth Com
p
onent
s
Figure 2 de
pi
cts the Bluet
ooth
protocol
stack [6], wh
ich al
so
sho
w
s the ap
plication and
profile
s “laye
r”
fo
r com
p
le
teness.
T
he Radi
o
la
ye
r
define
s
the
requireme
nts
for a
Bluetoo
th
transceive
r
o
peratin
g in the 2.5G
H. In orde
r to
make
differe
nt hard
w
a
r
e
implementat
ions
comp
atible,
Bluetooth de
vices u
s
e the
Host
Cont
rol
l
er Interfa
c
e
(HCI) a
s
a common inte
rf
ace
betwe
en the
Bluetooth h
o
st an
d the
Bluetooth
core
. High
er-lev
el protoc
ols l
i
ke the S
e
rvi
c
e
Discove
r
y Protocol
(S
DP),
RF
COM
M
(emulating
a
seri
al p
o
rt
co
nne
ction) an
d the T
e
lep
h
ony
Control Proto
c
ol (T
CS) a
r
e interfaced to base
-
b
and
servi
c
e
s
via the Logi
cal Li
nk Co
ntrol a
n
d
Adaptation P
r
otocol. Am
o
ng the i
s
sue
s
L2CAP ta
ke
s care of, is
segmentatio
n
and
rea
s
sem
b
ly
to allo
w la
rg
e
r
d
a
ta p
a
cket
s to
be
carrie
d ove
r
a
Blu
e
tooth b
a
seb
and
co
nne
cti
on. Th
e Se
rvice
Discove
r
y Protocol allo
ws ap
plication
s
to
find
o
u
t about av
ailable
se
rvice
s
an
d th
eir
characteri
stics when, e.g. devic
es are moved or
swi
t
ched off.
Serv
ice
Di
s
c
o
v
e
ry
Prot
oc
ol (S
DP), in
spe
c
if
ic,
allo
ws the
users with Bl
uetoo
th devices
to conn
ect to
the neighb
oring devices i
n
a wire
less
manne
r. One
notable characteri
stic
abo
ut
the SDP about the Servi
c
e Di
scovery
Protocol
is its capability to ena
ble Bluetooth wi
rel
e
ss
device users to
get
on
-de
m
and se
rvice
s
.
On July
, 2
000, the Blu
e
t
ooth Spe
c
ial
Intere
st Gro
up
(SIG)
defined
a p
r
o
c
e
s
s th
at ena
ble
s
system
dev
elop
ers to
emplo
y
the Saluati
on a
r
chitectu
re
for
servi
c
e
d
i
scovery a
u
t
ilization fu
nctions i
n
Blue
tooth sho
r
t-range
ra
dio f
r
equ
en
cy (RF)
netwo
rks. F
u
rther, SIG i
s
dev
elopi
ng
new Bluetoot
h re
qui
reme
nts, in
cludin
g
Saluation
a
nd
universal plu
g
and play, to descri
be h
o
w to us
e ot
her servi
c
e d
i
scovery tech
nologi
es in the
Bluetooth environment. It is the
authors’
belief that
service discovery
archit
ecture eventually
will
come into p
r
o
m
inen
ce with
the popul
arity of mobile co
mmerce te
ch
nology.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
IR-UWB: An Ultra Lo
w Po
wer
Con
s
um
ption
Wirele
ss Com
m
unica
tion… (Ano
ua
r Da
rif)
5701
Figure 2. The
Bluetooth Protocol Stack
2.2. Zigbee
Zigbee [7] d
e
f
ines two mo
des
of ope
rat
i
on: bea
con
enabl
ed an
d
non be
acon
enabl
ed.
In the former, a
c
o
ordinator,
c
a
lled the Pic
o
net Coo
r
dinato
r
(PNC)
send
s periodic
be
acon
s.
Beaco
n
s a
r
e
followe
d by a
so
-called
Co
ntention A
c
cess Pe
riod
(CAP), du
rin
g
whi
c
h
all n
o
des
can
compete
indep
ende
ntly for c
han
nel acce
ss
u
s
ing a
CSMA/CA
algorith
m
, an
d by a
Colli
si
on
Free
Peri
od (CFP), duri
ng whi
c
h node
s comm
uni
cate
duri
ng
tim
e
slots
excl
usiv
ely
allo
cated
b
y
the PNC. In
the non b
eacon en
abl
ed mod
e
,
node
s use a
CSMA/CA proto
c
ol in t
heir
comm
uni
cati
on. ZigBee Alliance [8] defi
ned the proto
c
ol sta
c
k upp
er layers.
The introdu
cti
on of an IR-UWB m
ade t
h
is p
r
oto
c
ol u
nable to o
p
e
r
ate, sin
c
e it relies o
n
CCA
(in b
o
th
of its mod
e
s). The
r
efore,
adaptatio
ns
were d
e
fined
in the
stand
ard. In p
a
rti
c
ular,
the CSMA/CA mode is re
placed by an
ALOHA m
o
d
e
that does n
o
t rely on CCA. The MAC sub-
layer h
andl
es all a
c
cess t
o
the p
h
ysi
c
al ra
dio
ch
an
nel. It provid
es
an inte
rfa
c
e
between t
he
servi
c
e spe
c
ific co
nverg
e
n
c
e sub-l
a
yer (SSCS) and th
e PHY layer.
2.2.1. Net
w
o
r
k
Co
mponents
In Zigbee net
work ge
ne
rall
y we can d
e
fine three type
s of node
s [9]. These n
ode
s are:
PAN
c
o
or
d
i
na
to
r
:
There can be only o
ne co
ordi
nat
or for ea
ch
ZigBee net
work. Thi
s
node i
s
liabl
e for initializi
ng the net
work,
sele
cting
the suitable
chan
nel an
d allowi
ng ot
her
devic
es
to c
o
nnec
t
to its
network
.
Full Fu
nctio
n
De
vise:
It ca
n
se
rve a
s
th
e
co
ordi
nato
r
of a p
e
rson
al
are
a
n
e
two
r
k just
as
it may functi
on a
s
a
co
m
m
on n
ode. It
impleme
n
ts
a gen
eral m
odel of
com
m
unication
which
allows it to talk to any other device.
Red
u
ced F
u
nction
De
vi
se:
The
s
e n
o
des
are only
use
d
to tal
k
either
a rou
t
er or a
coo
r
din
a
tor.
An end devi
c
e con
n
e
c
ted
to the netwo
rk
thro
ugh eit
her a
route
r
, or directly to
the
coo
r
din
a
tor. There are th
ree different types
of topol
o
g
ies p
o
ssible
for a ZigBee
netwo
rk.
2.2.2. Net
w
o
r
k
T
o
p
o
log
y
Figure 3. Zigbee Netwo
r
k
Topolo
g
y
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 569
9 –
5708
5702
As depi
cted in Figure 3, the basi
c
net
work
topol
ogi
es suppo
rted
by the network laye
r
are
star, m
e
sh, clu
s
ter
or t
h
ree. In
star
topol
ogy d
e
vice
s have to f
i
rst
send
a m
e
ssag
e to th
e
PAN c
o
ordinator (P
C) in order to
c
o
mmunicate with eac
h
other.
Devices
ca
n
dire
ctly co
m
m
unicate
with ea
ch other
without
th
e intervention
of
PAN
coo
r
din
a
tor in me
sh
network topol
ogy. Clu
s
ter t
opo
logy shares the feat
u
r
e
s
of
both star an
d
mes
h
topology [10].
2.3. IR-UWB
IR-UWB is a
promi
s
ing te
chn
o
logy to addres
s Wire
less
Sen
s
or Network
con
s
traint
s.
Ho
wever,
existing
network
simulatio
n
tools do
n
o
t provide
a
co
mplete
WSN sim
u
la
tion
architec
ture,
with the IR-UWB
s
p
ec
ific
ities
at
the
Physical
(PHY) an
d the
Medium Acce
ss
Contr
o
l (MA
C
) lay
e
r
s
.
The IR-UWB sign
al uses p
u
lse
s
ba
se
ba
nd a ve
ry sh
ort peri
od of time of the order of a
few hun
dred
pico
se
co
nd
s. These si
gna
ls have a
fre
quen
cy re
sp
onse of nea
rl
y zero
hert
z
to
several G
H
z.
Acco
rdin
g to
[11] there is
no stan
da
rdi
z
ation, the wa
veform is n
o
t limited, but its
feature
s
a
r
e li
mited by the
FCC
ma
sk. T
here
are different mo
dulati
on sch
e
me
s
baseba
nd for
IR-
UWB [12]. Th
is pap
er u
s
e
s
the PPM
tec
hnique for IR-UWB receiver.
2.3.1
IR-UWB Signal Informati
o
n
IR-UWB si
gn
als are tran
smitted in form of
very short pulses
with low duty cycle (see
Figure 4).
Figure 4. Cla
ssi
c IR-UWB sign
al
[1] and
its param
eters: Tc is the d
u
ration of a chip, Tf = Nc.T
c
is the duratio
n of a frame and Ts
= Nf.T
f is t
he durati
on of a seq
u
e
n
ce. Tg
= Ng.
T
c is g
uard
IR-UWB is a
promi
s
ing te
chn
o
logy to addres
s Wire
less
Sen
s
or Network
con
s
traint
s.
Ho
wever,
existing
network
simulatio
n
tools do
n
o
t provide
a
co
mplete
WSN sim
u
la
tion
architectu
re,
with the I
R
-UWB
sp
ecifi
c
ities
at the
physi
cal
(P
HY)
and th
e
Mediu
m
Acce
ss
Contr
o
l (MA
C
) lay
e
r
s
.
The medi
um is divided into
frame
s
and e
a
ch frame is
sha
r
ed in
chi
p
s. The fra
m
e and
chip duration
are
and
, re
spe
c
tively. The tra
n
smitte
d symb
ol can
be repe
ated
followin
g
a
pse
udo
ra
ndo
m se
que
nce to avoid
cata
strophi
c
colli
sion un
de
r mul
t
iuser a
c
cess con
d
ition
s
[1
3].
The k
th
u
s
er t
r
an
smitted si
gnal
S
t
can be e
x
presse
d as:
∑
.
.
∞
∞
Whe
r
e
E
is the transmitted
pulse ene
rgy;
t
t
denote
s
the basi
c
pul
se shape an
d {
c
}
rep
r
e
s
ent
s th
e
j
compo
nen
t of the pseu
do rand
om T
i
me Hoppin
g
Seque
nce. The received
sign
al
r
t
wh
en o
n
ly one user i
s
pre
s
e
n
t can
be expre
s
se
d as:
.
∑
.
.
.
∞
∞
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
IR-UWB: An Ultra Lo
w Po
wer
Con
s
um
ption
Wirele
ss Com
m
unica
tion… (Ano
ua
r Da
rif)
5703
Whe
r
e
τ
represe
n
ts the p
u
lse p
r
o
paga
tion delay an
d
n
t
is Additive
White Ga
ussia
n
Noi
s
e (A
WG
N)
with
power den
sity an
d A represen
ts t
he sign
al attenuation o
b
se
rved du
ri
ng
prop
agatio
n [
14]. It dep
en
ds
on
the
co
nsid
ere
d
cha
nnel
model
in
term
s
of pat
h lo
ss,
multip
ath,
sha
d
o
w
ing. In a multi user scen
a
ri
o wh
ere
N
users are active, the rece
ive
d
sign
a
l
is expresse
d
as:
∑
.
.
∑
.
Whe
r
e
τ
represe
n
ts the d
e
lay asso
ciat
ed to
the propag
ation an
d a synchro
n
ism
betwe
en clo
c
ks [13].
A
represe
n
ts the attenuation of the kt
h use
r
’s signal (k=1 repre
s
e
n
ts the
sign
al of the use
r
interest). This formul
ati
on ca
n be
use
d
to cha
r
acteri
ze the
TH-I
R-UWB PHY
layer in a mul
t
i user
scena
rio; howeve
r
the us
ed p
r
op
agation d
e
lay
does
not re
p
r
esent the re
al
prop
agatio
n delay for the real de
ploym
ent config
ur
at
ion. The use
d
Bit Error Rate (BER) ve
rsu
s
the Signal to
Interfere
n
ce
and
Noi
s
e
Ratio (SI
N
R) is al
so b
a
se
d on a
perfe
ct po
wer
co
n
t
rol
assumptio
n
which i
s
not al
ways reali
s
tic.
2.3.2 Radio
Sta
t
e
Machine
Since th
e p
o
w
er con
s
um
p
t
ion is de
rive
d from
t
he tim
e
spent in
ea
ch
of the
radi
o mod
e
s,
it is impo
rtant
to model the
s
e a
c
curately. The finite st
ate machine i
llustrate
d in F
i
gure
5 is
use
d
,
with thre
e st
eady state
s
Sleep
,
Rx
a
nd
Tx
, a
nd
four tra
n
si
en
t states
Set
upRx
,
SetupTx
,
Switc
h
RxTx
and
Swit
c
h
TxRx
. Th
e radi
o ca
n always leave any st
ate (ste
ady o
r
tran
sie
n
t) a
nd
immediately
enter sl
eep m
ode.
The time spe
n
t in a transie
nt state is a consta
nt
T
TrStat
e
, the power
con
s
um
ption
in each
state is
P
State
and the en
ergy cost of a transitio
n
from
one ste
ady st
ate to anothe
r is
E
TrState
.
Figure 5. Det
a
iled Radio M
odel Incl
udin
g
Tran
sie
n
t States
3. Transmiss
i
on Time
The tra
n
smi
s
sion time d
e
pend
s on th
e
data rate, th
e messa
ge size, and th
e
distan
ce
betwe
en two
node
s. The fo
rmula for tran
smissio
n
time
(
μ
s)
can b
e
d
e
scrib
ed a
s
[15]:
T
N
N
T
T
Whe
r
e
N
is the data si
ze
,
N
is the maximum payload size,
N
is the
overhe
ad size,
T
is the
bit time, and
T
is t
he p
r
opa
gati
on time b
e
tween a
n
y two
device
s
.
For sim
p
licity
,
the propag
ation time is negligibl
e
in this pape
r. The typical pa
ramete
rs of the
three technol
ogie
s
use
d
for tran
smi
ssi
on time ev
aluation are listed in Table 1. As sho
w
n
in
Figure 6, the
tran
smissio
n
time for the
ZigBee i
s
lon
ger th
an the
others b
e
cau
s
e of th
e lo
wer
data rate,
wh
ile IR-UWB
requires l
e
ss t
r
an
smi
ssi
on time co
mpa
r
e
d
with the ot
hers. Obviou
sly,
the re
sult also sho
w
s the required tra
n
smissi
on ti
me i
s
propo
rtional
to the data p
a
yload si
ze a
n
d
disp
rop
o
rtion
a
l to the maximum data rat
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 569
9 –
5708
5704
Table 1. Typi
cal System P
a
ram
e
ters
Bluetooth
ZigBee
IR-UWB
Max data
rate
(
M
bit/s)
0.72
0.25
100
Bit time (
μ
s) 1.39
4
0.009
Max data
pa
y
l
oa
d (b
y
t
es)
339
102
2044
Max overh
ead (b
ytes)
158
31
42
Figure 6. Tra
n
smi
ssi
on Ti
me Versus T
he Data Payl
oad Size
4. Energ
y
Consumption a
nd Life Time
4.1. Energ
y
Consumption
In
IR-UWB
based WSN, devices com
m
unicate
usi
ng the packet format illust
rated in
Figure 7. It consi
s
ts
of three compo
nen
ts: sync
hro
n
i
z
ation
pre
a
m
b
le (SP), PHY-hea
der
(P
HR),
and p
a
yload.
The very
sho
r
t duration of
the pul
se
s
m
a
ke
s them
dif
f
icult to dete
c
t. Since there
is
no ca
rri
er
sig
nal, the cha
n
nel is empty
most of
the time even tho
ugh a tra
n
sm
issi
on is o
n
g
o
ing.
The only pa
rt
of the signal
that can be
reliabl
y dete
c
ted (u
sing a
dedi
cated al
g
o
rithm) i
s
the
synchro
n
ization p
r
ea
mble,
with
whi
c
h
all tran
sm
i
s
si
ons be
gin. It co
nsi
s
ts of
a dete
r
mini
st
ic
seq
uen
ce of
isolated pul
se
s use
d
by all devic
es
that are part
of the same netwo
rk (t
wo
synchro
n
ization pre
a
mbl
e
s ar
e define
d
in the stand
ard).
Figure 7. IR-UWB b
a
se
d WSN PHY F
r
ame Fo
rmat
The summ
ation
of
e
nergy con
s
um
ption on
de
live
r
ing
the SP and
PHR (EO
)
with
ene
rgy
con
s
um
ed on
the payload (EL), is the en
ergy
co
nsum
ption to transmit a packet [16].
The
synchron
ization
pream
ble ha
s val
u
e
s
{
-
1,
1
}
a
nd i
s
received
co
here
n
tly and
PHR i
s
modulated using DBPSK, alway
s
receiv
ed coher
ently
, and coded i
n
the
same
manner as the
payload. The
r
efore, the ove
r
hea
d ene
rgy
con
s
umptio
n
is:
Whe
r
e,
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
IR-UWB: An Ultra Lo
w Po
wer
Con
s
um
ption
Wirele
ss Com
m
unica
tion… (Ano
ua
r Da
rif)
5705
/
is the fixed base d
a
ta rate.
The ene
rgy consumption f
o
r the payloa
d
can b
e
mod
e
led a
s
:
Whe
r
e
E
and
E
rep
r
e
s
ent the energy consumption to transmit/re
c
eive the
payload cont
aining
L
L
information bits
, res
p
ec
tively.
Whe
r
e the ti
me du
ration
to tran
smit the payloa
d
co
ntaining
L
L
bi
ts is
T
L
/R
R
,
and Rc is the
codi
ng rate. T
he ene
rgy co
nsum
ption to receive L
L
information bits
is
:
T
is
t
he inter
packet spa
c
e
(IPS). The po
we
r co
nsumptio
n duri
ng
T
is mainly due
to the clo
c
k
gene
rato
r an
d syn
c
hroni
zer. The
r
ef
o
r
e
,
the co
rre
sp
ondin
g
ene
rg
y con
s
umptio
n at
the trans
m
itter is
E
P
T
, while the re
ceive
r
consume
s
E
ρ
P
T
. We ass
u
me
that before t
r
an
smi
ssi
on
or reception
of
a pa
cket, the tran
smit
ter and
re
cei
v
er sp
end
T
200
μ
s
, to go from the off (slee
p
) state to a
n
on (a
ctive) state. Duri
n
g
this time p
e
riod, the
transmitter consume
s
E
P
T
amount of en
e
r
gy to sta
r
t the front e
nd
clo
ck
gene
rat
o
r
and
synchro
n
i
zer. Simila
rly, the receiver
con
s
um
es
E
ρ
P
T
.
T
is
the time duration for
the tran
smission of one pa
cket. That is:
/
The ene
rgy consumption
s
at the transmi
tter and re
cei
v
er duri
ng
T
are:
is
th
e time
p
e
r
i
o
d
w
hen
th
e
tr
an
smitte
r
lis
te
ns
fo
r
an
ac
kn
ow
le
dg
e
m
en
t. W
e
set
. Overall, the definition
s
of the e
nergy
con
s
um
ptions within on
e
tran
smi
ssi
o
n
are
summ
ari
z
ed as
follo
ws:
2
2
,
2
2
/
The effective
averag
e ene
rgy con
s
umpti
on per o
ne su
ccessful deliv
ery can b
e
expre
s
sed a
s
:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 569
9 –
5708
5706
The average
numbe
r of transmi
ssion
s
/rece
p
ti
on
s re
quire
d to su
cce
ssfully deli
v
er one
packet is N. The avera
g
e
numbers of transmissio
ns
whe
r
e
P
is the averag
e b
i
t
error probabil
i
ty (BEP). Th
e probability t
hat a packet i
s
rece
ived correctly
is
1
Figure 8. Nod
e
s’ Power
Co
nsum
ption Averag
e
Figure 9. Nod
e
s’ Power
Co
nsum
ption Averag
e
Energy wa
s
and is an inte
restin
g issue
that is
still a factor in the d
e
velopme
n
t of WSN.
This fa
cto
r
af
fect directly t
he lifetime
of the
n
e
two
r
k.
The l
o
w po
wer con
s
ump
t
ion of the
no
de
s
netwo
rk ba
se
d on I
R
-UWB wa
s
con
c
retized
by th
e
re
sults sho
w
n in
Figu
re
8 an
d Fig
u
re 9,
varying respe
c
tively the da
ta payload
si
ze a
nd
the
n
ode
s’ num
be
r. They sho
w
that the po
wer
con
s
um
ption
by the WSN node
s ba
sed on IR-UWB
is rem
a
rkably less th
an the ca
se
of
Bluetooth an
d Zigbee. Th
ey sho
w
also that the
value of po
wer con
s
umpti
on inrcrese with
increa
sing th
e data payloa
d
size as sho
w
n in Figu
re
8, and increa
sing the no
de
s numb
e
r in the
(se
e
Fig
u
re
9
)
. The
re
sult
sho
w
n i
n
Fig
u
re
9
is
obtai
ned by a
dat
a payloa
d
fixed at 51
2 byt
e
s
and varin
g
the node
s’ num
ber.
4.2. Lifetime
Actually [17], the definition
of the netwo
rk lifetime d
e
pend
s on th
e
application a
t
hand.
Indeed, it can
be con
s
id
ere
d
as:
a)
The time until
the first node
fails (ru
ns o
u
t
of energy).
b)
The time until
the network i
s
disco
nne
cte
d
in two or m
o
re pa
rtition
s
.
c)
The time until
50% of failed node
s.
d)
The mom
ent whe
n
the first
time a point
in the observ
ed area is n
o
longe
r cove
red
by at least a sen
s
o
r
nod
e.
In all these
case
s, the lifetime is st
ron
g
l
y
depend
ent on re
sid
ual e
nergy. Acco
rdingly, we
focu
s on the
energy co
nsu
m
ption
of no
des to eval
ua
te their
lifetime and
con
s
e
quently network
lifetime. In our model, we a
s
sume the fol
l
owin
g pro
perties:
Based
on [18
], the energy
co
st Ci(t
) of a node
N
i
at time t is the ra
tio of the total energy
con
s
um
ed at time t over the initial batte
ry energy. It can be expressed a
s
follo
ws:
Since
ene
rgy
levels are in
itially given
with different
value
s
, we
wo
uld li
ke to
no
rmali
z
e
the Cal
c
ulatio
n of the energy cost in the
interval [0, 1]:
a)
C
i
(t)
=0 mea
n
s
that the battery of the nod
e
Ni
at time t i
s
full.
b)
C
i
(t)
=1 mea
n
s
that the battery of the nod
e
Ni
at time t is depl
eted.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
IR-UWB: An Ultra Lo
w Po
wer
Con
s
um
ption
Wirele
ss Com
m
unica
tion… (Ano
ua
r Da
rif)
5707
If the ene
rgy
co
st of the
g
r
eedie
s
t n
ode
in term
of e
n
e
rgy
rea
c
h
e
s
the value
1
at time t,
we note that i
t
s battery is e
x
hauste
d and
th
is moment
rep
r
e
s
ent
s the netwo
rk life
t
ime:
/
∈
_
1
In what follo
ws, we
will p
r
e
s
ent o
u
r a
nal
ytical
model t
o
pre
d
ict the
netwo
rk lifeti
m
e. First,
we
will give e
nergy
con
s
u
m
ption ba
si
c
equatio
ns. Se
con
d
, to pro
p
o
se
a more realisti
c analyt
ical
model, we wil
l
con
s
ide
r
an
unreli
able n
e
twork. Thi
r
d, we will
con
s
i
der, in ou
r an
alysis, the m
a
i
n
sou
r
ces of en
ergy co
nsum
ption, namely
overhea
ds, i
d
le-li
s
tenin
g
and overhea
ri
ng.
5. Conclusio
n
Wirel
e
ss
co
mmuni
cation
technol
ogie
s
emerg
e
in the re
cent fe
w years. The
y
provide
large o
ppo
rtu
n
ities in term
s of low po
wer co
ns
umpti
on, high and
low rate, an
d
cost re
du
ction.
IR-UWB
wa
s mainly intro
duced in th
e field
of WSN due to i
t
s variou
s
specifi
c
ities a
nd
advantag
es, esp
e
ci
ally
its low po
wer
co
nsum
ption
an
d lo
w
compl
e
xity advantag
es. In thi
s
pa
per
we
sho
w
ed t
he impa
ct an
d the gain
brought by th
e
use
of this
new te
ch
nolo
g
y in term
s of
energy con
s
u
m
ption and transmi
ssion ti
me com
pare
d
to the Bluetooth and Zig
bee. The go
od
results in th
e ca
se of th
e WSN b
a
sed on IR
-UWB are
obta
i
ned du
e to the feature
s
and
advantag
es o
f
this ne
w technolo
g
y. We
aim,
as a fut
u
re
wo
rk, to
develop a
ne
w ad
apted M
A
C
and ro
uting p
r
otocols that
will be pai
red
with this ne
w
techn
o
logy.
Referen
ces
[1]
SJ Isaac, GP
Hanck
e
,
H Madho
o, A Khatri.
A survey of
wireless se
nsor
netw
o
rk appl
ic
ations fro
m
a
pow
er utility's d
i
stributi
on pers
pective.
AF
RIC
O
N. 2011: 1-5.
[2]
Won Suk J
a
n
g
,
William M
He
al
yn.
Ass
e
ssment of P
e
rfor
mance
Metrics f
o
r Use
of W
S
N
s
in B
u
il
di
ngs.
Internatio
na
l Symp
osi
u
m on
Automatio
n
an
d Rob
o
tic in C
onstructio
n
(ISARC 20
09). 20
09.
[3]
E Prem Kumar Gilbert, B Ka
liap
e
rum
a
l, E Blessi
ng Ra
jsi
ngh. Res
earch
Issues in W
i
reless Se
nso
r
Net
w
ork Ap
pl
i
c
ations: A Sur
v
e
y
.
Inter
natio
nal Jo
urn
a
l of
Informati
on
a
nd El
ectronics
Engi
neer
ing
.
201
2; 2(5): 702
-706.
[4]
I Ja
w
h
ar,
N
Moham
ed, J
A
l
-Jaroo
di, S
Z
h
ang. A
n
efficie
n
t frame
w
o
r
k f
o
r a
u
ton
o
mou
s
un
der
w
a
te
r
vehicl
e e
x
te
nd
ed sens
or net
w
o
rks for pipe
lin
e monitor
i
ng. 2
013; 12
4-1
29.
[5]
W
Deng
w
e
i, L
Yingh
ua, Z
Hong
xin, C Shu
lian
g
, H Yun
a
n
.
A w
i
reless sensor n
e
tw
ork based
o
n
Bluetooth for telem
e
di
cine monitoring
system.
IEEE International S
y
mposiu
m on M
i
cro
w
av
e, Antenna,
Propa
gati
on an
d EMC T
e
chnologi
es for W
i
rel
e
ss Commu
nic
a
tions. 20
05; 2
:
1361-1
3
6
4
.
[6]
MAR Chaudhry
,
MI Sheikh.
Protocols stac
k & conn
ectio
n
estab
lish
m
e
n
t in Bl
ueto
o
th rad
i
o.
IE
EE
Procee
din
g
s Stude
nts Confer
ence. 20
02;
1: 48 – 55.
[7]
B Mih
a
jl
ov, M
Bog
d
a
noski.
Overvie
w
an
d
Ana
l
ysis
of t
he
performa
nc
e of Z
i
gb
ee
b
a
sed
W
i
rel
e
ss
Sensor N
e
t
w
or
.
Internation
a
Journ
a
l of Co
mputer App
lic
ations
. 201
1; 29(
12): 28-3
5
.
[8]
A Cun
ha, A K
oub
aa, R S
e
v
e
rin
o
, M Alves
.
Open-Z
B
: an
ope
n-so
urce i
m
p
l
e
m
e
n
tatio
n
of the IEE
E
802.1
5
.4/Z
igBe
e pr
otoco
l
stac
k on
T
i
nyOS.
I
n
Intern
aton
al
Confer
ence
o
n
Mob
ile
Ad
hoc
an
d S
ens
or
S
y
stems. 20
07
; 1-12.
[9]
L Jia
n
p
o
, Z
Xu
nin
g
, T
Ning,
S Jishe
ng.
Stu
d
y o
n
Z
i
gB
ee
netw
o
rk arch
itecture
and
rou
t
ing
alg
o
rit
h
m
the 2nd Inter
n
a
t
iona
l Conf
eren
ce on Sig
n
a
l
Processi
ng S
y
ste
m
s. 2010; 38
9-
393.
[10]
S W
a
il Nouri
l
d
ean. A Lectur
e
r.
A Stud
y
of Z
i
gBe
e
Net
w
ork
T
opolo
g
ies for
W
i
reless Sen
s
or Net
w
or
k
w
i
t
h
On
e C
oor
din
a
tor a
nd M
u
ltiple
C
oord
i
nat
ors.
T
i
krit Jour
nal
of En
gin
eer
ing
Scie
nces
.
2
012; 19(4): -
65-8
1
.
[11]
A Lazaro, D Gi
rbau, R Vil
l
ari
n
o.
Analysis
of Vital Sig
n
s Mo
nitori
ng Usi
ng
an IR-UW
B
Ra
dar.
Progres
s
In Electromag
n
e
tics Rese
arch
. 2010; 26
5-28
4.
[12]
P Alpana A
d
s
u
l, K Shr
i
kant
Bodhe.
Perfor
mance Comparison
of BPSK, PPM and
PP
V Modulation
Based IR-
U
W
B
Rece
iver Us
i
ng W
i
d
e
Ba
nd
LNA.
Internati
ona
l Jour
na
l of
Co
mp
uter T
e
c
hno
logy
an
d
Appl
icatio
ns
. 2
012; 3(4): 1
532
-153
7.
[13]
GS Biradar, SN Mercha
nt, UB Desa
i. F
r
eque
nc
y
an
d T
i
me Hop
p
in
g P
P
M UW
B Multiple Acc
e
ss
Commun
i
cati
o
n
Scheme.
Jo
u
r
nal of Co
mmu
nicati
ons
. 20
09
; 4(1): 14-19.
[14]
IEEE 802.1
5
.
4
-20
06 St
and
ard for I
n
for
m
ation
techn
o
l
og
y
T
e
lec
o
m
m
unic
a
tions
a
nd i
n
formati
on
exc
h
a
n
g
e
b
e
t
w
een
s
y
stems-
Loca
l
a
n
d
metr
opo
litan
ar
ea
n
e
t
w
o
r
ks- S
peci
f
ic req
u
irem
ent
s Part 1
5
.4:
W
i
reless Me
di
um Access C
ontrol (MAC)
and P
h
ysica
l
La
yer (PHY)
Specific
ations
for Lo
w
-
R
a
t
e
Wireless Pers
onal Area Net
w
orks (WPAN
s). IEEE Computer Societ
y
.
2006.
[15]
L Ya
nj
un, C
C
hun
g S
hue,
S
Ye-Qion
g
, Z
W
ang,
M
e
mb
er,
S You
x
ia
n. En
hanc
ing
R
eal-
T
ime Deliv
e
r
y
in W
i
re
less
Se
nsor
Net
w
orks
w
i
t
h
T
w
o-
Ho
p I
n
formatio
n
.
IEEE Transactions on Industrial Infor
m
atics
.
200
9;
5(2): 113
-122.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 569
9 –
5708
5708
[16]
E Ir
w
a
n Sha
h
Saad
on, J Abd
u
lla
h, N Ismail.
Evaluati
ng th
e
IEEE 802.15.
4a
UWB Physi
cal Lay
er for
W
S
N Applic
ati
ons.
IEEE S
y
m
posi
u
m on Wir
e
less T
e
chnol
o
g
y
and Ap
pl
ica
t
ions. 201
3; 22
-25.
[17]
R Khed
ikar, A Kapur, Y Surv
ansh
i
. Maximiz
i
ng a L
i
fetime
of W
i
reless Se
nsor Net
w
o
r
k b
y
Sch
edu
li
ng.
Internatio
na
l Journ
a
l of Co
mput
er Scie
nce
and T
e
l
e
co
mmunic
a
tions
. 2
0
1
1
; 2(8): 1-6.
[18]
SC Erge
n, P
Varai
y
a. E
ner
g
y
Efficient
R
outin
g
w
i
t
h
D
e
la
y Guar
ante
e
for Sens
or N
e
t
w
o
r
ks.
ACM
Wireless Networks Journal
. 2
007; 13(
5): 679
-690.
Evaluation Warning : The document was created with Spire.PDF for Python.