TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 2, Februa
ry 20
15, pp. 329 ~ 336
DOI: 10.115
9
1
/telkomni
ka.
v
13i2.695
2
329
Re
cei
v
ed
No
vem
ber 2, 20
14; Re
vised
De
cem
ber 2
8
,
2014; Accep
t
ed Jan
uary 1
0
, 2015
A New Ozone Concentration Regulator
Michael Dav
i
d, Ta
y
Ching En Marcus, Maslina Yaa
c
ob, Mohd Rashidi Salim,
Nabiha
h Hus
s
in, Mohd Haniff Ibrahim
*
, Se
v
i
a Mah
d
aliza Idrus,
Nor Hafi
zah
Ngajikin,
Asrul Iz
am
Az
mi
Lig
h
t
w
ave C
o
mmunicati
on R
e
searc
h
Group
, Infocomm Research Al
lia
nce
,
F
a
cult
y
of Elec
trical Eng
i
ne
eri
ng, Univ
ersiti T
e
kno
l
og
i Mal
a
ysia, 813
10 Sku
dai, Joh
o
r, Mal
a
y
s
ia
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: ahan
if@fke.u
tm.m
y
,
bsev
ia
@fke.utm.m
y
,
amdav
id2
@
liv
e.utm.m
y
han
if@fke.utm.m
y
,
mdavi
d2@
live.utm.m
y
A
b
st
r
a
ct
La
boratory de
sign of
an o
z
o
ne
co
nce
n
trati
on re
gul
ator w
h
ich
is bu
il
d
on
the the
o
ry of
contin
uit
y
equ
atio
n for gas flow
in par
alle
l pi
pes in c
onj
unctio
n
w
i
th the o
z
o
ne e
l
i
m
i
nati
on pot
en
tials of an o
z
o
n
e
destructor is pr
esente
d
. At an initia
l oxyg
en flow
rate of
33.33 cm
3
s
-1
, o
z
o
ne conc
entrati
on w
a
s gen
era
t
e
d
and v
a
rie
d
bet
w
een 42
9.30 p
a
rts per
mill
io
n
(pp
m
) to 38
26
.
60 pp
m. Si
mi
l
a
rly at an
initi
a
l
oxyge
n
flow
rate
of 25 c
m
3
s
-1
, o
z
o
n
e
c
onc
entr
a
tion w
a
s
ge
ne
rated a
nd v
a
ri
e
d
betw
e
e
n
3
8
7
.
30 pp
m to 4
4
3
5
.20 p
p
m. Effect
of flow
meter
w
hen the o
z
o
ne conc
entrati
on w
a
s se
t to approx
i
m
ate
100
0 pp
m w
e
r
e
investi
gate
d
and
reporte
d. F
i
n
e
tuni
ng
of th
e
reg
u
lator
is
n
e
cessary
to
e
n
sure
conc
ent
ration
stabi
lity
for l
ong
d
u
ra
tion
exper
imenta
l
w
o
rk.
Ke
y
w
ords
: flow rate, continuity, variable conc
entratio
n
, reg
u
lator, inter
nal
radi
us
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Ozo
ne
appli
c
ation is diverse [1
-8] a
nd t
he requi
rem
e
nt for e
a
ch a
pplication diff
ers from
the othe
r in t
e
rm
s of the
requi
red q
uan
tity. Ozone g
enerators
wh
os
e
output
s a
r
e p
r
op
ortion
al to
the oxygen o
r
air flo
w
rate
input, gen
erates ve
ry
hig
h
amou
nt of
ozo
ne at a l
o
w flow
rate
s [
9
,
10]. The hig
h
e
r the oxyge
n
or ai
r flo
w
rate the lo
wer the amou
nt of ozo
ne g
e
n
e
rated
and vi
ce
versa
[9]. Th
us, it i
s
difficu
lt or
almo
st i
m
possi
bl
e to
obtaine
d lo
wer
co
ncentrati
ons at lo
we
r f
l
ow
rates of
air or oxygen. Inve
stigation
of
sensi
ng
param
eters
su
ch
as re
sp
onse tim
e
which i
s
m
o
re
pron
oun
ce
d a
t
lower flo
w
rates b
e
come
s difficult at lo
wer
co
ncentrations [1
1-1
4
]. In this wo
rk
we
have de
sig
n
e
d
and
develo
ped a
lab
o
rat
o
ry ba
se
d o
z
one
con
c
e
n
tration vari
able
reg
u
lator whi
c
h
transfo
rm
s a
fixed ozo
ne o
u
tput gen
erat
or into
a
vari
able con
c
e
n
tration
ge
nerator with
availa
ble
laboratory e
quipme
n
ts a
nd thus exp
andin
g
the cap
ability and application
s
of an ozo
ne
gene
rato
r su
ch
th
at when
ozo
ne
i
s
gen
erated
at
a lo
w flo
w
rate, v
a
rying
conce
n
tration
s
ca
n
be
obtaine
d by mean
s of the variable o
u
tp
ut regulato
r
.
2. Theore
t
ic
al Backg
rou
nnd and Reg
u
lator Desig
n
Whe
n
a
ga
s flow i
n
a
p
a
rall
el net
wo
rk of
pipe
s a
s
depi
cted i
n
Fi
gure
1,
by
co
ntinu
i
ty [15]
the volume rate of discharge
Q
(c
m
3
/s) i
s
expre
s
s as:
Figure 1. Flow in a parallel
network of pi
pes
(1)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 329 – 336
330
Whe
r
e:
(2)
(3)
(
4
)
Q
= Volume
rate of discharge (cm
3
/s
)
Q
1
= Volume
rate of discha
rge in sectio
n
1 (cm
3
/s)
Q
2
= Volume
rate of discha
rge in sectio
n
2 (cm
3
/s)
V
= Volume o
f
gas with vol
u
me rate of di
scharge of Q
(cm
3
)
V
1
= Volume of gas in secti
on 1(cm
3
)
V
2
= Volume of gas in secti
on 2 (cm
3
)
r
= ra
diu
s
of pipe sectio
n with volume rate of discharge of Q (cm
)
r
1
= radi
us of
pipe sectio
n 1(cm)
r
2
= radi
us of
pipe sectio
n 2; for our de
si
gn r
2
= 0.
3
c
m
L
= length of pipe sectio
n with volume rate of discharge of Q (cm
)
L
1
= length of
pipe se
ction
1; for our de
si
gn L
1
= 45.5
cm
L
2
= length o
f
pipe se
ction
2; for our de
sign L
2
=
97.5 c
m
t
= time (s)
t
1
=
time of flo
w
in s
e
c
t
ion 1 (s
)
t
2
=
time of flo
w
in s
e
c
t
ion 2 (s
)
From e
quatio
n (1) to (4) ab
ove:
.
(
5
)
Figure 2. Block di
agram of
oz
on
e co
nce
n
tration regul
ator
Q
1
or
Q
2
de
pend
s on th
e level of freedom
or re
sista
n
ce to gas flo
w
which i
s
prop
ortio
nal to the length and internal radiu
s
of
the resp
ective pip
e
s [16]. In e
quation 5, wh
en
Q
,
r
1
,
L
1
,
L
2
and
t
2
are kept con
s
tant;
variation of the radiu
s
r
2
(betwe
en 0
and 0.3 cm
)
will
prod
uce a correspon
ding
variation in the amount
of flow both throug
h se
cti
ons 1 a
nd 2
of
Figure 1 an
d
thereby va
rying the valu
e of
Q
1
and
thus
controll
ing the
con
c
entration i
n
the
different
se
ctions of the
sy
stem [15].
T
he impl
ement
ation of th
e said
control fo
r o
z
on
e g
a
s i
s
descri
bed in the block diag
ram of
Figure
2. At lower concentrati
o
n
s requireme
nts, excess ozo
n
e
prod
uced is e
liminated by flowin
g it throu
gh an o
z
on
e destructo
r.
3. Experimental Set-up a
nd Procedur
e
Figure
3
sh
ows
th
e
expe
rime
ntal
setup
of ou
r o
z
o
ne
reg
u
l
a
tor i
n
corp
orated to
an
ozon
e
photomete
r
.
The item
s in
Figure 3
a
r
e
descri
bed
a
s
follows: (1)
O
z
on
e d
e
st
ru
ctor m
ade
in
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A New O
z
on
e Con
c
e
n
trati
on Re
gulato
r
(Michael
Da
vi
d)
331
US by Lon
g
e
vity Reso
urce
s Inc; (2)
A silico
n
tub
e
co
nne
cting
a cont
rol va
lve to the ozone
destructor; (3) A cont
rol
valve that varies the fl
ow of
ozone gas to the
destruct
o
r; (4) A silicone
tube co
nne
cti
ng the control
valve
and a T-conn
ecto
r; (5) O
z
o
ne co
mpatible T
-
co
nne
ctor; (6
) -
A
silicone tu
be
con
n
e
c
ting th
e T-co
nne
cto
r
to a flo
w
m
e
ter; (7
) A
silicone tub
e
con
nectin
g
a
ozo
ne
gene
rato
r ou
tput into the
T-conn
ecto
r; (8) EXT5
0
Ozo
ne g
e
nerato
r
ma
d
e
in the
US
b
y
Long
evity Re
sou
r
ces Inc;
(9) Vinyl tub
e
for
con
nec
tin
g
the flo
w
of
oxygen from
the oxygen
ta
nk
to the ozo
ne
gene
rato
r; (1
0) 22
0V ele
c
tricity su
pply to the ozone g
enerator; (11) 0 to 10 LPM
(0
to 166.67
cm
3
s
-1
) ozone
compatible flo
w
meter; (1
2
)
A silico
ne tube conn
ecti
ng the flow m
e
ter
to ozo
ne mo
nitor; (1
3) 2
B
technol
ogi
es 1
06-M m
odel o
z
on
e
monitor
whi
c
h ca
n mea
s
ure
accurate o
z
o
ne con
c
entrations
between
0 to 100
0 pp
m; (14) USB
cabl
e conn
ecting the monit
o
r
to a laptop co
mputer a
nd (15) A DC so
u
r
ce to p
o
we
r the ozone mo
nitor.
Oxygen ga
s
with a pu
rity of 99.999%
wa
s
delive
r
e
d
at a flow
rate of 33.33
cm
3
s
-1
[2
liters
per min
u
te (LPM
)] t
h
rou
gh
a vin
y
l tubing to t
he EXT50
O
z
on
e ge
ne
rat
o
r. O
z
on
e
was
gene
rated
an
d fed into
the
ozone
monit
o
r at
a flo
w
rate of 3
3
.33
cm
3
s
-1
. Th
e
control valve
wa
s
compl
e
tely locked so that there
wa
s no flow
of ozone
gas to the o
z
one de
stru
cto
r
.
Figure 3. Experime
n
tal set
up of an ozon
e con
c
e
n
trati
on reg
u
lato
r
The o
z
on
e concentratio
n
in ppm
were
ex
tracted f
r
om the mo
ni
tor thro
ugh t
he USB
con
n
e
c
tion to
the laptop.
With the
oz
o
ne ga
s flo
w
in
g at a rate of
33.33
cm
3
s
-1
,
the control v
a
lve
wa
s com
p
let
e
ly opened a
nd ozone flo
w
ed into the
destructo
r an
d the corre
s
p
ondin
g
effect
on
the flow
rate
and th
e con
c
entration
were note
d
an
d
reco
rde
d
. Wit
h
the
aid of t
he
control val
v
e
,
the ozo
ne co
nce
n
tration
was adj
uste
d to approximat
ely 1000 ppm
which
co
rre
spo
n
d
s
to a flow
rate of app
ro
ximately 30.00
cm
3
s
-1
(1.8
LPM). The e
ffect of the flow mete
r on
this adju
s
te
d
con
c
e
n
tration
of 1000 p
p
m
wa
s then i
n
vestigate
d
for a flo
w
rate
betwe
en 16.
67
cm
3
s
-1
(1LPM)
and 1
66.67
cm
3
s
-1
(10 LP
M) at a
ste
p
of 16.67
cm
3
s
-1
or 1
L
PM. T
he enti
r
e p
r
o
c
e
s
s wa
s
re
p
eated
for a
n
initial
oxygen flo
w
rate
of 25
cm
3
s
-1
( 1.5
L
P
M) a
nd th
e
re
sult
s
were
obtain
ed
an
d
anali
s
ed.
4. Results a
nd Discu
ssi
on
Figure 4 sh
o
w
s the m
a
ximum and mi
nimum o
z
on
e
con
c
entratio
n
s in ppm
ob
tained at
an initial
oxygen flo
w
rate
of 33.33
cm
3
s
-1
( Initial
oxygen flo
w
rate
is the
flow rate of oxyge
n
in
the syste
m
b
e
fore th
e o
z
one g
ene
rato
r was
ene
rg
i
s
ed
ele
c
trical
ly). The secti
on 'A' i
s
wh
en
oxygen was fed into the
ozone generator while the
ozone generator was off.
B indicate
s the maximum
ozone
con
c
entration
s 38
26.60 ppm at
an initial oxygen flow
rate of 33.33
cm
3
s
-1
with
the control
valve comple
tely locked t
o
sho
r
t out ozo
ne from t
h
e
destructo
r. C is the lowe
st
ozon
e co
ncentrati
on o
b
tained 4
29.30
ppm, whe
n
the co
ntrol va
lve
wa
s compl
e
tely open
ed t
hus
allo
wing
maximum fl
ow of
ozone
to the de
structor.
Thu
s
,
the
percenta
ge regulatio
n at a flow rate of 3
3
.33cm
3
s
-1
is
in the rang
e o
f
11.22% to 100%.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 329 – 336
332
Figure 4. Maximum and mi
nimum o
z
on
e
con
c
e
n
tration
s
at an oxyge
n
flow rate of
33.33
cm
3
s
-1
(2 LPM)
Figure 5. Effect of flow meter between 3
0
cm
3
s
-
1
to 66.67 cm
3
s
-1
to 16.67cm
3
s
-1
(1.8 to 4 to 1
LPM) of ozo
ne co
ncentrat
i
ons
Figure 6. Effect of flow meter between 1
6
.67
cm
3
s
-1
an
d 116.67 cm
3
s
-1
(1 and 7 LPM
)
of
ozo
ne con
c
e
n
tration
s
Figure 7. Effect of flow meter between 1
16.67
cm
3
s
-1
an
d 166.67 cm
3
s
-1
( 7 and 10 LP
M ) of
ozo
ne con
c
e
n
tration
s
In Figure 5, 6
,
7 and 8 the effect of the
flow mete
r wh
en the ozone
wa
s set to 10
00 ppm
approximatel
y is sho
w
n. T
he con
c
ent
rat
i
ons i
n
p
p
m o
b
tained fo
r o
z
one flo
w
rate
of 16.67
cm
3
s
-1
to 166.67
cm
3
s
-1
(1 to
10
LPM) respe
c
tively are 11
63.60, 10
39.
20, 942.5
0
, 776.10, 7
16.
70,
664.30, 6
15.
20, 590.6
0
and 5
84.50
ppm. Th
us t
he hig
h
e
r
th
e flow
rate
the lower th
e
con
c
e
n
tration
s
, this is de
pi
cted
cle
a
rly i
n
Figu
re
9. F
i
gure
10
is th
e fluctu
ation
s
in p
r
e
s
sure
at
highe
r flow
rates,
which
sho
w
s that
t
he regulat
or is effe
ctive betwee
n
16.67cm
3
s
-1
to
116.67
cm
3
s
-1
(1 to 7
LPM)
sin
c
e the
pre
s
sure i
s
n
o
t l
onge
r abl
e to
su
stain a
ste
ady flow a
s
from
8 LPM
up
wa
rds.
Thi
s
ca
n
also vie
w
ed
in Fi
gure
7. At D in Fi
gu
re
8, the
ozo
ne g
ene
rato
r is
swit
che
d
off and o
z
on
e co
nce
n
tration
b
e
com
e
s
red
u
c
ed to a
pproximately zero. The re
sult
s th
us
obtaine
d are
in agree
me
nt with the theory of ga
s flow in parrallel pipe
s a
s
earli
e sh
o
w
n in
se
ction 2 of this arti
cle.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A New O
z
on
e Con
c
e
n
trati
on Re
gulato
r
(Michael
Da
vi
d)
333
Figure 8. Effect of flow meter between 1
66.67
cm
3
s
-1
an
d 0 cm
3
s
-1
(1
0 an
d 0 LPM) of o
z
on
e
c
o
nc
en
tr
a
t
io
ns
Figure 9. Effect of flow rate
on ozo
ne
c
o
nc
en
tr
a
t
io
ns
Similarly, Fig
u
re 1
1
sho
w
s the maxim
u
m and
mini
mum o
z
on
e
con
c
e
n
tration
s
in p
p
m
obtaine
d at
a
n
initial
oxygen flo
w
rate
of
25.00
cm
3
s
-1
(1 LPM
)
.
The
se
ction
E is
wh
en
oxygen
was fed into t
he ozone
generator
whil
e the oz
one
generator was off. F is the
maximum ozone
con
c
e
n
tration
s
44
35.20
p
p
m at an
o
xygen flow rate of
25 cm
3
s
-1
with the co
ntrol val
v
e
compl
e
tely lo
cked to
sho
r
t
out o
z
one
from the
d
e
st
ructor.
G is th
e lowest o
z
o
ne con
c
ent
ra
tio
n
obtaine
d 387
.30 ppm, wh
en the co
ntro
l valve was completely op
ened thu
s
all
o
win
g
maxim
u
m
flow of
ozone
to the
de
stru
ctor. Simila
rly
,
t
he pe
rcent
age
reg
u
latio
n
at a
flow rat
e
of 2
5
cm
3
s
-1
is
in the rang
e o
f
8.37% to 100%.
Figure 10. Effect of flow rat
e
on the pre
s
sure
of ozon
e ga
s in the gas
cell
Figure 11. Maximun and
Minimum o
z
o
ne
con
c
e
n
tration
s
at an oxyge
n
flow rate of
25.00
cm
3
s
-1
(1.5 LP
M)
The o
z
o
ne
concentratio
n
wa
s a
d
juste
d
to
ap
proxim
ately 1000
p
p
m at a
n
o
z
one flo
w
rate of ap
pro
x
imately 21.67
cm
3
s
-1
(1.3
LPM). In Figu
re 12, 1
3
, 14,
and 15 th
e
effect of the flow
meter
whe
n
the o
z
one
was
set to
10
00 pp
m ap
proximately is
sho
w
n. T
he
con
c
e
n
tration
s
obtaine
d for
16.67
cm
3
s
-1
to 166.67
cm
3
s
-1
(1 to 1
0
L
P
M) are 125
3.30, 1105.5
0
, 976.25, 87
9.50,
783.50, 72
8.00, 663.80, 6
28.60,
589.0
0
and 563.5
0
ppm re
spe
c
t
i
vely. Similarly, the higher the
flow rate the
lower th
e
concentratio
n
s, as
sh
own i
n
Figu
re
16.
Figu
re
17 i
s
the
sho
w
s t
he
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 329 – 336
334
fluctuation
s
i
n
pressu
re a
t
highe
r flow rate
s, at in
innitial oxyge
n
flow
rate o
f
25 cm
3
s
-1
as
comp
ared 33
.33cm
3
s
-1
the
fluctuatio
n i
s
minimal
and
the ga
s
pre
ssure i
n
the
re
g
u
lator
wa
s
ab
le
to su
stain a
steady flo
w
b
e
twee
n 16.6
7
c
m
3
s
-1
to
15
0.0
0
c
m
3
s
-1
(1 t
o
9 LPM
)
, this is
sh
own i
n
Figure 10, flu
c
tuation
s
sets in at 16
6.67
cm
3
s
-1
(1
0 LP
M). At H in
Fi
gure
15, the
ozo
ne g
ene
ra
tor
is switched of
f and o
z
one
concentratio
n
to red
u
ce to
a
pproxim
ately zero. The
re
sults are al
so i
n
agre
e
me
nt wi
th gas flow th
eory in pa
rall
el pipe
s.
Figure 12. Effect of flow m
e
ter between
21.67
cm
3
s
-1
to 83.33 cm
3
s
-1
to 16.67cm
3
s
-1
(1.3
to 5 to 1 LPM) of ozo
ne concentratio
n
s
Figure 13. Effect of flow m
e
ter between
16.67
cm
3
s
-1
to 116.
67cm
3
s
-1
(1 and 7 LPM )
of
ozo
ne con
c
e
n
tration
s
Figure 14. Effect of flow m
e
ter between
116.67 cm
3
s
-1
and16
6.67
cm
3
s
-1
(7 and
10
LPM) of ozo
ne co
ncentrat
i
ons
Figure 15. Effect of flow m
e
ter between
166.67 cm
3
s
-1
and 16.67
cm
3
s
-1
(10 and
0
LPM) of ozon
e con
c
e
n
trati
ons
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A New O
z
on
e Con
c
e
n
trati
on Re
gulato
r
(Michael
Da
vi
d)
335
Figure 16. Effect of flow rat
e
on ozone
c
o
nc
en
tr
a
t
io
ns
Figure 17. Effect of flow rat
e
on the pre
s
sure
of ozon
e ga
s in the gas
cell
5. Conclusio
n
A new o
z
o
n
e
regul
ator h
a
s
be
en de
sig
ned a
nd
buil
d
on the theo
ry of continuit
y
for gas
flow in pa
rall
el pipe
s. The
ozo
ne regul
ator ma
ke
s it p
o
ssible to
ge
nerate va
ryin
g co
ncentrati
ons
of ozone at
different flow rates and thus
providing for maxi
mum flexibility in terms of
con
c
e
n
tration
and flow rates. For
a given flow
rate varying con
c
entration
s
ca
n be obtain
e
d
: at
initial oxygen
flow rate of
25.00 cm
3
s
-1
and
33.3
3
cm
3
s
-1
yields an
ozo
ne flow of
50.00 cm
3
s
-1
(3
LPM)
who
s
e
co
ntration
were
976.2
5
p
p
m an
d 94
2.50 LPM
re
sp
ectively. Similarly a
spe
c
if
ic
con
c
e
n
tration
can al
so b
e
gene
rated
at differ
ent flow rate
s takin
g
the ad
vantage of the
regul
ator: ap
proximately
1000 p
p
m of
ozon
e was
gene
rated
at 21.67 cm
3
s
-1
(1.3 LPM)
and
30.00 cm
3
s
-1
(1.8 LPM) correspon
ding
to
initial oxyge
n
flow
rate
of
25.00
cm
3
s
-1
and
33.33
cm
3
s
-
1
respe
c
tively. Effects
of th
e regulato
r
a
nd th
e
flow meter ha
s
al
so bee
n
te
sted
a
nd ha
s been
found to be satisfa
c
to
ry.
The re
gulato
r
has a ca
pa
bility of varyi
ng co
nc
entra
tions of ozon
es
betwe
en 8.73
% to 100%.
Ackn
o
w
l
e
dg
ements
The autho
rs
woul
d like to than
k Unive
r
si
ti Teknolo
g
i Malaysia (UT
M
) for sp
on
soring thi
s
publi
c
ation
u
nder Research Univ
ersity
Grant (RUG) Schem
e,
gr
a
n
t
no:
0
5
J60 and 04
H35; and
Funda
mental
Rese
arch G
r
ant Sche
me
(FRGS
)
gra
n
t no: 4F317
and 4F565.
The Ministry
of
edu
cation (M
OE) Malaysi
a
is also a
c
kn
owle
dge an
d
the Nigeri
a
n
Education T
r
ust Fu
nd (E
TF)
for the financi
a
l sup
port giv
i
ng inform of
Tertiary Edu
c
ation Tru
s
t F
und (TET
-Fu
nd).
Referen
ces
[1]
W
e
i LS, Yuan
DK, Z
hang
YF
, Hu Z
J
, D
ong GP.
Exp
e
riment
al a
n
d
theoret
ic
al stud
y of ozo
n
e
gen
eratio
n in p
u
lse
d
positiv
e
diel
ectric barr
i
e
r
dischar
ge.
Vacuum
.
201
4; 1
04: 61-4.
[2
]
H
e
l
e
n
o
FF, D
e
Qu
e
i
ro
z MEL
,
N
e
ve
s AA, Fre
i
ta
s R
S
, Fa
ron
i
L
R
A, D
e
Ol
ive
i
ra
AF. Effe
cts o
f
o
z
one
fumigati
on trea
tment on the re
moval of resid
ual dif
enoc
on
a
z
ole from straw
b
erri
es an
d o
n
their qu
alit
y.
Journ
a
l of Envi
ron
m
e
n
tal Scie
nce an
d He
alth
, Part B
. 2014;
49: 94-1
01.
[3]
W
ang
XD,
Lv
Y, Li MM, Li
u
HY. Remov
a
l
of Non
y
l
p
hen
ol
from W
a
ter b
y
Ozone.
Adv
a
n
c
ed Mater
i
al
s
Research
. 20
1
4
; 859: 35
7-60.
[4]
W
ang J, N
i
ng
F
G, Yu W
D
. Effects of Ozone T
r
eatme
nt on W
o
ol M
o
rph
o
lo
g
y
a
n
d
Mecha
n
ic
a
l
Properti
es. Advance
d
Materi
als Res
earch:
T
r
ans
T
e
ch Publ. 201
4; 75-8.
[5]
Raja
M. Surfa
c
e Mo
dificati
o
n
of
Carb
on
Nan
o
tub
e
s
w
i
t
h
C
o
mbi
n
e
d
UV a
nd Oz
on
e T
r
eatments.
F
u
llere
nes, Na
notub
es an
d C
a
rbo
n
Nan
o
structures.
201
5; 23: 11-6.
[6]
Guo W
Q, Yin
RL, Z
hou XJ,
Du JS, Cao HO, Yang
SS, et al. Sulfametho
xa
z
o
l
e
de
grad
ation
b
y
ultraso
und/
ozo
ne o
x
id
atio
n process
in
w
a
ter:
Kin
e
tics, mech
anisms,
an
d
path
w
a
ys. Ultraso
nic
s
sonoc
hemistr
y.
2015; 2
2
: 182-
7.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 329 – 336
336
[7]
Z
hang J, Z
han
g R, Chen
X, T
ong
M, Kang W
,
Guo S, et
al. Simu
lta
neo
us Remov
a
l of NO and SO2
from F
l
ue Gas b
y
Ozon
e Oxid
atio
n an
d
NaOH Absor
p
tion.
Ind
u
strial & Engi
ne
er
ing C
h
e
m
istr
y
Research
. 20
1
4
; 53: 645
0-6.
[8]
Bertol CD, V
i
eira KP,
Rossato
LG, D'Avila JV
.
Microbio
l
o
g
ic
al Env
i
ron
m
ent
al Mo
nitori
ng A
fter the Us
e
of Air Purifier
O
z
o
ne Gen
e
ra
tor
. Ozone: Science & En
gin
e
e
rin
g
. 201
2; 34
: 225-30.
[9]
RESOURCES
L. E
x
t50 Ozo
ne Ge
nerator
220/2
40 V
o
lt
O
w
n
e
rs Ma
nu
al An
d Ozo
n
e
Output T
e
st
Report.
[10]
Hadj
i K, Ponti
ga F
,
Belasr
i
A, Hadj-Z
ia
ne
S, F
e
rnández
-Rue
da
A. Experime
n
tal Stu
d
y
of Ozon
e
Generati
on
b
y
Neg
a
tive
Coro
na D
i
sch
arge
i
n
Mi
xtures
of
N2 a
nd O
2
.
Oz
o
n
e
: Sc
ienc
e
& Engi
ne
erin
g
201
4; 36: 65-7
2
.
[11]
David M, Mar
c
us T
C
E, Yaacob M, Sal
i
m
MR,
Hussin
N
,
Ibrahim MH,
et al. Enh
anc
ement of th
e
Resp
onse time
of a Reflective
T
y
pe Se
nsor for Ozone Mea
s
ureme
n
ts.
Jurnal T
e
kn
olo
g
i.
201
4; 69.
[12]
De M
a
ria
L, B
a
rtales
i D. A
fi
ber-o
ptic mu
lti
s
ensor
s
y
stem
for
pr
edisc
har
ges detecti
on on electric
a
l
equ
ipme
nt.
IEEE Sensors Journal.
201
2; 12
: 207-12.
[13]
T
e
ranishi K, S
h
ima
da Y, Sh
i
m
omura N, Ito
h H. Investig
ati
on of
Ozon
e C
once
n
tratio
n M
easur
ement
b
y
Visibl
e Phot
o Absorpti
on Meth
od.
O
z
o
ne: Sci
ence & En
gin
e
e
rin
g
.
201
3; 35
: 229-39.
[14]
David M, Marc
us T
C
E, Yaacob M, Salim M
R
, Ibrahim MH
, Idrus SM, et
al.
Sensitiv
ity and res
p
o
n
s
e
time of a
n
o
z
o
ne sens
or
. Photonics (ICP). IEEE 4th Internatio
nal Conference on:
IEEE; 2013: 50-2.
[15]
Kumar KL. En
gin
eeri
ng F
l
u
i
d
Mechan
ics.
ERUSIA PUBLI
S
HING HOUSE (P) L
T
D RAM NAGAR,
NEW
DELHI-1
10 05
5. Eight
Revise
d Multic
olo
u
r Editio
n: 4
17-2
3
.
[16]
Çen
gel YA, C
i
m
bal
a JM. F
l
ui
d Mech
anics F
und
ament
als a
nd Ap
plic
atio
n
s
. Chapter
8: F
l
o
w
i
n
Pi
pes.
Publ
ishe
d
b
y
McGra
w
-
Hil
l, a
bus
iness
u
n
it
of T
he McGraw
-
H
il
l C
o
mp
ani
es, Inc, 1
221
Avenu
e
of t
h
e
Americas, Ne
w York, NY 1002
0 Cop
y
r
i
ght ©
2
006 F
i
rst Editi
on 20
06.
Evaluation Warning : The document was created with Spire.PDF for Python.