I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
p
u
t
er
Science
Vo
l.
10
,
No
.
1
,
A
p
r
il
2
0
1
8
,
p
p
.
21
4
~
223
I
SS
N:
2502
-
4752
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ee
cs
.
v
10
.i
1
.
p
p
21
4
-
2
2
3
214
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e.
co
m/jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
ijeec
s
Clutt
e
red Tra
ff
ic
Distribu
tion in L
o
Ra
LPWAN
Nur
Ais
ha
h B
t
.
Z
a
ina
l
,
M
o
h
a
m
ed
H
a
di H
a
ba
ebi
,
I
s
ra
t
h Cho
w
dh
ury
,
M
d Ra
f
iqu
l Is
l
a
m
El
e
c
tri
c
a
l
a
n
d
Co
m
p
u
ter E
n
g
in
e
e
rin
g
De
p
a
rtm
e
n
t,
Ku
ll
iy
y
a
h
o
f
En
g
in
e
e
rin
g
,
In
tern
a
ti
o
n
a
l
Isla
m
ic Un
iv
e
rsit
y
M
a
la
y
sia
,
M
a
la
y
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
19
,
2
0
1
8
R
ev
i
s
ed
Mar
18
,
2
0
1
8
A
cc
ep
ted
Mar
30
,
2
0
1
8
L
o
w
P
o
w
e
r
WAN
(L
P
WA
N)
is
a
w
irele
ss
b
ro
a
d
a
re
a
n
e
tw
o
rk
tec
h
n
o
l
o
g
y
.
It
is
in
terc
o
n
n
e
c
ts
u
sin
g
o
n
ly
lo
w
b
a
n
d
w
id
th
,
les
s
p
o
w
e
r
c
o
n
su
m
p
ti
o
n
a
t
lo
n
g
ra
n
g
e
.
T
h
is
tec
h
n
o
lo
g
y
is
o
p
e
ra
ti
n
g
in
u
n
a
u
t
h
o
rize
d
sp
e
c
tr
u
m
[1
]
w
h
ich
d
e
sig
n
e
d
f
o
r
w
irele
ss
d
a
ta
c
o
m
m
u
n
ica
ti
o
n
.
T
o
h
a
v
e
a
n
in
sig
h
t
o
f
su
c
h
lo
n
g
-
ra
n
g
e
tec
h
n
o
lo
g
y
,
th
i
s
p
a
p
e
r
e
v
a
lu
a
tes
th
e
p
e
rf
o
rm
a
n
c
e
o
f
L
o
Ra
r
a
d
io
li
n
k
s
u
n
d
e
r
s
h
a
d
o
w
in
g
e
ff
e
c
t
a
n
d
re
a
li
stic
s
m
a
rt
c
it
y
u
ti
li
ti
e
s
c
lu
tt
e
r
g
rid
d
istri
b
u
ti
o
n
.
S
u
c
h
e
n
v
iro
n
m
e
n
t
is
s
y
n
o
n
y
m
o
u
s
to
re
sid
e
n
ti
a
l,
in
d
u
strial
a
n
d
m
o
d
e
rn
u
rb
a
n
c
e
n
ters
.
T
h
e
f
o
c
u
s
is
to
in
c
lu
d
e
th
e
e
ff
e
c
t
o
f
sh
a
d
o
win
g
o
n
th
e
ra
d
io
li
n
k
s
w
h
il
e
a
tt
e
m
p
ti
n
g
to
s
tu
d
y
th
e
o
p
ti
m
u
m
sin
k
n
o
d
e
n
u
m
b
e
rs
a
n
d
th
e
ir
lo
c
a
ti
o
n
s
f
o
r
m
a
x
i
m
u
m
se
n
so
r
n
o
d
e
c
o
n
n
e
c
ti
v
it
y
.
Re
su
lt
s
in
d
ica
te
th
a
t
th
e
u
su
a
l
u
n
re
a
li
stic
ra
n
d
o
m
n
o
d
e
d
istri
b
u
ti
o
n
d
o
e
s
n
o
t
re
f
lec
t
a
c
tu
a
l
re
a
l
-
li
fe
sc
e
n
a
rio
w
h
e
re
m
a
n
y
o
f
th
e
se
se
n
sin
g
n
o
d
e
s
f
o
ll
o
w
th
e
b
u
il
t
i
n
f
ra
stru
c
tu
re
a
ro
u
n
d
th
e
c
it
y
o
f
s
m
a
rt
b
u
il
d
i
n
g
s.
T
h
e
s
y
ste
m
is
e
v
a
lu
a
ted
in
term
s
o
f
c
o
n
n
e
c
ti
v
it
y
a
n
d
p
a
c
k
e
t
lo
ss
ra
ti
o
.
K
ey
w
o
r
d
s
:
L
o
R
a
T
ec
h
n
o
lo
g
y
L
o
R
aW
A
N
I
n
ter
n
et
o
f
T
h
i
n
g
s
C
lu
tter
Dis
tr
ib
u
tio
n
S
m
ar
t C
it
y
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Mo
h
a
m
ed
Had
i H
ab
ae
b
i
,
E
lectr
ical
an
d
C
o
m
p
u
ter
E
n
g
i
n
ee
r
in
g
Dep
ar
t
m
e
n
t,
K
u
lli
y
y
a
h
o
f
E
n
g
i
n
ee
r
in
g
,
I
n
ter
n
atio
n
al
I
s
la
m
ic
U
n
iv
er
s
it
y
Ma
la
y
s
ia
,
J
alan
Go
m
b
ak
,
5
3
1
0
0
Ku
ala
L
u
m
p
u
r
,
Selan
g
o
r
,
Ma
la
y
s
ia;
03
6
1
9
6
5
6
0
1
.
E
m
ail:
h
ab
ae
b
i@
ii
u
m
.
ed
u
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
I
n
ter
n
et
o
f
T
h
in
g
s
i
s
p
r
o
j
ec
t
ed
to
ea
s
e
h
u
m
a
n
lif
e.
E
v
er
y
m
ac
h
i
n
e
ar
e
in
ter
co
n
n
ec
te
d
w
ith
o
n
e
an
o
th
er
s
o
le
s
s
h
u
m
an
r
eso
u
r
c
es
ar
e
n
ee
d
ed
.
T
h
e
n
e
w
w
ir
ele
s
s
tech
n
o
lo
g
ie
s
h
av
e
b
ee
n
p
r
o
d
u
ce
d
b
y
t
h
e
n
a
m
e
L
o
w
P
o
w
er
W
id
e
A
r
ea
(
L
P
W
A
)
,
w
it
h
th
e
s
p
ec
ial
ch
ar
ac
ter
i
s
tics
t
h
at
s
u
itab
le
f
o
r
th
e
i
m
p
l
e
m
en
tatio
n
o
f
I
o
T
ap
p
licatio
n
s
w
h
ic
h
also
i
n
cl
u
d
e
a
s
i
m
p
lif
ied
n
et
w
o
r
k
to
p
o
lo
g
y
,
p
o
w
er
o
p
ti
m
ized
r
ad
io
n
et
w
o
r
k
,
f
r
a
m
e
s
izes
tr
an
s
m
itted
s
e
v
er
al
ti
m
es
i
n
a
d
ay
at
u
ltra
-
lo
w
s
p
ee
d
s
an
d
u
p
s
tr
ea
m
co
m
m
u
n
icatio
n
m
o
d
el
th
at
en
ab
le
t
h
e
en
d
-
d
ev
ices to
s
ta
y
in
lo
w
e
n
e
r
g
y
m
o
d
e
[
2
]
.
W
ith
th
is
s
et
tin
g
,
it
e
n
ab
les
a
r
an
g
e
o
f
k
ilo
m
eter
s
w
i
th
lo
n
g
er
b
atter
y
li
f
e;
w
h
ic
h
u
p
to
te
n
y
ea
r
s
o
f
o
p
er
atio
n
,
lo
w
co
s
t
d
ev
ice
s
w
it
h
p
lai
n
b
u
t
s
ca
lab
le
d
ep
lo
y
m
e
n
t
s
an
d
t
h
i
n
f
o
u
n
d
atio
n
.
T
h
e
L
P
W
A
f
ea
t
u
r
es,
m
ak
e
s
it
p
o
s
s
ib
le
f
o
r
I
o
T
t
o
f
u
n
ctio
n
w
el
l
w
ith
o
n
l
y
u
s
e
a
v
e
r
y
lo
w
b
it
-
r
ate
o
f
d
ata
f
o
r
r
ep
o
r
tin
g
an
d
d
o
es
n
o
t
n
ee
d
f
r
eq
u
e
n
t c
h
a
n
g
es o
f
t
h
e
b
atter
ies b
ec
au
s
e
o
f
t
h
e
l
ow
-
p
o
w
er
ed
f
ea
t
u
r
es o
f
t
h
e
L
P
W
A
[
2
]
.
T
h
e
ex
is
t
i
n
g
tec
h
n
o
lo
g
ies
d
o
n
o
t
p
r
o
m
o
te
lo
w
p
o
w
er
ed
en
er
g
y
co
n
s
u
m
p
tio
n
w
it
h
lar
g
er
s
ca
le
co
v
er
ag
e.
W
ith
t
h
e
d
ev
elo
p
m
en
t
o
f
s
c
ien
ce
a
n
d
tech
n
o
lo
g
y
,
t
h
e
L
P
W
A
is
th
e
n
e
w
tr
e
n
d
an
d
m
a
n
y
r
esear
ch
er
s
w
o
r
k
i
n
g
f
o
r
w
ar
d
to
f
in
d
th
e
s
o
l
u
tio
n
f
o
r
th
e
m
en
tio
n
ed
p
r
o
b
lem
s
o
t
h
at
it
will
b
e
im
p
le
m
e
n
ted
ev
er
y
w
h
er
e.
L
o
R
a
i
s
o
n
e
o
f
t
h
e
s
o
l
u
tio
n
f
o
r
t
h
e
p
r
o
b
le
m
w
h
ic
h
p
r
o
m
is
in
g
f
o
r
lo
w
er
e
n
er
g
y
co
n
s
u
m
p
tio
n
,
h
ig
h
er
d
ata
r
ate,
ea
s
y
i
n
s
tal
lati
o
n
an
d
s
o
m
e
m
o
r
e
f
ea
t
u
r
es.
T
h
e
to
p
ic
is
co
n
ce
r
n
ab
o
u
t
t
h
e
p
er
f
o
r
m
an
ce
o
f
L
o
R
a
(
L
o
n
g
R
a
n
g
e)
R
ad
io
L
i
n
k
w
h
ich
is
o
n
e
o
f
th
e
L
P
W
A
tec
h
n
o
lo
g
ies
w
h
ich
p
r
o
m
i
s
in
g
w
id
e
ar
ea
f
o
r
I
o
T
tech
n
o
lo
g
ies
th
at
w
a
s
p
r
o
p
o
s
ed
b
y
Se
m
tec
h
co
m
p
a
n
y
a
n
d
later
b
ei
n
g
p
r
o
m
o
ted
b
y
th
e
L
o
R
a
Allia
n
ce
.
L
o
R
a
u
s
ed
c
h
ir
p
m
o
d
u
latio
n
tech
n
o
lo
g
y
,
w
h
ic
h
allo
w
i
n
g
f
o
r
lo
n
g
r
an
g
e
tr
a
n
s
m
is
s
io
n
w
it
h
lo
w
p
o
w
er
a
n
d
lo
w
co
s
t
f
o
r
d
esig
n
i
n
g
.
T
h
is
ca
n
b
e
ac
h
ie
v
ed
b
y
u
s
i
n
g
th
e
s
p
r
ea
d
s
p
ec
tr
u
m
tec
h
n
iq
u
e
ac
co
m
m
o
d
atin
g
s
e
v
er
al
d
ev
ices
in
a
ch
a
n
n
el.
T
h
e
ter
m
ed
L
o
R
aW
a
n
h
a
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
C
lu
tter
ed
Tr
a
ff
ic
Dis
t
r
ib
u
tio
n
in
Lo
R
a
LPW
A
N
(
N
u
r
A
is
h
a
h
B
t.
Za
in
a
l)
215
b
ee
n
d
ef
i
n
ed
as
t
h
e
h
i
g
h
er
la
y
er
s
a
n
d
s
y
s
te
m
ar
c
h
itect
u
r
e
o
n
to
p
th
e
L
o
R
a
p
h
y
s
ical
la
y
er
s
.
W
ith
all
th
e
s
e
attr
ib
u
tes,
it
m
ak
e
s
L
o
R
a
s
u
ita
b
le
to
b
e
u
s
ed
f
o
r
I
o
T
[
3
]
.
T
h
e
o
b
j
ec
tiv
e
o
f
th
is
p
ap
er
is
to
ev
alu
ate
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
L
o
R
a
s
h
ad
o
w
ed
r
ad
io
lin
k
s
,
t
y
p
ical
in
u
r
b
an
an
d
s
e
m
i
u
r
b
an
ce
n
ter
s
,
to
g
eth
er
w
i
th
cl
u
tter
d
is
tr
i
b
u
tio
n
a
n
d
o
p
ti
m
al
s
i
n
k
n
o
d
e
p
lace
m
en
t
u
s
i
n
g
m
ea
s
u
r
es
o
f
co
n
n
ec
t
iv
i
t
y,
p
a
ck
et
lo
s
s
r
atio
s
a
n
d
Data
T
h
r
o
u
g
h
p
u
t
.
T
h
e
p
ap
er
is
o
r
g
an
ized
as
f
o
llo
w
s
.
Sectio
n
2
i
s
th
e
b
ac
k
g
r
o
u
n
d
ab
o
u
t
th
i
s
r
esear
ch
.
Sectio
n
3
d
is
cu
s
s
es
t
h
e
r
esear
c
h
m
et
h
o
d
o
lo
g
y
.
Sectio
n
4
p
r
esen
ts
t
h
e
r
esu
lts
a
n
d
d
is
cu
s
s
io
n
an
d
t
h
e
p
ap
er
co
n
clu
d
ed
in
s
ec
tio
n
5
.
2.
B
ACK
G
RO
UND
2
.
1
.
L
o
ng
Ra
ng
e
WAN
(
L
o
Ra
W
AN)
L
o
R
aW
A
N
is
o
n
e
o
f
th
e
m
ed
ia
ac
ce
s
s
co
n
tr
o
l
(
M
AC
)
p
r
o
to
co
l
w
h
ich
m
ea
n
t
o
n
l
y
f
o
r
b
r
o
ad
ar
ea
n
et
w
o
r
k
an
d
it
is
ai
m
i
s
to
allo
w
lo
w
p
o
w
er
ed
d
ev
ices
to
in
ter
ac
t
w
ith
I
n
ter
n
et
-
co
n
n
ec
ted
ap
p
licatio
n
s
o
v
er
lo
n
g
r
an
g
e
w
ir
ele
s
s
co
n
n
ec
tio
n
s
.
T
h
is
p
r
o
to
co
l
ca
n
b
e
m
ap
p
ed
to
th
e
s
ec
o
n
d
an
d
th
ir
d
la
y
er
o
f
OS
I
m
o
d
el
a
n
d
i
m
p
le
m
e
n
ted
o
n
to
p
o
f
Fre
q
u
en
c
y
S
h
i
f
t
Ke
y
i
n
g
(
FS
K)
m
o
d
u
latio
n
o
r
L
o
R
a
i
n
s
cien
ti
f
ic,
i
n
d
u
s
tr
ial
an
d
m
ed
ical
(
I
SM)
r
ad
io
b
an
d
s
.
A
l
s
o
,
th
e
p
r
o
to
co
l
is
d
ef
in
ed
b
y
t
h
e
L
o
R
a
A
ll
ian
ce
a
n
d
f
o
r
m
a
lized
in
t
h
e
L
o
R
aW
A
N
Sp
ec
i
f
icatio
n
an
d
R
eg
io
n
al
P
ar
a
m
eter
s
[
4
]
.
T
h
e
L
o
R
a
g
ate
w
a
y
s
u
til
ized
lo
n
g
r
a
n
g
e
s
tar
n
et
w
o
r
k
to
p
o
lo
g
y
a
n
d
b
ein
g
u
s
ed
i
n
a
L
o
R
aW
AN
f
r
a
m
e
w
o
r
k
(
s
ee
F
i
g
u
r
e
1
)
.
Du
e
to
th
e
o
f
p
r
o
p
er
ties
o
f
L
o
R
a,
th
e
f
r
a
m
e
w
o
r
k
ar
e
m
u
lti
-
m
o
d
e
m
h
an
d
s
et
s
,
m
u
l
ti
-
ch
an
n
el
a
n
d
r
ea
d
y
to
d
e
m
o
d
u
l
ate
o
n
d
if
f
er
en
t
c
h
an
n
el
s
s
i
m
u
ltan
eo
u
s
l
y
a
n
d
d
e
m
o
d
u
late
v
a
r
io
u
s
s
i
g
n
a
ls
o
n
t
h
e
in
d
is
ti
n
g
u
is
h
ab
le
ch
a
n
n
el
i
n
t
h
e
m
ea
n
t
i
m
e.
T
h
e
en
d
p
o
in
t
u
tili
ze
s
d
is
ti
n
cti
v
e
r
ad
io
f
r
eq
u
e
n
c
y
w
it
h
t
h
e
g
eta
w
a
y
s
to
p
er
m
it
h
i
g
h
li
m
it
a
n
d
ex
ec
u
te
as
a
s
tr
ai
g
h
tf
o
r
w
ar
d
ex
te
n
s
io
n
h
an
d
i
n
g
-
o
f
f
m
e
s
s
a
g
es
b
et
wee
n
t
h
e
en
d
-
g
ad
g
ets
an
d
a
c
e
n
tr
al
s
y
s
te
m
s
er
v
er
.
E
n
d
-
g
ad
g
et
s
u
tili
ze
a
h
o
p
r
em
o
te
co
r
r
esp
o
n
d
en
ce
to
t
h
e
p
o
r
tals
w
h
ile
g
ate
w
a
y
s
as
s
o
cia
ted
w
it
h
t
h
e
s
y
s
te
m
s
er
v
er
th
r
o
u
g
h
s
tan
d
ar
d
I
n
ter
n
et
P
r
o
to
co
l
(
I
P
)
ass
o
ciatio
n
s
.
T
h
e
p
o
r
tal
h
as
n
u
m
er
o
u
s
a
d
ap
tatio
n
s
an
d
it
is
r
el
y
in
g
u
p
o
n
th
e
u
s
e
l
i
m
it a
n
d
co
v
eted
estab
lis
h
m
e
n
t a
r
ea
(
e.
g
.
: to
w
er
v
er
s
u
s
h
o
m
e)
[
5
]
.
Fig
u
r
e
1
.
L
o
R
aW
A
N
s
tac
k
[
4
]
Fig
u
r
e
2
.
T
h
e
ar
ch
itectu
r
e
o
f
L
o
R
a
w
h
ic
h
in
cl
u
d
e
th
r
ee
d
is
s
i
m
ilar
d
ev
ice
s
[
6
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l
.
10
,
No
.
1
,
A
p
r
il
2
0
1
8
:
21
4
–
2
2
3
216
2
.
2
.
L
o
Ra
WAN
Air
I
nte
rf
a
ce
s
L
o
R
a
A
ll
ian
ce
h
as r
elea
s
ed
t
h
e
air
in
ter
f
ac
e
s
p
ec
i
f
ic
d
o
cu
m
e
n
t,
w
h
ich
ar
e:
L
o
R
aW
A
N
air
i
n
ter
f
ac
e
v
1
.
0
.
0
L
o
R
aW
A
N
air
i
n
ter
f
ac
e
v
1
.
0
.
1
L
o
R
aW
A
N
air
i
n
ter
f
ac
e
v
1
.
0
.
2
(
in
f
in
a
l r
ev
ie
w
)
L
o
R
aW
A
N
air
i
n
ter
f
ac
e
v
1
.
1
(
in
d
ev
elo
p
m
e
n
t)
W
ith
t
h
e
d
ev
elo
p
m
e
n
t
o
f
L
o
R
aW
A
N
air
i
n
ter
f
ac
e
s
p
ec
i
f
icat
io
n
,
th
e
lev
el
o
f
s
ec
u
r
it
y
a
n
d
p
r
iv
ac
y
h
a
s
g
u
ar
a
n
teed
.
T
h
e
ap
p
licatio
n
p
r
o
v
id
er
is
s
o
lel
y
r
esp
o
n
s
ib
le
f
o
r
th
e
en
cr
y
p
tio
n
o
f
th
e
e
n
tire
a
p
p
licatio
n
p
a
y
lo
ad
u
s
i
n
g
t
h
e
A
E
S1
2
8
A
p
p
licatio
n
Se
s
s
io
n
Ke
y
.
W
ith
th
i
s
f
ea
t
u
r
e,
it
co
n
f
ir
m
s
th
e
s
ec
u
r
i
t
y
o
f
t
h
e
p
a
y
lo
ad
.
Ne
x
t,
3
2
b
it
s
ig
n
at
u
r
e
h
a
s
b
ee
n
ad
d
ed
w
h
ich
r
es
u
lt
i
n
co
m
p
u
ted
t
h
e
en
t
ir
e
f
r
a
m
e
b
y
u
s
i
n
g
a
N
et
w
o
r
k
s
es
s
io
n
k
e
y
.
T
h
is
attr
ib
u
te
g
u
ar
an
tee
s
th
e
o
r
ig
in
a
lit
y
o
f
th
e
d
e
v
ices a
n
d
th
e
f
r
a
m
e
ca
n
n
o
t e
as
il
y
m
o
d
if
y
[
7
]
.
T
h
e
s
ec
u
r
it
y
o
n
t
h
e
a
ir
d
o
es
n
o
t
as
s
u
r
e
w
h
eth
er
th
e
n
et
w
o
r
k
s
er
v
er
ca
n
ea
s
il
y
b
e
h
ac
k
e
d
,
o
r
th
e
d
ev
ice
is
an
ti
-
te
m
p
er
.
T
o
g
et
an
an
ti
-
te
m
p
er
d
ev
ice,
a
h
ar
d
w
ar
e
s
ec
u
r
e
ele
m
e
n
t
m
u
s
t
u
s
e
to
s
to
r
e
an
d
d
er
iv
e
th
e
k
e
y
s
.
I
n
ad
d
itio
n
,
to
i
m
p
le
m
en
t
t
h
e
cr
y
p
to
g
r
ap
h
ic
f
u
n
cti
o
n
s
i
n
t
h
e
n
et
w
o
r
k
s
er
v
er
,
it
i
s
ad
v
is
ab
le
to
u
s
e
a
Har
d
w
ar
e
Ke
y
Ma
n
ag
e
m
e
n
t s
y
s
te
m
[
7
]
.
T
h
e
T
ab
le
1
s
h
o
w
s
th
e
air
in
ter
f
ac
e
v
er
s
io
n
co
m
p
l
ian
ce
m
a
tr
ix
.
T
ab
le
1
.
A
n
A
ir
I
n
ter
f
ac
e
Ver
s
io
n
C
o
m
p
lia
n
ce
Ma
tr
i
x
[
7
]
v
1
.
0
.
x
d
e
v
i
c
e
v
.
1
.
1
d
e
v
i
c
e
v
1
.
0
.
x
n
e
t
w
o
r
k
se
r
v
e
r
D
e
f
a
u
l
t
c
a
se
t
o
d
a
y
D
e
v
i
c
e
w
i
l
l
b
e
h
a
v
e
a
s a
v
1
.
0
.
1
d
e
v
i
c
e
v
1
.
1
n
e
t
w
o
r
k
se
r
v
e
r
S
e
r
v
e
r
w
i
l
l
b
e
h
a
v
e
a
s a
v
1
.
0
.
1
se
r
v
e
r
F
u
l
l
su
p
p
o
r
t
o
f
v
1
.
1
f
u
n
c
t
i
o
n
a
l
i
t
i
e
s
2
.
3
.
L
o
ng
Ra
ng
e
a
nd
Sh
a
do
w
ing
E
f
f
ec
t
T
h
e
L
o
R
aW
A
N
co
m
m
u
n
icati
o
n
is
e
x
p
ec
ted
to
co
v
er
lo
n
g
er
d
is
tan
ce
s
;
h
en
ce
,
f
r
a
m
e
s
ca
n
b
e
lo
s
t
d
u
e
to
p
r
o
p
ag
atio
n
lo
s
es,
an
d
s
o
m
e
p
h
y
s
ical
p
h
e
n
o
m
e
n
o
n
s
u
c
h
as
s
h
ad
o
w
in
g
ef
f
ec
t,
r
ef
lect
io
n
,
an
d
s
ca
tter
in
g
.
A
ll
o
f
t
h
is
n
ee
d
to
b
e
tak
e
n
i
n
to
a
cc
o
u
n
t
w
h
e
n
e
v
er
w
e
d
o
t
h
e
s
i
m
u
latio
n
b
ec
au
s
e
t
h
er
e
is
n
o
“
p
er
f
ec
t”
th
in
g
s
i
n
r
ea
l lif
e.
Sh
ad
o
w
in
g
is
t
h
e
ef
f
ec
t
t
h
at
th
e
r
ec
eiv
ed
s
i
g
n
al
p
o
wer
v
ar
ies
d
u
e
to
o
b
j
ec
ts
b
l
o
ck
in
g
th
e
p
r
o
p
ag
a
tio
n
p
ath
b
et
w
ee
n
tr
a
n
s
m
itter
an
d
r
ec
eiv
er
.
T
h
ese
v
ar
iatio
n
s
ar
e
ex
p
er
ien
ce
o
n
lo
ca
l
-
m
ea
n
p
o
w
er
s
,
th
at
i
s
,
s
h
o
r
t
-
ter
m
a
v
er
ag
e
s
to
r
e
m
o
v
e
v
ar
iatio
n
s
d
u
e
to
m
u
l
tip
ath
f
ad
in
g
.
T
h
e
s
h
ad
o
w
in
g
ef
f
ec
t
is
n
ee
d
ed
i
n
o
u
r
ca
lcu
la
tio
n
s
o
t
h
at
w
e
ca
n
e
m
u
late
r
ea
l
-
l
if
e
s
y
s
te
m
p
er
f
o
r
m
a
n
ce
a
n
d
w
e
ca
n
p
r
ed
ict
w
h
at
w
ill
h
ap
p
en
in
th
e
f
u
t
u
r
e
an
d
f
in
d
a
s
o
lu
tio
n
f
o
r
it.
3.
M
E
T
H
O
DO
L
O
G
Y
W
e
h
ad
u
s
ed
s
e
v
er
al
m
e
th
o
d
s
to
ac
h
iev
e
t
h
e
o
b
j
ec
tiv
e
o
f
t
h
e
r
esear
ch
.
First
o
f
all,
t
h
e
s
i
m
u
lato
r
th
at
h
ad
b
ee
n
u
s
ed
th
r
o
u
g
h
all
t
h
e
w
o
r
k
s
w
as
p
r
o
v
id
ed
b
y
p
ap
er
[
8
]
.
W
e
h
ad
m
ad
e
s
e
v
e
r
al
ch
an
g
es
to
t
h
e
s
i
m
u
lato
r
s
o
t
h
at
it
w
ill
i
m
p
r
o
v
ed
th
e
r
es
u
lt
s
an
d
i
n
li
n
e
w
i
t
h
o
u
r
r
esear
ch
.
Her
e
ar
e
t
h
e
f
u
r
th
er
d
is
c
u
s
s
io
n
o
f
th
e
m
o
d
i
f
ica
tio
n
th
at
h
ad
b
ee
n
m
ad
e
to
th
e
s
i
m
u
lato
r
.
Firstl
y
,
th
e
p
r
o
p
ag
atio
n
m
o
d
el
w
as
b
ee
n
alter
ed
f
o
llo
w
s
t
h
e
p
ap
er
[
9
]
,
[
1
0
]
m
ea
s
u
r
e
m
e
n
t
d
u
e
to
its
r
ea
lis
tic
r
ep
r
esen
tatio
n
o
f
r
ea
l
-
li
f
e
ap
p
licatio
n
s
ce
n
ar
io
in
a
m
o
d
er
n
u
r
b
an
ce
n
ter
.
T
ab
le
2
s
h
o
w
s
t
h
e
d
etail
s
o
f
p
r
o
p
ag
atio
n
m
o
d
el
ch
ar
ac
te
r
is
tics
.
T
ab
le
2
.
P
r
o
p
ag
atio
n
Mo
d
els C
h
ar
ac
ter
is
tics
R
e
f
N
o
.
P
a
t
h
L
o
ss Ex
p
o
n
e
n
t
(
n
)
S
h
a
d
o
w
i
n
g
Ef
f
e
c
t
,
σS
F
M
e
a
n
P
a
t
h
L
o
ss,
L
p
l
(
d
0
)
[
9
]
2
.
3
2
7
.
8
d
B
1
2
8
.
9
5
[
8
]
2
.
0
8
-
1
2
7
.
4
1
T
h
e
s
i
m
u
lato
r
i
s
a
d
is
cr
ete
-
e
v
en
t
s
i
m
u
lato
r
b
ased
o
n
Si
m
P
y
.
Si
m
P
y
i
s
a
p
r
o
ce
s
s
-
b
ased
d
is
c
r
ete
-
ev
e
n
t
s
i
m
u
lat
io
n
f
r
a
m
e
w
o
r
k
b
ased
o
n
s
tan
d
ar
d
P
y
t
h
o
n
an
d
it
s
ev
en
t
d
is
p
atch
er
is
b
ased
o
n
P
y
t
h
o
n
'
s
g
en
er
ato
r
s
.
I
t
w
a
s
cr
ea
ted
to
s
i
m
u
lati
n
g
co
ll
is
io
n
s
i
n
L
o
R
a
n
et
w
o
r
k
s
an
d
t
o
an
al
y
ze
s
ca
lab
ilit
y
.
T
h
e
p
u
r
p
o
s
e
o
f
th
e
r
esear
ch
s
tu
d
ie
s
w
a
s
to
id
en
tify
t
h
e
n
u
m
b
er
o
f
r
eq
u
ir
ed
s
in
k
n
o
d
e
g
ate
w
a
y
s
to
p
r
o
v
id
e
co
n
n
ec
t
iv
i
t
y
f
o
r
cl
u
tter
s
en
s
o
r
n
o
d
e
d
is
tr
ib
u
tio
n
i
n
a
t
y
p
ical
r
esid
en
tial
cit
y
ar
ea
.
F
u
r
th
er
m
o
r
e,
w
e
w
o
u
ld
lik
e
to
i
n
v
e
s
tig
ate
th
e
ef
f
ec
t
o
f
s
h
ad
o
w
in
g
o
n
t
h
e
li
n
k
s
w
h
ile
d
o
in
g
s
o
to
m
a
k
e
o
u
r
s
i
m
u
lati
o
n
m
o
r
e
r
ea
lis
tic.
He
n
ce
,
th
e
p
er
f
o
r
m
a
n
ce
m
etr
ic
w
o
u
ld
b
e
th
e
n
u
m
b
er
o
f
co
n
n
ec
ted
n
o
d
es,
th
e
S
h
ad
o
w
i
n
g
E
f
f
ec
t
o
n
t
h
e
n
u
m
b
er
o
f
lo
s
t
p
ac
k
ets,
th
e
Data
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
C
lu
tter
ed
Tr
a
ff
ic
Dis
t
r
ib
u
tio
n
in
Lo
R
a
LPW
A
N
(
N
u
r
A
is
h
a
h
B
t.
Za
in
a
l)
217
T
h
r
o
u
g
h
p
u
t.
Fu
r
t
h
er
m
o
r
e,
we
h
av
e
f
o
llo
w
ed
t
h
e
f
o
u
r
ex
p
er
i
m
e
n
t
s
d
o
n
e
i
n
[
9
]
b
y
c
h
an
g
i
n
g
t
h
e
s
ett
in
g
p
ar
am
eter
s
f
o
r
th
e
air
i
n
ter
f
ac
e
ac
co
r
d
in
g
to
T
a
b
le
4
.
No
d
es
ar
e
p
lace
d
e
q
u
all
y
-
d
is
t
an
t
ar
o
u
n
d
th
e
s
i
n
k
s
u
c
h
th
at
all
n
o
d
es
ca
n
r
ea
ch
th
e
s
in
k
w
it
h
th
e
p
r
ea
r
r
an
g
ed
s
etti
n
g
SN
i
f
s
h
a
d
o
w
in
g
e
f
f
e
ct
i
s
n
o
t
i
n
cl
u
d
ed
.
T
h
e
th
r
ee
tr
an
s
m
i
tter
co
n
f
ig
u
r
atio
n
s
SN1
,
SN
2
an
d
SN3
ar
e
g
iv
e
n
i
n
T
ab
le
4
.
I
n
all
s
et
tin
g
s
,
it
is
b
ei
n
g
i
m
a
g
in
ed
t
h
at
a
2
0
-
b
y
te
p
ac
k
et
is
b
ein
g
s
en
t
b
y
ea
c
h
n
o
d
e
ev
er
y
1
6
.
7
m
in
r
ep
r
esen
tin
g
a
r
ea
lis
tic
ap
p
licatio
n
.
T
h
e
ch
o
s
en
s
ett
in
g
f
o
r
SN1
is
th
e
m
o
s
t
r
o
b
u
s
t
L
o
R
a
tr
an
s
m
itter
s
ett
in
g
s
w
h
ic
h
lead
s
to
tr
an
s
m
is
s
io
n
s
w
it
h
t
h
e
lo
n
g
e
s
t
p
o
s
s
ib
le
air
ti
m
e
o
f
1
7
1
2
.
1
3
m
s
,
w
it
h
SN
2
;
th
e
tr
an
s
m
i
s
s
io
n
s
etti
n
g
lead
s
to
th
e
s
h
o
r
test
ai
r
ti
m
e
o
f
7
.
0
7
m
s
an
d
w
it
h
S
N
3
th
e
c
h
o
s
e
n
s
etti
n
g
is
t
h
e
o
n
e
w
h
ic
h
is
u
se
d
b
y
co
m
m
o
n
L
o
R
aW
A
N
d
ep
lo
y
m
en
ts
[
9
]
.
T
ab
le
3
b
elo
w
s
h
o
w
s
th
e
m
aj
o
r
ad
j
u
s
t
m
en
t
t
h
at
h
a
d
b
ee
n
m
ad
e
to
t
h
e
s
i
m
u
lato
r
in
c
lu
d
i
n
g
j
u
s
ti
f
icati
o
n
to
th
e
alter
atio
n
.
T
ab
le
3
.
C
h
an
g
e
s
m
ad
e
to
th
e
s
i
m
u
lato
r
T
o
d
escr
ib
e
th
e
p
ath
lo
s
s
m
o
d
el
in
a
b
u
ilt
u
p
ar
ea
,
w
e
c
h
o
o
s
e
to
u
s
e
th
e
lo
g
-
d
is
ta
n
ce
p
ath
l
o
s
s
m
o
d
el
b
ec
au
s
e
it
is
co
m
m
o
n
l
y
u
s
ed
in
f
r
ee
s
p
ac
e
ar
ea
.
I
t
m
atc
h
es
w
it
h
L
o
R
a
en
v
ir
o
n
m
e
n
t
w
h
er
e
L
o
R
a
tech
n
o
lo
g
y
clai
m
ed
to
b
e
u
s
ed
in
b
u
ilt
-
u
p
ar
ea
,
f
r
ee
s
p
ac
e
an
d
lar
g
er
ar
ea
.
B
elo
w
i
s
th
e
lo
g
-
d
i
s
tan
ce
p
a
th
lo
s
s
eq
u
atio
n
:
L
p
l(
d
)
=
L
p
l(
d
0
)
+
1
0
n
lo
g
(
d
/d
0
)
+
σ
SF
w
h
er
e,
L
p
l(
d
)
: th
e
p
ath
lo
s
s
in
d
B
,
L
p
l(
d
0
)
: th
e
m
ea
n
p
ath
lo
s
s
at
t
h
e
r
ef
e
r
en
ce
d
is
tan
ce
d
0
,
n
: th
e
p
ath
lo
s
s
ex
p
o
n
e
n
t,
σ
SF
~
N
(
0
; σ
2
)
:
th
e
n
o
r
m
al
d
is
tr
ib
u
tio
n
w
i
t
h
ze
r
o
m
ea
n
,
σ
2
is
t
h
e
v
ar
ia
n
ce
to
ac
co
u
n
t
f
o
r
s
h
ad
o
w
i
n
g
ef
f
ec
t
[
8
]
.
3
.
1
.
Resea
rc
h M
et
ho
d
Firstl
y
,
s
ev
e
n
tr
ial
h
av
e
b
ee
n
co
n
d
u
cted
u
s
in
g
th
e
s
a
m
e
s
ett
in
g
w
i
th
d
i
f
f
er
in
g
th
e
n
u
m
b
er
o
f
s
in
k
s
in
ev
er
y
r
u
n
.
T
h
e
s
en
s
o
r
n
o
d
es
w
er
e
p
lace
d
co
r
r
esp
o
n
d
in
g
to
th
e
s
m
ar
t
cit
y
en
v
ir
o
n
m
e
n
t.
T
o
tal
o
f
1
2
0
0
s
en
s
o
r
n
o
d
es
w
er
e
d
is
tr
ib
u
te
i
n
to
t
h
r
ee
clu
tter
s
w
i
th
4
0
0
s
en
s
o
r
n
o
d
es
in
ev
er
y
clu
tter
.
T
h
e
r
em
ai
n
in
g
4
0
0
s
en
s
o
r
n
o
d
es
w
a
s
d
is
tr
ib
u
ted
s
ca
t
ter
ed
in
s
id
e
th
e
s
ca
le.
T
h
e
n
u
m
b
e
r
o
f
s
in
k
s
o
r
b
ase
s
tatio
n
s
w
e
in
cr
ea
s
ed
in
e
v
er
y
tr
ial
an
d
ev
er
y
e
x
p
er
i
m
e
n
t
s
e
t.
T
h
er
e
ar
e
f
i
v
e
s
et
s
o
f
e
x
p
er
i
m
en
ts
a
n
d
ea
c
h
e
x
p
er
i
m
e
n
t
co
n
s
i
s
ts
o
f
s
e
v
e
n
tr
ials
.
E
v
er
y
e
x
p
er
i
m
e
n
t
h
as d
i
f
f
er
en
t set
tin
g
s
i
m
p
le
m
e
n
ted
w
h
ic
h
w
er
e:
Ta
b
le
4
.
E
x
p
er
im
e
n
ts
’
Setti
n
g
s
[
8
]
Ex
p
.
S
p
r
e
a
d
i
n
g
F
a
c
t
o
r
,
S
F
B
a
n
d
w
i
d
t
h
,
BW
C
o
d
i
n
g
R
a
t
e
,
C
R
D
e
t
a
i
l
s
0
12
1
2
5
4
/
8
S
e
t
t
i
n
g
s w
i
t
h
sl
o
w
e
st
d
a
t
a
r
a
t
e
1
12
1
2
5
4
/
8
S
a
me
w
i
t
h
Ex
p
.
0
b
u
t
u
se
a
r
a
n
d
o
m
c
h
o
i
c
e
o
f
3
t
r
a
n
sm
i
t
f
r
e
q
u
e
n
c
i
e
s
2
6
5
0
0
4
/
5
S
e
t
t
i
n
g
s w
i
t
h
f
a
st
e
st
d
a
t
a
r
a
t
e
3
12
1
2
5
4
/
5
S
e
t
t
i
n
g
s
a
s
d
e
f
i
n
e
d
i
n
L
o
R
a
W
A
N
4
6
o
r
1
2
1
2
5
o
r
5
0
0
4
/
5
o
r
4
/
8
O
p
t
i
mi
z
e
t
h
e
se
t
t
i
n
g
p
e
r
n
o
d
e
a
n
d
t
r
a
n
smit
p
o
w
e
r
b
a
se
d
o
n
d
i
st
a
n
c
e
f
r
o
m g
a
t
e
w
a
y
.
Oth
er
t
h
a
n
t
h
at,
t
h
e
tr
ial
s
co
r
r
esp
o
n
d
to
s
e
v
en
d
i
f
f
er
en
t
p
lace
m
en
ts
o
f
b
ase
s
tatio
n
s
w
h
ic
h
ar
e
o
n
e
,
t
w
o
,
t
h
r
ee
,
f
o
u
r
,
s
i
x
,
eig
h
t,
a
n
d
2
4
.
I
n
th
e
f
ir
s
t
s
et
o
f
ex
p
er
i
m
en
ts
w
e
e
v
al
u
ate
th
e
s
ta
n
d
ar
d
ca
p
ac
ity
o
f
L
o
R
a
u
s
i
n
g
a
s
i
m
p
le
s
et
u
p
w
h
er
e
N
n
o
d
es
tr
an
s
m
it
to
o
n
e
s
in
k
.
I
n
th
ese
e
x
p
er
i
m
e
n
ts
,
s
ta
n
d
ar
d
ized
tr
an
s
m
i
tter
co
n
f
i
g
u
r
atio
n
s
et
S
N
=
{T
P
,
C
F,
SF
,
B
W
,
C
R
}
w
ill
b
e
u
s
ed
(
s
ee
T
ab
le
4
f
o
r
d
ef
i
n
it
io
n
o
f
a
ir
in
ter
f
ac
e
p
ar
am
eter
s
)
.
N
o
.
S
e
t
t
i
n
g
s
O
r
i
g
i
n
a
l
s
i
mu
l
a
t
o
r
A
l
t
e
r
a
t
i
o
n
Ju
st
i
f
i
c
a
t
i
o
n
1.
M
i
n
i
m
u
m
S
e
n
si
t
i
v
i
t
y
S
e
e
T
a
b
l
e
I
I
[
8
]
M
o
d
i
f
i
e
d
a
c
c
o
r
d
i
n
g
t
h
e
mo
d
e
l
i
n
[
9
]
A
s me
n
t
i
o
n
e
d
e
a
r
l
i
e
r
i
n
t
h
e
me
t
h
o
d
o
l
o
g
y
se
c
t
i
o
n
2.
S
h
a
d
o
w
i
n
g
e
f
f
e
c
t
N
o
n
e
A
d
d
e
d
t
o
t
h
e
si
mu
l
a
t
o
r
w
i
t
h
i
n
p
u
t
p
a
r
a
me
t
e
r
s
d
e
r
i
v
e
d
f
r
o
m
[
9
]
A
d
d
i
n
g
t
h
e
s
h
a
d
o
w
i
n
g
e
f
f
e
c
t
w
i
l
l
g
i
v
e
t
h
e
r
e
a
l
i
st
i
c
o
u
t
p
u
t
w
i
t
h
r
e
g
a
r
d
s
t
o
t
h
e
e
n
v
i
r
o
n
me
n
t
r
a
t
h
e
r
t
h
a
n
i
d
e
a
l
c
a
se
o
n
l
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l
.
10
,
No
.
1
,
A
p
r
il
2
0
1
8
:
21
4
–
2
2
3
218
T
ab
le
5
.
E
x
p
er
im
e
n
ts
’
Set o
f
P
ar
am
eter
s
[
8
]
P
a
r
a
me
t
e
r
S
N
1
S
N
2
S
N
3
S
p
r
e
a
d
i
n
g
F
a
c
t
o
r
,
S
F
12
6
12
C
a
r
r
i
e
r
F
r
e
q
u
e
n
c
y
,
C
F
8
6
8
8
6
8
8
6
8
T
r
a
n
smit
P
o
w
e
r
,
T
P
14
14
14
B
a
n
d
w
i
d
t
h
,
B
W
1
2
5
5
0
0
1
2
5
C
o
d
i
n
g
R
a
t
e
,
C
R
4
/
8
4
/
5
4
/
5
Fig
u
r
es
3
s
h
o
w
t
h
e
p
lace
m
e
n
t
o
f
s
en
s
o
r
n
o
d
es a
n
d
b
ase
s
tati
o
n
s
f
o
r
clu
tter
d
is
tr
ib
u
tio
n
.
Fig
u
r
e
3
.
T
h
e
n
u
m
b
er
o
f
s
i
n
k
i
s
1
,
an
d
th
e
n
u
m
b
er
o
f
n
o
d
es a
r
e
1
6
0
0
Fig
u
r
e
4
.
T
h
e
n
u
m
b
er
o
f
s
i
n
k
i
s
2
,
an
d
th
e
n
u
m
b
er
o
f
n
o
d
es a
r
e
1
6
0
0
Fig
u
r
e
5
.
T
h
e
n
u
m
b
er
o
f
s
i
n
k
i
s
3
,
an
d
th
e
n
u
m
b
er
o
f
n
o
d
es a
r
e
1
6
0
0
Fig
u
r
e
6
.
T
h
e
n
u
m
b
er
o
f
s
i
n
k
i
s
4
,
an
d
th
e
n
u
m
b
er
o
f
n
o
d
es a
r
e
1
6
0
0
Fig
u
r
e
7
.
T
h
e
n
u
m
b
er
o
f
s
i
n
k
i
s
6
,
an
d
th
e
n
u
m
b
er
o
f
n
o
d
es a
r
e
1
6
0
0
Fig
u
r
e
8
.
T
h
e
n
u
m
b
er
o
f
s
i
n
k
i
s
8
,
an
d
th
e
n
u
m
b
er
o
f
n
o
d
es a
r
e
1
6
0
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
C
lu
tter
ed
Tr
a
ff
ic
Dis
t
r
ib
u
tio
n
in
Lo
R
a
LPW
A
N
(
N
u
r
A
is
h
a
h
B
t.
Za
in
a
l)
219
Fig
u
r
e
9
.
T
h
e
n
u
m
b
er
o
f
s
i
n
k
i
s
2
4
,
an
d
th
e
n
u
m
b
er
o
f
n
o
d
es
ar
e
1
6
0
0
T
h
e
r
esu
lts
o
f
t
h
e
ab
o
v
e
ex
p
er
i
m
e
n
ts
co
n
s
i
s
t o
f
t
w
o
d
if
f
er
en
t
p
ar
am
eter
s
.
First
l
y
,
w
e
w
an
t
t
o
id
en
tify
th
e
n
u
m
b
er
o
f
co
n
n
ec
ted
n
o
d
e
s
.
Seco
n
d
l
y
,
w
e
w
an
t
to
in
v
est
ig
ate
t
h
e
S
h
ad
o
w
i
n
g
E
f
f
ec
t o
n
th
e
n
u
m
b
er
o
f
lo
s
t
p
ac
k
ets
f
r
o
m
all
3
5
o
u
tp
u
t
s
we
g
o
t
f
r
o
m
s
e
v
e
n
tr
ial
s
f
o
r
ev
e
r
y
e
x
p
er
i
m
e
n
t.
Fi
n
all
y
,
w
e
w
a
n
t
to
s
ee
th
e
E
f
f
ec
t
o
f
S
h
ad
o
w
i
n
g
o
n
th
e
Data
T
h
r
o
u
g
h
p
u
t
w
h
ich
ar
e
co
n
s
is
t
s
o
f
Data
E
x
tr
ac
tio
n
R
ate
(
DE
R
)
,
Data
E
x
tr
ac
tio
n
R
ate
(
DE
R
)
;
is
th
e
r
atio
o
f
r
ec
eiv
ed
m
es
s
ag
e
s
to
s
en
d
m
es
s
a
g
es
o
v
er
p
er
io
d
.
T
h
e
ac
h
iev
ab
le
is
d
ep
en
d
in
g
o
n
th
e
n
u
m
b
er
,
p
o
s
itio
n
an
d
b
eh
a
v
io
r
o
f
L
o
R
a
s
e
n
s
o
r
n
o
d
es
a
n
d
g
ate
w
a
y
s
w
h
ich
i
s
d
ef
i
n
ed
b
y
SN,
M
a
n
d
N
an
d
its
v
alu
e
is
b
et
w
ee
n
0
an
d
1
.
T
h
e
m
o
r
e
e
f
f
ec
ti
v
e
L
o
R
a
d
ep
lo
y
m
e
n
t
is
t
h
e
r
ea
d
in
g
w
h
ic
h
is
clo
s
er
to
1
an
d
v
ice
v
er
s
a.
[
8
]
T
h
e
m
etr
ic
is
lo
o
k
in
g
at
th
e
n
et
w
o
r
k
d
ep
lo
y
m
e
n
t
an
d
n
o
t
r
ec
o
r
d
in
g
th
e
in
d
i
v
id
u
al
n
o
d
e
p
er
f
o
r
m
a
n
ce
.
th
e
n
u
m
b
er
o
f
r
ec
eiv
e
p
ac
k
ets,
co
llid
ed
p
ac
k
ets
an
d
s
e
n
t
p
ac
k
ets.
Ou
r
r
es
u
lt
s
w
i
ll
b
e
co
m
p
ar
ed
to
clu
tter
ed
d
is
tr
ib
u
tio
n
(
w
it
h
o
u
t
ef
f
ec
t
o
f
S
h
ad
o
w
i
n
g
)
r
esu
lt
a
n
d
f
r
o
m
t
h
at,
w
e
w
i
ll
co
m
e
o
u
t
w
it
h
t
h
e
co
n
clu
s
io
n
f
o
r
th
is
r
esear
c
h
.
All th
e
d
is
c
u
s
s
io
n
o
f
t
h
e
r
es
u
lts
w
il
l b
e
av
ailab
le
in
t
h
e
n
ex
t
s
e
ctio
n
.
4.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
R
es
u
lts
o
f
t
h
e
ex
p
er
i
m
e
n
t
s
co
n
s
is
ts
o
f
v
ar
io
u
s
p
ar
t,
w
h
ic
h
w
er
e;
f
ir
s
tl
y
,
Nu
m
b
er
o
f
C
o
n
n
ec
ted
No
d
es
.
S
ec
o
n
d
l
y
,
S
h
ad
o
w
i
n
g
E
f
f
ec
t
o
n
t
h
e
Nu
m
b
er
o
f
L
o
s
t
P
ac
k
et
s
.
T
h
ese
r
e
s
u
lt
s
w
er
e
r
ep
o
r
ted
in
[
1
0
]
.
T
h
ir
d
ly
,
th
e
Da
ta
T
h
r
o
u
g
h
p
u
t
4
.
1
.
Nu
m
ber
o
f
Co
nn
ec
t
ed
No
de
s
T
h
is
s
ec
tio
n
p
r
esen
t
s
t
h
e
e
f
f
ec
t o
f
s
h
ad
o
w
i
n
g
o
n
t
h
e
n
u
m
b
er
o
f
co
n
n
ec
ted
(
co
v
er
ed
)
n
o
d
es.
Fro
m
t
h
e
r
esu
lt
s
p
r
esen
ted
in
F
i
g
u
r
es
1
0
an
d
1
1
,
th
er
e
ar
e
n
o
m
u
ch
d
if
f
er
e
n
ce
s
b
et
w
ee
n
th
e
t
w
o
r
esu
lt
s
w
h
ich
w
er
e
w
it
h
o
u
t
ap
p
l
y
i
n
g
t
h
e
s
h
ad
o
w
i
n
g
ef
f
ec
t
an
d
w
i
th
ap
p
l
y
i
n
g
t
h
e
s
h
ad
o
w
in
g
e
f
f
ec
t.
A
l
s
o
,
th
e
r
esu
lt
s
h
o
w
s
th
e
n
u
m
b
er
o
f
s
en
s
o
r
n
o
d
es
co
v
er
ed
w
er
e
in
cr
ea
s
e
g
r
ad
u
al
l
y
as
th
e
n
u
m
b
er
o
f
s
i
n
k
s
in
cr
ea
s
e.
I
t
is
tr
u
e
b
ec
au
s
e,
as
t
h
e
n
u
m
b
er
o
f
s
i
n
k
s
in
cr
ea
s
e,
th
e
n
o
d
es
tr
ied
to
r
ea
ch
e
ith
er
o
n
e
o
f
th
e
s
i
n
k
s
s
o
t
h
at
it
ca
n
tr
a
n
s
f
er
t
h
e
p
ac
k
ets d
ir
ec
tl
y
to
t
h
e
s
i
n
k
s
.
Fig
u
r
e
1
0
.
Nu
m
b
er
o
f
C
o
n
n
ec
ted
No
d
es
w
it
h
o
u
t
S
h
ad
o
w
in
g
E
f
f
ec
t
962
1329
1351
1577
1594
1598
1600
964
1330
1359
1580
1591
1598
1600
942
1323
1352
1572
1591
1598
1600
968
1343
1356
1576
1591
1598
1600
943
1340
1351
1579
1594
1599
1600
1
2
3
4
6
8
24
N
o
o
f
s
i
n
ks
N
U
M
B
E
R
OF
N
O
D
E
S
C
O
V
E
R
E
D
E
x
p
0
E
x
p
1
E
x
p
2
E
x
p
3
E
x
p
4
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l
.
10
,
No
.
1
,
A
p
r
il
2
0
1
8
:
21
4
–
2
2
3
220
Fig
u
r
e
1
1
.
Nu
m
b
er
o
f
C
o
n
n
ec
ted
No
d
es
w
it
h
Sh
ad
o
w
i
n
g
E
f
f
ec
t
4
.
2
.
Sh
a
do
w
ing
E
f
f
ec
t
o
n t
he
Num
b
er
o
f
L
o
s
t
P
a
ck
et
s
T
h
is
s
ec
tio
n
p
r
esen
t
s
t
h
e
ef
f
e
ct
o
f
c
h
an
n
el
s
h
ad
o
w
i
n
g
o
n
t
h
e
n
u
m
b
er
o
f
lo
s
t
p
ac
k
et
s
.
B
ased
o
n
t
h
e
r
esu
lt
ab
o
v
e
in
F
ig
u
r
es
1
2
an
d
1
3
,
w
it
h
th
e
s
h
ad
o
w
in
g
ef
f
e
ct,
th
e
p
ac
k
et
lo
s
t
w
er
e
in
cr
ea
s
in
g
as
t
h
e
n
u
m
b
er
o
f
s
i
n
k
s
i
n
cr
ea
s
e.
I
t
is
b
ec
au
s
e,
th
e
s
e
n
s
o
r
n
o
d
es
tr
ied
to
r
ea
ch
ea
ch
o
n
e
o
f
th
e
s
i
n
k
s
to
t
r
an
s
f
er
th
e
p
ac
k
ets,
w
h
ic
h
lead
s
to
g
r
ea
ter
lo
s
s
in
th
e
p
ac
k
et
tr
a
n
s
f
er
.
W
ith
o
u
t
s
h
ad
o
w
i
n
g
e
f
f
ec
t,
t
h
er
e
w
er
e
n
o
m
u
ch
d
if
f
er
en
ce
s
in
ter
m
s
o
f
lo
s
t p
ac
k
e
ts
t
h
at
we
h
ad
id
en
ti
f
ied
f
r
o
m
t
h
e
ex
p
e
r
i
m
en
ts
co
n
d
u
c
ted
.
Fig
u
r
e
1
2
.
Nu
m
b
er
o
f
lo
s
t p
ac
k
ets
w
i
th
o
u
t
s
h
ad
o
w
i
n
g
961
1339
1371
1579
1594
1599
1600
754
1130
1417
1584
1588
1600
1600
961
1327
1368
1575
1588
1597
1600
965
1326
1361
1571
1590
1600
1600
964
1327
1352
1580
1595
1599
1600
1
2
3
4
6
8
24
N
o
o
f
s
i
n
ks
N
U
M
B
E
R
OF
N
O
D
E
S
C
O
V
E
R
E
D
E
x
p
0
E
x
p
1
E
x
p
2
E
x
p
3
E
x
p
4
2162
3061
3043
3368
3434
3527
3570
2272
3017
2947
3378
3498
3554
3660
2366
3069
3123
3379
3540
3539
3602
2338
2997
3049
3437
3423
3565
3618
2404
2973
2992
3408
3572
3485
3591
1
2
3
4
6
8
24
N
o
. o
f
S
i
n
ks
N
O
O
F
L
O
S
T
P
A
C
K
E
T
S
F
O
R
C
L
U
T
T
E
R
D
I
S
T
R
I
B
U
T
I
O
N
E
x
p
0
E
x
p
1
E
x
p
2
E
x
p
3
E
x
p
4
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
C
lu
tter
ed
Tr
a
ff
ic
Dis
t
r
ib
u
tio
n
in
Lo
R
a
LPW
A
N
(
N
u
r
A
is
h
a
h
B
t.
Za
in
a
l)
221
Fig
u
r
e
1
3
.
Nu
m
b
er
o
f
lo
s
t p
ac
k
ets d
u
e
to
s
h
ad
o
w
in
g
4
.
3
.
E
f
f
ec
t
o
f
Sh
a
do
w
ing
o
n Da
t
a
T
hro
ug
hp
ut
T
h
is
s
ec
tio
n
p
r
esen
ts
t
h
e
ch
an
n
el
s
h
ad
o
w
in
g
ef
f
ec
t
o
n
t
h
e
lin
k
th
r
o
u
g
h
p
u
t.
Fro
m
th
e
r
esu
lts
p
r
esen
ted
in
F
i
g
u
r
es
1
4
an
d
1
5
,
o
n
e
ca
n
d
ed
u
ce
th
at
t
h
e
ef
f
e
ct
o
f
s
h
ad
o
w
i
n
g
o
n
th
e
c
h
a
n
n
e
l th
r
o
u
g
h
p
u
t c
an
b
e
m
iti
g
ated
b
y
i
n
cr
ea
s
i
n
g
t
h
e
n
u
m
b
er
o
f
s
i
n
k
s
i
n
t
h
e
n
e
t
w
o
r
k
.
T
h
is
s
tr
o
n
g
l
y
r
e
f
lecte
d
i
n
t
h
e
r
ec
eiv
ed
,
s
en
t
an
d
co
llid
ed
p
ac
k
ets s
tatis
t
ics b
elo
w
i
n
F
i
g
u
r
es 1
6
,
1
7
an
d
1
8.
Fig
u
r
e
1
4
.
C
h
an
n
el
T
h
r
o
u
g
h
p
u
t D
e
g
r
ad
atio
n
w
it
h
o
u
t t
h
e
ef
f
ec
t o
f
Sh
ad
o
w
i
n
g
2257
2964
2992
3400
3523
3557
3600
2236
3036
3037
3412
3511
3522
3490
2322
3109
3000
3392
3500
3466
3559
2386
2944
2991
3487
3540
3476
3672
2315
2986
3045
3369
3531
3517
3674
1
2
3
4
6
8
24
N
o
o
f
s
i
n
ks
N
O
O
F
L
O
S
T
P
A
C
K
E
T
S
F
O
R
C
L
U
T
T
E
R
D
I
S
T
R
I
B
U
T
I
O
N
E
x
p
0
E
x
p
1
E
x
p
2
E
x
p
3
E
x
p
4
0.07
12
0.19
47
0.24
31
0.43
43
0.50
72
0.55
72
0.72
7
0.29
08
0.50
76
0.60
84
0.77
21
0.85
57
0.907
8
0.99
15
0.58
72
0.82
5
0.84
28
0.97
79
0.99
07
0.99
65
0.99
77
0.56
78
0.80
67
0.83
62
0.97
64
0.99
29
0.99
74
1
0.56
12
0.81
66
0.84
06
0.983
1
0.99
42
0.99
82
1
1
2
3
4
6
8
24
N
o
. o
f
S
i
n
ks
C
H
A
N
N
E
L
T
H
R
O
U
G
H
P
U
T
F
O
R
C
L
U
T
T
E
R
D
I
S
T
R
I
B
U
T
I
O
N
E
x
p
0
E
x
p
1
E
x
p
2
E
x
p
3
E
x
p
4
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l
.
10
,
No
.
1
,
A
p
r
il
2
0
1
8
:
21
4
–
2
2
3
222
Fig
u
r
e
1
5
.
C
h
an
n
el
T
h
r
o
u
g
h
p
u
t D
e
g
r
ad
atio
n
b
ec
au
s
e
o
f
Sh
a
d
o
w
in
g
Fig
u
r
e
1
6
.
Nu
m
b
er
o
f
r
ec
ei
v
e
p
ac
k
ets d
u
e
to
th
e
Sh
ad
o
w
i
n
g
Fig
u
r
e
1
7
.
Nu
m
b
er
o
f
co
llid
ed
p
ac
k
ets b
ec
au
s
e
o
f
Sh
ad
o
w
i
n
g
0.07
5
0.18
5
0.24
7
0.43
8
0.50
1
0.55
0.72
4
0.29
0.49
5
0.60
6
0.78
2
0.86
3
0.90
5
0.99
0.59
2
0.82
0.85
0.98
0.98
9
0.99
6
0.99
8
0.56
3
0.81
3
0.84
2
0.97
4
0.99
2
0.99
9
1
0.57
1
0.81
5
0.844
0.982
0.995
0.998
0.999
1
2
3
4
6
8
24
N
o
o
f
s
i
n
ks
C
H
A
N
N
E
L
T
H
R
O
U
G
H
P
U
T
F
O
R
C
L
U
T
T
E
R
D
I
S
T
R
I
B
U
T
I
O
N
E
x
p
0
E
x
p
1
E
x
p
2
E
x
p
3
E
x
p
4
424
1062
1424
2533
2889
3182
4123
1654
2847
3521
4476
4994
5227
5504
3398
4799
4886
5595
5686
5635
5627
3281
4611
4789
5675
5783
5663
5784
3293
4704
4918
5606
5758
5703
5795
1
2
3
4
6
8
24
N
o
o
f
s
i
n
ks
N
U
M
B
E
R
O
F
R
E
C
E
I
V
E
P
A
C
K
E
T
S
F
O
R
C
L
U
T
T
E
R
D
I
S
T
R
I
B
U
T
I
O
N
E
x
p
0
E
x
p
1
E
x
p
2
E
x
p
3
E
x
p
4
2967
4464
6564
6549
9218
12226
34309
1808
2368
3628
3177
4798
6362
17154
23
25
47
52
85
104
274
157
132
142
181
201
204
620
158
124
124
150
175
222
691
1
2
3
4
6
8
24
N
o
o
f
s
i
n
ks
N
U
M
B
E
R
O
F
C
O
L
L
I
D
E
D
P
A
C
K
E
T
S
F
O
R
C
L
U
T
T
E
R
D
I
S
T
R
I
B
U
T
I
O
N
E
x
p
0
E
x
p
1
E
x
p
2
E
x
p
3
E
x
p
4
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
C
lu
tter
ed
Tr
a
ff
ic
Dis
t
r
ib
u
tio
n
in
Lo
R
a
LPW
A
N
(
N
u
r
A
is
h
a
h
B
t.
Za
in
a
l)
223
Fig
u
r
e
1
5
.
Nu
m
b
er
o
f
s
e
n
t p
ac
k
ets d
u
e
to
S
h
ad
o
w
in
g
5.
CO
NCLU
SI
O
N
T
h
e
r
esear
ch
s
h
o
w
s
t
h
at
b
y
ap
p
ly
i
n
g
t
h
e
s
h
ad
o
w
i
n
g
e
f
f
e
ct,
o
n
l
y
5
0
%
o
f
t
h
e
s
en
s
o
r
n
o
d
es
w
er
e
co
n
n
ec
ted
at
an
y
m
o
m
e
n
t
w
h
ile
th
is
p
er
ce
n
ta
g
e
h
as
i
n
cr
ea
s
ed
g
r
ad
u
all
y
a
s
th
e
n
u
m
b
er
o
f
s
in
k
s
in
cr
ea
s
ed
.
A
l
s
o
,
th
er
e
ar
e
n
o
m
u
ch
d
i
f
f
er
en
ce
s
i
n
o
u
tp
u
t
g
at
h
er
ed
if
w
e
ar
e
ap
p
ly
in
g
o
r
w
e
n
o
t
ap
p
l
y
i
n
g
t
h
e
S
h
ad
o
w
in
g
E
f
f
ec
t to
th
e
n
e
t
w
o
r
k
.
Sh
ad
o
w
in
g
e
f
f
ec
t
p
la
y
s
a
co
n
s
id
er
ab
le
r
o
le
in
d
eter
m
i
n
in
g
t
h
e
o
v
er
all
n
et
w
o
r
k
p
er
f
o
r
m
a
n
c
e
o
f
L
o
R
a
L
P
W
A
N.
Ma
la
y
s
ian
s
m
ar
t
ci
t
y
e
n
v
ir
o
n
m
e
n
t
i
s
r
ic
h
w
it
h
s
h
ad
o
w
i
n
g
cl
u
tter
s
u
c
h
as
j
u
n
g
le
a
n
d
f
o
lia
g
e
i
n
o
f
f
ice
an
d
r
es
id
en
tial
ar
ea
s
.
T
h
is
ce
r
tain
l
y
p
la
y
s
a
m
aj
o
r
r
o
l
e
in
li
m
iti
n
g
t
h
e
n
et
w
o
r
k
co
v
e
r
ag
e
an
d
co
n
ti
n
u
o
u
s
co
n
n
ec
ti
v
it
y
.
Hen
ce
,
ca
r
e
f
u
l c
o
n
s
id
er
atio
n
is
n
ec
es
s
ar
y
i
n
n
e
t
w
o
r
k
p
la
n
n
in
g
an
d
tr
an
s
m
it p
o
w
er
b
u
d
g
eti
n
g
.
ACK
NO
WL
E
D
G
E
M
E
NT
T
h
is
w
o
r
k
i
s
s
u
p
p
o
r
ted
b
y
I
n
te
r
n
atio
n
al
I
s
la
m
ic
U
n
i
v
er
s
it
y
Ma
la
y
s
ia
Gr
an
t N
o
.
R
I
GS1
6
-
3
6
2
-
0526.
RE
F
E
R
E
NC
E
S
[1
]
I
.
Ca
th
e
rin
e
,
e
t
a
l.
,
“
Re
p
o
r
t
Co
m
p
a
riso
n
o
f
w
irele
ss
tec
h
n
iq
u
e
s,” 2
0
1
7
.
[2
]
P
a
sc
a
l
T
.
,
e
t
a
l
.
,
“
L
o
w
-
P
o
w
e
r
W
i
d
e
-
A
re
a
N
e
t
w
o
rk
s at t
h
e
IET
F
,
”
IEE
E
Co
mm
u
n
.
S
t
a
n
d
.
M
a
g
.
,
p
p
.
7
6
–
7
9
,
2
0
1
7
.
[3
]
O.
G
e
o
rg
io
u
a
n
d
U.
Ra
z
a
,
“
L
o
w
P
o
w
e
r
W
id
e
A
re
a
N
e
t
w
o
rk
A
n
a
ly
sis:
Ca
n
L
o
Ra
S
c
a
le?
”
v
o
l
/i
ss
u
e
:
2
3
3
7
(
c
)
,
p
p
.
1
–
4
,
2
0
1
6
.
[4
]
“
Ho
m
e
-
T
h
e
T
h
in
g
s Ne
t
w
o
r
k
W
ik
i
,
”
Av
a
il
a
b
le:
h
tt
p
s://
w
ww
.
th
e
th
in
g
sn
e
tw
o
rk
.
o
rg
/
w
ik
i/
L
o
Ra
WAN/Ho
m
e
.
[5
]
A
.
F
a
ll
is,
“
L
o
ra
_
F
A
Q,”
v
o
l
/i
ss
u
e
:
53
(
9
)
,
p
p
.
1
6
8
9
–
1
6
9
9
,
2
0
1
3
.
[6
]
A
.
A
u
g
u
stin
,
e
t
a
l.
,
“
A
S
tu
d
y
o
f
L
o
Ra
:
L
o
n
g
Ra
n
g
e
&
L
o
w
P
o
w
e
r
Ne
t
w
o
rk
s
f
o
r
th
e
In
tern
e
t
o
f
T
h
in
g
s,”
S
e
n
so
rs
,
v
o
l
/i
ss
u
e
:
16
(
9
)
,
p
p
.
1
4
6
6
,
2
0
1
6
.
[7
]
D.
Ke
n
d
a
l,
“
T
h
e
L
o
Ra
WA
N
T
M
S
p
e
c
if
ica
ti
o
n
De
v
e
lo
p
m
e
n
ts.
”
[8
]
M
.
C.
B
o
r,
e
t
a
l.
,
“
Do
L
o
Ra
L
o
w
-
Po
we
r
W
id
e
-
Are
a
Ne
two
rk
s
S
c
a
le?
”
P
r
o
c
.
1
9
th
A
CM
In
t.
C
o
n
f
.
M
o
d
e
l.
A
n
a
l.
S
im
u
l.
W
irel.
M
o
b
.
S
y
st
.,
p
p
.
5
9
–
6
7
,
2
0
1
6
.
[9
]
J.
P
e
täjä
järv
i,
e
t
a
l.
,
“
On
th
e
c
o
v
e
ra
g
e
o
f
L
PW
ANs:
Ra
n
g
e
e
v
a
lu
a
ti
o
n
a
n
d
c
h
a
n
n
e
l
a
tt
e
n
u
a
ti
o
n
mo
d
e
l
fo
r
L
o
R
a
tec
h
n
o
l
o
g
y
,
”
2
0
1
5
1
4
t
h
In
t.
C
o
n
f
.
IT
S
T
e
le
c
o
m
m
u
n
,
p
p
.
5
5
–
5
9
,
2
0
1
6
.
[1
0
]
Nu
r
A
.
B
t
.
Z
.
,
e
t
a
l.
,
“
S
e
n
so
r
No
d
e
Cl
u
tt
e
r
Distrib
u
ti
o
n
in
L
o
Ra
L
PW
AN,
”
4
t
h
IEE
E
In
t.
Co
n
f
.
o
n
S
m
a
rt
In
stru
m
e
n
tatio
n
,
M
e
a
su
re
m
e
n
t
a
n
d
A
p
p
li
c
a
ti
o
n
s
ICS
IM
A
,
T
h
e
Ev
e
rl
y
P
u
traja
y
a
Ho
tel,
KL
,
M
a
la
y
sia
,
p
p
.
5
5
–
5
9
,
2
0
1
7
.
[1
1
]
M
.
H.
Ha
b
a
e
b
i,
e
t
a
l
.
,
“
Ef
f
e
c
ts
o
f
S
h
a
d
o
w
in
g
o
n
L
o
Ra
L
P
W
A
N
R
a
d
io
L
in
k
s
,”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
E
lec
trica
l
a
n
d
Co
m
p
u
ter
E
n
g
i
n
e
e
rin
g
(
IJ
ECE
)
,
v
o
l/
issu
e
:
7
(6
)
,
p
p
.
2
9
7
0
-
2
9
7
6
,
2
0
1
7
.
5650
5755
5758
5784
5766
5788
5695
5699
5753
5810
5725
5788
5775
5561
5743
5852
5745
5709
5752
5660
5636
5824
5671
5685
5824
5827
5668
5784
5766
5772
5828
5710
5786
5714
5796
1
2
3
4
6
8
24
N
o
o
f
s
i
n
ks
N
U
M
B
E
R
O
F
S
E
N
T
P
A
C
K
E
T
S
F
O
R
C
L
U
T
T
E
R
D
I
S
T
R
I
B
U
T
I
O
N
E
x
p
0
E
x
p
1
E
x
p
2
E
x
p
3
E
x
p
4
Evaluation Warning : The document was created with Spire.PDF for Python.