TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 80
9
2
~ 809
7
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.68
82
8092
Re
cei
v
ed
Jul
y
28, 201
4; Revi
sed O
c
tob
e
r 30, 201
4; Acce
pted No
vem
ber 1
4
, 2014
An Approach of Power Fact
or Correction in BLDC Motor
Drives Using
C
u
k D
e
rived
Co
nverter
s
R. Balam
u
ru
gan
1
, J. Pearly
Catherine*
2
Dep
a
rtment of Electrical
and
Electron
ics En
gin
eeri
ng,
K.S.Rangas
am
y Co
lle
ge of T
e
chno
log
y
, T
i
ruchen
go
de, T
a
milna
du, Indi
a,
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: drnrba
ls@gm
a
il.com
1
, pear
l
ykpm@gma
il.co
m
2
A
b
st
r
a
ct
T
h
is pa
per
de
als w
i
th a
co
mparativ
e a
naly
s
is of
var
i
o
u
s
converter
topo
l
ogi
es for P
o
w
e
r F
a
cto
r
Correctio
n (PF
C
) in BLD
C
mo
tor drives. A po
w
e
r factor
corrected co
nverte
r is requir
ed for
impr
ovi
ng p
o
w
e
r
qua
lity at the A
C
ma
ins of a
n
invert
er fed B
L
DC motor driv
e. Conve
n
tio
n
a
lly, the BLD
C
motor
is fed by
a
dio
de bri
d
g
e
re
ctifier (DBR) w
h
ich res
u
lts in
hig
h
ly
distorte
d
supply curr
ent
and a p
oor p
o
w
er factor. A new
brid
gel
ess sin
g
l
e-p
hase
ac–dc
Cuk deriv
ed t
opo
logy
has
b
een i
n
trod
uce
d
for pow
er factor correctio
n. T
h
is
brid
gel
ess top
o
lo
gy uses
mi
ni
mu
m n
u
mbe
r
of sw
it
ches
and thus re
du
ces the less c
ond
uctio
n
loss
es
compar
ed w
i
th the conve
n
tio
nal PF
C rectifi
e
r. T
here
are three C
u
k deriv
ed confi
gur
atio
ns for pow
er facto
r
correctio
n. In this pa
per, al
l the Cuk
deriv
ed
topolo
g
i
e
s are
investig
ated a
nd co
mp
are
d
. T
he best topo
l
o
g
y
is ide
n
tified
an
d reco
mme
nde
d for PF
C in BLDC
motor dr
iv
e.
Ke
y
w
ords
:
pow
er factor correctio
n (PF
C
), bridge
less c
u
k conv
erters, total har
mo
ni
c distortion, B
L
D
C
drives, pow
er q
uality
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The BLDC m
o
tors a
r
e b
e
coming po
pula
r
in many low and medium
powe
r
appli
c
ations.
It is used in
many household type
s of equipme
n
t like fans, ai
r con
d
itione
rs, water p
u
m
ps,
refrig
erato
r
s, wa
shin
g ma
chin
es
etc. [1-3]. It also
finds a
ppli
c
at
ion in ma
ny indu
strial tool
s,
medical e
qui
pment’s,
hea
ting, ventilation a
nd
ai
r conditionin
g
,
robotics and
pre
c
ise
m
o
tion
control sy
ste
m
s. As the n
a
me indi
cate
s it has
no b
r
ush
e
s fo
r co
mmutation. Base
d on the
rotor
positio
n the powe
r
electronic
swit
ch
es are co
m
m
utated. He
nce it is also kno
w
n a
s
an
electroni
cally comm
utated
motor [4-5].
Powe
r qu
ality proble
m
s
have be
com
e
impo
rtant i
s
sue
s
in the
s
e m
o
tors d
ue to th
e
recomme
nde
d limits of harmo
nics in
sup
p
ly cu
rre
nt by variou
s internation
a
l power q
u
a
lity
stand
ard
s
su
ch a
s
the Int
e
rnatio
nal El
ectrote
c
h
n
ica
l
Commi
ssio
n (IEC) 61
00
0-3
-
2 [6]. So
the
power fa
ctor
corre
c
tion
ha
s led th
e ci
rcuit desi
gne
rs
to look
clo
s
el
y at all se
ctio
ns of the
ci
rcuit
and d
e
velop
possibl
e lower lo
ss
altern
atives. One
se
ction th
at contribute
s
sig
n
ificantly to the
losse
s
is the
input brid
ge rectifier. As a
result,
the alternative
s
to eliminate the
diode b
r
idg
e
or
conve
r
t it into
a dual-u
se ci
rcuit have be
en explor
ed for many years. This
elimin
ation/co
nversion
of Diode Bri
d
ge brin
gs a
b
o
u
t its own set of challe
nge
s.
Bridgel
ess co
nverters are becoming mo
re pop
ular
in
orde
r to incre
a
se the po
we
r factor
at the a
c
m
a
ins. T
he
di
stingui
shi
ng
cha
r
a
c
teri
st
ic of a
brid
gel
ess PF
C
co
nverter is th
at it
eliminate
s
the need for a
diode bri
dge
at the i
nput. This red
u
ce
s po
wer lo
sses that norm
a
lly
occur i
n
a di
ode b
r
idge
a
nd, as a
re
sult, improves
overall sy
ste
m
efficien
cy with co
mpa
r
a
b
le
co
st
sav
i
ng
s.
P
o
wer Fa
ct
o
r
Co
rre
ct
ion r
e
ct
if
ier
s
are used to improve the rectifie
r powe
r
den
sit
y
and to
re
du
ce noi
se
emi
s
sion
s via
soft
switchi
ng te
chniqu
es
or co
upled
mag
net
ic top
o
logie
s
[7
-
9].
2. PFC Conv
erter
s
A co
nvention
a
l PFC sch
e
m
e ha
s lower efficien
cy d
u
e
to
signifi
can
t
losse
s
in
the
diod
e
bridg
e
. Co
nventionally bo
ost co
nverte
rs are us
ed
as fro
n
t end
rectifiers [1
0-11]. Fo
r lo
w
voltage a
ppli
c
ation
s
su
ch
as tel
e
comm
unication
or
compute
r
in
du
stry a
n
a
dditi
onal
co
nverte
r
or isolation transfo
rme
r
is
requi
re
d to st
ep do
wn the
voltage. Brid
gele
ss PF
C b
u
ck co
nverte
rs
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
An Ap
pr
o
a
c
h
of
Pow
e
r
F
a
ct
or Co
rr
ect
i
o
n
i
n
B
L
D
C
M
o
t
o
r Dr
iv
es Us
in
g C
u
k D
e
r
i
v
e
d…
(
R
.
B
a
l
a
m
u
r
u
g
a
n
)
8093
are limited for step down a
pplication
s
[12-13]. I
nput line cu
rre
nt ca
nnot follow th
e input voltage
arou
nd
ze
ro
cro
s
sing
s of t
he in
put lin
e
voltage. Outp
ut to inp
u
t vo
ltage
ratio i
s
l
i
mited to
half
resulting i
n
i
n
crea
sed
T
H
D a
nd
red
u
ced PF. A
b
r
i
e
f com
p
a
r
iso
n
of vari
ou
s
config
uratio
n
s
repo
rted in th
e literature is
tabulated in T
able 1.
Table 1. Co
m
parative Anal
ysis of t
he Bri
dgele
s
s PFC
Conve
r
ter To
pologi
es
Converter
Topolog
y
Component Cou
n
t
Half
Period
Stability
S
W
D L
C
Total
BL-BUCK [8]
2
4
2
2
10
5
NO
BL-BOOST [1
0]
2
2
1
1
6
4
NO
BL-BUCK
B
OOS
T [14]
3 4
1
3
11
8
Y
E
S
BL-CUK T
-
1
[16,17]
2 3
3
3
11
7
Y
E
S
BL-CUK T
-
2
[16,17]
2 2
3
4
11
11
Y
E
S
BL-CUK T
-
3
[16,17]
2 3
3
2
10
7
Y
E
S
To overcome
these d
r
a
w
ba
cks several b
r
idgel
es
s top
o
logie
s
suitab
le for step u
p
or ste
p
down ap
plica
t
ions h
a
ve be
en p
r
op
ose
d
.
Bridg
e
le
ss buck-boo
st converte
r
is o
ne of them
which
has both
ste
p
up and ste
p
down o
peration in a si
n
g
le circuit [15
-
16]. It has the disadva
n
ta
ges:
Disco
n
tinuou
s in
put
curre
n
t, high
pea
k cu
rrent in
p
o
we
r
com
pon
ents, p
oor tra
n
sie
n
t re
sp
on
se
mak
e
it less
effic
i
ent.
3. Cuk Deriv
e
d PFC Co
n
v
erters
Bridgel
ess Cuk converte
r
has the follo
wing advanta
g
e
s:
a)
Easy implem
entation of
tra
n
sformer i
s
ol
ation.
b)
Natural prote
c
tion ag
ain
s
t inru
sh
curre
n
t
occurring at
start up o
r
o
v
erload
cu
rrent,
lowe
r input current rippl
e.
c)
Less ele
c
tro
m
agneti
c
inte
rfere
n
ce associate
d
with
discontin
uou
s cond
uctio
n
mode
(D
CM) top
o
lo
gy
.
d)
Cu
k co
nverte
r has b
o
th inp
u
t and output
curre
n
ts with
a low current
ripple.
For appli
c
atio
ns, which
req
u
ire a
lo
w cu
rre
nt
ri
p
p
le at
the inp
u
t an
d output
port
s
of the
conve
r
ter, th
e Cu
k
conv
erter
se
ems to be a p
o
tential cand
idate in the
basi
c
conv
erter
topologi
es.
The th
ree
ne
w Cuk de
rived topol
ogie
s
a
r
e d
e
rive
d from th
e
convention
a
l
PFC
Cu
k
rectifie
rs [1
7
-
19]. The
bridgele
s
s Cu
k de
riv
ed
converte
r is
a co
mbin
atio
n of two
dc-dc
conve
r
ters. T
h
is converte
r
operates fo
r each
half line
period
(T/2)
of the input voltage.
There a
r
e
o
ne o
r
two semico
ndu
cto
r
switch
es i
n
the current
flowing
path.
Cu
rre
nt
stre
sse
s
in th
e a
c
tive and
passive
switches are fu
rth
e
r
red
u
ced. Circuit
efficien
cy is imp
r
oved
as
comp
ared to
co
nventional
Cu
k
re
ctifier. They do
n
o
t suffer fro
m
high
com
m
on m
ode
n
o
ise
probl
em
and
com
m
on
m
ode
emissio
n
pe
rform
a
n
c
e i
s
simila
r to the
co
n
v
entional PF
C
topologi
es.
The thre
e new Cu
k recti
f
iers a
r
e co
m
pared ba
se
d on com
p
o
nents
count,
mode of
operation in DCM a
nd dri
v
er circuit co
mplexity as
tabulate
d
in Table 2. The b
r
idgel
ess PF
C Cu
k
rectifie
rs
of Fi
gure
1 utili
ze
two po
we
r
switch
es
(
Q
1 and
Q
2).
Ho
wever, th
e two po
we
r swit
che
s
can b
e
driven
by the same
control sig
nal
, whic
h
signifi
cantly simplifi
e
s the control
circuitry.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8092 – 80
97
8094
(a) Ty
p
e
I
(b) Ty
p
e
II
(c) Type III
Figure 1. CUK Derived
Co
nverter T
opol
ogie
s
Table 2. Cu
k
Conve
r
ter To
pologi
es in DCM Mod
e
Item
Con
v
. Cuk
Ty
p
e
-
I
Ty
p
e
-
I
I
T
y
pe
-III
Diode
4 slow
+1
fast
2 slow
+3 fast
2 fast
2 slow
+2 fast
Sw
itch
1
2(
w
i
th
unidirectional current
capabilities)
2 2
Curre
nt
Conduction
Path w
hen
S
W
on
2 slow
diodes and 1
sw
itch
1 slow
diode a
n
d
1
sw
itch w
i
th
ser
i
es
diode
1 bod
y
diode and 1
sw
itch
1 slow
diode
and 1 s
w
itch
Curre
nt
Conduction
Path w
hen
S
W
on
3 diodes( 2
slow
and 1 f
a
st)
2 diodes( 1 slow
and 1 fast)
1 fast
diode
2 diodes( 1
slow
and 1 f
a
st)
Curre
nt
Conduction
Path in DCM
2 slow
diodes
1 slow
diode
-
1 slow
diode
Component
Count
10 11
11
13
Number of
Capacitors
2 3
4
3
Driver circuit
Complexit
y
1 non-
floating
2 non-floating
1 floating
+ 1 non-
floating
2 non-floating
In this
se
ctio
n, it is explai
ned the
re
sul
t
s of
research and
at the
same
time i
s
given the
comp
re
hen
si
ve discussio
n
.
Results can
be prese
n
te
d in figure
s
,
grap
hs, tabl
e
s
and
others
tha
t
make the
rea
der un
de
rsta
nd ea
sily [2,
5]. The discu
ssi
on can be
made in seve
ral su
b-ch
apt
ers.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
An Ap
pr
o
a
c
h
of
Pow
e
r
F
a
ct
or Co
rr
ect
i
o
n
i
n
B
L
D
C
M
o
t
o
r Dr
iv
es Us
in
g C
u
k D
e
r
i
v
e
d…
(
R
.
B
a
l
a
m
u
r
u
g
a
n
)
8095
4. Operation of Bridgeless Cuk
Conv
erters
The choi
ce of
mode of o
p
e
r
ation
of a PF
C converte
r i
s
a
critic
al issue be
cau
s
e it
dire
ctly
affects the
cost and
ratin
g
of the com
pone
nts u
s
ed
in the PFC
conve
r
ter [20
-
22]. Co
ntinu
ous
Con
d
u
c
tion
Mode
(CCM
) and
Disco
n
t
inuou
s Con
ductio
n
Mod
e
(DCM
) a
r
e
widely u
s
e
d
in
pra
c
tice. In
CCM o
r
DCM,
the indu
ctor’
s
curre
n
t or th
e voltage a
c
ross intermedi
ate ca
pa
citor
in
a PFC conve
r
ter
rem
a
in
s
contin
uou
s o
r
di
scontin
u
o
u
s
i
n
a switching peri
od resp
ectively. To
operate a PF
C convert
e
r i
n
CCM, on
e requires th
re
e
sen
s
o
r
s (two
voltage, one
curre
n
t)
while
a
DCM o
p
e
r
ati
on ca
n be a
c
hieved u
s
ing
a singl
e vo
ltage se
nsor. T
he stresse
s
o
n
PFC co
nve
r
ter
swit
ch op
erati
ng in DCM are comp
aratively
higher a
s
comp
ared wit
h
its operatio
n in CCM.
By operating
the rectifie
r in
DCM, seve
ra
l advantage
s
can b
e
gain
e
d su
ch a
s
:
a)
Natural nea
r-unity powe
r
factor.
b)
The p
o
wer
switch
es
are turne
d
O
N
at
zero
curre
n
t and the
outp
u
t diode
s a
r
e
turne
d
OFF at z
e
ro current.
(a)
Duri
ng po
sitive half cycle
(b)
Duri
ng ne
gative half cycle
Figure 2. Circuits of Type I Cu
k re
ctifier
Thus, th
e lo
sse
s
du
e to th
e turn
-on
swi
t
ching
and th
e reve
rse re
covery of the
output
diode
s are
con
s
id
era
b
ly redu
c
ed.
Conversely, DCM op
eratio
n
signif
i
cant
l
y
incre
a
se
s
t
h
e
con
d
u
c
tion lo
sses
due to
the in
creased
cu
rre
nt st
ress throug
h ci
rcuit comp
one
nts. As a
re
sult,
this lead
s to
one disadv
antage of th
e DCM
ope
ration, whi
c
h
limits its use to low-po
wer
appli
c
ation
s
(l
ess than 30
0
W). Hen
c
e, DCM
is p
r
eferred for low-p
o
w
er a
ppli
c
atio
ns.
(a)Du
r
ing p
o
sitive half cycle
(b)
Duri
ng ne
gative half cycle
Figure 3. Circuits of Type II Cuk
re
ctifier
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8092 – 80
97
8096
(a)
Duri
ng po
sitive half cycle
(b)
Duri
ng ne
gative half cycle
Figure 4. Circuits
of Type III Cuk
rec
t
ifier
5. Conclusio
n
A comp
arativ
e analysi
s
o
f
different types
of conv
erter to
polog
ies for
po
we
r facto
r
corre
c
tion
in
BLDC moto
rs have
bee
n di
scusse
d.
A
suitable Typ
e
I
II Cuk Conve
r
ter
seem
s to
be
a potential candidate for PFC. The bridgeless
Ty
pe III PFC Cuk
converter fed B
L
DC motor drive
can be u
s
e
d
to achieve almost ne
ar
unity powe
r
at the AC mains with lo
w
THD. Hen
c
e
the
overall sy
ste
m
can be im
p
l
emented
in A
i
r-conditioning System.
Referen
ces
[1]
Gieras JF
, W
i
n
g
M. Permane
nt magnet motor tec
hno
log
y
– desi
gn an
d a
pplic
atio
n. Ne
w
York: Marcel
Dekker Inc.
[2]
Han
dersh
ot JR, Miller T
J
E. Desig
n
of brush
l
ess perma
nent
magnet motor
s
. Claren
don P
r
ess, Oxford.
201
0.
[3]
Hans
elma D
C
. Brushl
ess per
mane
nt magn
e
t
motor design.
Ne
w
Y
o
rk: McGra
w
-
Hil
l. 200
3.
[4]
Krishn
an R. El
ectric motor dri
v
es: model
ing,
ana
l
y
sis an
d control. Indi
a:
Pearso
n Educ
ati
on. 200
1.
[5]
T
o
li
y
a
t HA. Ca
mpbe
ll S. DSP-base
d
electro
m
echa
nica
l mo
tion contro
l. Ne
w
York: CR
C Press. 2004.
[6]
Internatio
na
l Std. IEC 61000
-3-2- 20
00.
Li
mits for Har
m
onic C
u
rrent
Emiss
i
ons (E
q
u
ip
ment Input
Current
≤
16 A per Phas
e)
; 20
00.
[7]
Choi W, K
w
on J, Kim E, Lee J, K
w
on B. Brid
geless boos
t
rectifier w
i
t
h
lo
w
conduction losses and
reduc
ed di
od
e reverse-rec
o
ve
r
y
pro
b
l
e
ms
. IEEE Trans. Ind.
Electron
. 20
07;
54 (2): 769
–78
0.
[8]
Jang Y, Jovan
o
vi´c MM. Bridgel
ess hig
h
-po
w
e
r-factor buc
k converter.
IEEE Trans. Power Electron
.
201
1; 26 (2): 6
02–
61
1.
[9]
Moscho
pou
los
G, Kain P. A
nove
l
si
ng
le-
phas
e soft-s
w
i
t
ched r
e
ctifier
w
i
t
h
u
n
it
y p
o
w
e
r factor a
n
d
minima
l comp
o
nent cou
n
t.
IEEE Trans.Ind. Electron
. 20
04;
51 (3): 566
–57
5.
[10]
Hub
e
r L, Jang
Y, Jovanov
ic
M. Performance eval
uati
on
of
bridg
e
l
e
ss PF
C boost re
ctifiers.
IEEE
T
r
ans. Pow
e
r Electron
. 20
08;
23(3): 138
1–
1
390.
[11]
Ye H, Yan
g
Z
,
Dai J, Yan
C,
Xi
n
X, Ying J.
Common m
o
d
e
nois
e
mo
del
i
ng a
nd a
nal
ys
i
s
of dual
bo
ost
PFC circuit
.
In
Proc. Int.
T
e
lecommun. Ener
g
y
Co
nf. 200
4; 575–
58
2.
[12]
F
a
rdou
n, Ismai
l
EH, Al-Saffar
MA, Sabzal
i AJ
.
New
‘
r
eal
’
br
i
dge
less
hig
h
ef
ficiency
ac-dc
converter
. I
n
Proc. 27th Ann
u
. IEEE APEC
Ex
p
o
. 201
2; 5(
9): 317–
32
3.
[13]
Jang Y, Jovan
o
vi´c MM. Bridgel
ess hig
h
-po
w
e
r-factor buc
k converter.
IEEE Trans. Power Electron
.
201
1; 26(2): 60
2–6
11.
[14]
W
e
i W
,
Hong
p
eng
L, Shi
g
o
n
g
J, Di
ang
uo
X.
A
nove
l
br
id
gel
ess b
u
ck-bo
ost PF
C conv
e
r
ter
. In Proc.
IEEE Pow
e
r Electron. Spec
. Conf. 2008; 1304–1308.
[15]
Vashist Bist,
Bhim Si
ngh. A
n
Adj
u
stab
le
-S
pee
d PF
C Bri
dge
less B
u
ck–
Boost Co
nvert
e
r-F
ed BL
D
C
Motor Drive.
IEEE Transactions on Industrial Electronics.
2
014; 61(
6): 266
5-26
77.
[16]
Abbas A. F
a
rd
oun. N
e
w
Effi
cient Brid
ge
les
s
Cuk Rectifi
e
rs for PF
C Applicati
ons.
IEE
E
T
r
ans. on
Power Electronics
. 2012; 2
7
(7
): 3292-3
3
0
0
.
[17]
F
a
rdou
n, Ismai
l
EH, Sa
bzal
i A
J
, Al-Saffar MA.
A compar
ison
betw
een t
h
ree
prop
ose
d
bri
d
gel
ess C
u
k
rectifiers an
d conve
n
tio
nal top
o
lo
gy for pow
e
r
factor correction
. In Proc. IEEE ICSET
.
2010; 6(9): 1–6.
[18]
Mahd
avi M, F
a
rzane
h-F
a
rd
H.
Bridgel
es
s CUK po
w
e
r
factor correction rectifier
w
i
t
h
red
u
ce
d
cond
uctio
n
los
s
es.
IET Power
Electron
. 20
12
; 5(9): 1733
–17
40.
[19]
Sing
h B, Si
ng
h BN,
Cha
ndr
a A, Al-
H
ad
da
d K,
Pa
nd
e
y
A, Kothari
DP
. A revi
e
w
of
singl
e-p
has
e
improve
d
po
w
e
r qual
it
y
ac-
d
c converters.
IEEE Trans. Ind.
Electron
. 20
03;
50(5): 962
–9
8
1
.
[20]
Sing
h B, Si
ng
h
S, Cha
ndr
a A,
Al-Ha
d
d
ad K.
Co
mpre
he
nsiv
e
stud
y of
si
ngl
e-ph
ase ac-dc po
w
e
r
facto
r
corrected co
nv
erters
w
i
t
h
hi
gh
-freque
nc
y
isol
ation.
IEEE Trans. Ind. Informat
. 2011; 7(4):
540
–5
56.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
An Ap
pr
o
a
c
h
of
Pow
e
r
F
a
ct
or Co
rr
ect
i
o
n
i
n
B
L
D
C
M
o
t
o
r Dr
iv
es Us
in
g C
u
k D
e
r
i
v
e
d…
(
R
.
B
a
l
a
m
u
r
u
g
a
n
)
8097
[21]
Youn
gh
oon C
h
o. A Lo
w
Cost Sing
le-S
w
i
tc
h Bridg
e
less Bo
o
s
t PF
C Conver
ter,
Internation
a
l Jour
nal o
f
Pow
e
r Electron
ics and Dr
ive S
ystem (IJPEDS
)
. 2014; 4(2): 2
56-2
64.
[22]
Len
ine
D, Ch.
S
ai Ba
bu, Sh
a
n
kara
iah G. Pe
rform
ance Ev
al
uatio
n of F
u
zz
y a
nd PI
Contr
o
ller
for Boos
t
Converter
w
i
th Active PFC.
Internati
o
n
a
l Jo
urna
l of Pow
e
r
Elec
tron
ics a
nd Driv
e Syste
m
(IJPEDS)
.
201
2; 2(4): 445
-453.
[23]
Lei Ji
n-Ii. Ada
p
tive Co
ntrol
for Br
ushless
DC Motor Ba
sed on F
u
zz
y Inference.
TE
L
K
OM
N
I
KA
Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2014; 1
2
(5): 3
392-
339
8.
[24]
Yuesh
an W
a
n
g
, Li
w
a
n Che
n
,
Z
enghan C
h
e
n
. A F
u
zzy
Se
l
f
-tuning C
ontro
lled F
e
e
d
i
ng S
e
rvo S
y
stem
of Machin
e T
o
ol.
TELKOMNIKA.
2013; 11(
5
)
: 2351-2
3
5
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.