TELKOM
NIKA
, Vol. 11, No. 5, May 2013, pp. 2574 ~
2582
ISSN: 2302-4
046
2574
Re
cei
v
ed
No
vem
ber 2
7
, 2012; Re
vi
sed
March 13, 20
13; Accepted
March 22, 20
13
Hierarchical Design Method for Micro Device
Zheng Liu
*1
, Hua Chen
2
1
School of Mec
hatron
i
c Eng
i
n
eeri
ng, Xi’a
n T
e
chn
o
lo
gic
a
l U
n
iversit
y
2
Xi’
an T
e
chnol
ogic
a
l Un
iversit
y
Xi
’a
n Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: zheng.l
i
uma
i
l
@
gmai
l.com
A
b
st
r
a
ct
Traditional mask-beginning
design
flow of
m
i
cr
o device
is
unintui
tiv
e
and fussy for des
i
gners. A
hier
archic
al de
sign
meth
od a
nd inv
o
lve
d
ke
y technol
og
ies
for features mapp
ing
proce
d
ure are pr
ese
n
t
ed.
W
i
th the fe
atur
e-bas
ed
desi
g
n fra
m
ew
or
k, the
mo
de
l of
micro d
e
vic
e
is
orga
ni
z
e
d
by
v
a
rio
u
s featur
es
i
n
different des
ig
nin
g
stages, w
h
ich ca
n be c
onverte
d
into
each oth
e
r ba
sed on th
e mapp
ing ru
les.
T
h
e
feature tec
h
n
o
l
ogy is
the
fo
u
ndati
on
of the
three-l
e
vel
des
ign fl
ow
that p
r
ovid
es a
mor
e
efficie
n
t d
e
si
g
n
way. In system lev
e
l, functi
onal features
provide the t
op
lev
e
l
of schematic
and fu
nctional description.
Aft
e
r
the
functio
n
a
l
ma
pp
ing proc
e
dure,
o
n
the other
h
and, para
m
etric desi
gn
f
eatures c
onstr
uct the 3D
mo
del
of micro
dev
ic
e i
n
d
e
vic
e
l
e
v
e
l, w
h
ich
is
ba
sed
on
Hyb
i
rd Mode
l
re
pres
e
n
tation. By me
ans of
co
nstrai
nt
features, the c
o
rresp
ond
in
g r
e
visio
n
ru
les ar
e ap
pli
ed to
th
e rou
gh
mo
de
l
to opti
m
i
z
e
the
origi
n
a
l
structure
.
As a result, the mod
e
l rec
onstructio
n
alg
o
rith
m ma
kes
ben
efit for the mod
e
l revis
i
o
n
and co
nstrai
n
t
features
map
p
i
ng
proc
ess.
Moreov
er, the
formul
a
ting
d
e
scripti
on
of
ma
nufactur
i
ng
features
d
e
ri
vatio
n
provi
des the a
u
tomatic w
a
y for mo
de
l conv
ersio
n
.
Ke
y
w
ords
: mi
cro devic
e, hier
archic
al des
ig
n
,
feature ma
pp
i
ng, mode
l reco
nstruction
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Along with
the devel
opm
ent of micro
devic
e
s
, tra
d
itional ma
sk-b
egin
de
si
gn flow
appe
ars as o
b
sta
c
le to improving d
e
si
g
n
efficien
cy. Espe
cially for surfa
c
e mi
cromachinin
g
, more
layers m
ade
mask de
si
gn bori
ng. In mech
ani
ca
l desig
ning,
feature
s
techn
o
logy bri
ngs
des
igner
s
a
mor
e
intuitive wa
y. The
des
igner
s
ar
e r
e
lieved f
r
om the
fussy c
o
ns
ider
ing of
fabricating issue
s
at the
desig
n stag
e so a
s
to pay more at
tention to the function a
nd
perfo
rman
ce
requi
rem
ents.
In micro d
e
v
ice de
sig
n
in
g, it is ju
st the be
ginni
ng
. MEMS feature
modelin
g te
chniqu
e p
r
ovid
es
a rea
s
on
a
b
le way to
c
o
ns
truc
t the 3D model
more effic
i
ently [1,2]
,
whi
c
h i
s
co
nforma
ble with
the top-d
o
wn de
si
gn m
e
thodol
ogy [3,4]. For me
ch
anical pa
rts,
the
feature
s
are
often de
co
m
posed i
n
to a
set
of
su
b
-
f
eature
s
to
satisfy the
pri
m
itive machi
n
ing
operation
s
[5]. However, fo
r surfa
c
e mi
croma
c
hi
ning,
the de
sign fe
ature
s
a
r
e lia
ble to combin
e
together to construct ma
n
u
facturi
ng fe
ature that
is
orga
nized wit
h
layer. The
more rea
s
on
able
approa
ch
ca
n
be
ch
ara
c
te
rized
bri
e
fly a
s
“fun
cti
on-to
-sh
ape
-to-ma
sk” [6]. T
o
re
alize
the
sh
a
p
e
-
mask app
ro
a
c
h, the “inve
r
se” d
e
si
gn flo
w
pro
b
le
m
s
were studi
ed
as key issue
s
[7]. Other works
accompli
sh
ed
the ma
sk creation
b
y
investigat
i
ng the ve
rti
c
al to
pology
[8] or
gen
etic
algorithm [9].
As mention
e
d
above, efforts have b
e
e
n
m
ade to g
e
t the “functi
on-to
-shap
e-t
o
-ma
s
k”
desi
gn flow.
Ho
wever, be
cause of
the distinct featu
r
e
orientatio
n,
there ha
s b
een
a hindran
ce to
informatio
n flow bet
wee
n
different de
sign
stage
s.
So probl
em
-solvin
g
in i
n
terlin
k bet
ween
variou
s featu
r
es be
com
e
s a critical
problem. Th
e
purp
o
se of t
h
is the
s
i
s
is to create a
n
architectu
re
that combin
e
s
the
feature tec
hnol
ogy with th
e th
ree
-
level d
e
sign fra
m
e
w
ork.
Furthe
rmo
r
e,
the key ena
bl
ing tech
nolo
g
i
es in f
e
a
t
ur
e c
o
n
v
er
s
i
on
ar
e
p
r
esented.
Currently, th
e
method focuses on
surfa
c
e
microm
achin
i
ng device.
2. The Featu
r
e-Bas
e
d De
sign Frame
w
ork
Based o
n
feature te
chnol
ogy, the thre
e-level
de
sig
n
flow of micro device is
sho
w
n in
Figure 1. As the foundatio
n of the desi
gn flow,
the key tech
nolo
g
ies involving
the relation
and
transfo
rmatio
n of distinct feature
s
a
r
e p
r
esented.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 5, May 2013 : 2574 – 258
2
2575
S
y
s
t
e
m
l
e
v
e
l
D
e
v
i
c
e
le
v
e
l
P
r
o
cess
l
e
v
e
l
F
u
n
c
tiona
l f
eatu
r
e bas
e
d
m
o
d
e
li
ng and anal
y
z
i
n
g
F
r
eque
nc
y
-
dom
ai
n
si
m
u
l
a
t
i
o
n
T
i
m
e
-
dom
a
i
n
si
m
u
l
a
t
i
o
n
Op
t
i
m
i
z
a
ti
o
n
Si
m
u
l
a
ti
on m
ode
l and
c
o
m
p
one
nts
l
i
b
r
ar
y
T
e
m
p
late bas
ed
design
G
e
o
m
e
t
ric el
e
m
ent
construction
X
Y
Z
3D m
o
d
e
l
Perf
or
m
a
nce an
a
l
y
s
is
Op
t
i
m
a
l
re
d
e
si
g
n
Manuf
ac
t
u
ring m
o
del
Manu
f
a
ct
uri
ng sim
u
lati
on
T
e
m
p
l
a
te m
a
p
p
in
g
C
om
po
n
ents
m
a
p
p
ing
Fabr
i
c
a
t
i
ng
fl
o
w
Mas
k
deri
v
at
ion
Manuf
act
u
rin
g
f
e
a
t
ures
Si
m
u
l
a
t
i
ng
li
brar
y
a
nd
VR
S
y
s
t
e
m
l
e
v
e
l
D
e
v
i
c
e
le
v
e
l
P
r
o
cess
l
e
v
e
l
F
u
n
c
tiona
l f
eatu
r
e bas
e
d
m
o
d
e
li
ng and anal
y
z
i
n
g
F
r
eque
nc
y
-
dom
ai
n
si
m
u
l
a
t
i
o
n
T
i
m
e
-
dom
a
i
n
si
m
u
l
a
t
i
o
n
Op
t
i
m
i
z
a
ti
o
n
Si
m
u
l
a
ti
on m
ode
l and
c
o
m
p
one
nts
l
i
b
r
ar
y
T
e
m
p
late bas
ed
design
G
e
o
m
e
t
ric el
e
m
ent
construction
X
Y
Z
G
e
o
m
e
t
ric el
e
m
ent
construction
X
Y
Z
X
Y
Z
3D m
o
d
e
l
Perf
or
m
a
nce an
a
l
y
s
is
Op
t
i
m
a
l
re
d
e
si
g
n
Manuf
ac
t
u
ring m
o
del
Manu
f
a
ct
uri
ng sim
u
lati
on
T
e
m
p
l
a
te m
a
p
p
in
g
C
om
po
n
ents
m
a
p
p
ing
Fabr
i
c
a
t
i
ng
fl
o
w
Mas
k
deri
v
at
ion
Manuf
act
u
rin
g
f
e
a
t
ures
Si
m
u
l
a
t
i
ng
li
brar
y
a
nd
VR
Figure 1. Three-level d
e
si
gn flow
The feature tech
nolo
g
y is cha
r
a
c
teri
stic of th
is syste
m
is sum
m
ari
z
ed a
s
featu
r
es-ba
s
ed
modelin
g a
n
d
feature-b
a
se
d optimi
z
atio
n. Above
a
ll,
the mi
cro
de
vice m
odel
is co
nst
r
u
c
ted
by
feature te
ch
n
o
logy. As
sh
own
in Fi
gure 1, the
r
e a
r
e thre
e
ways to build
the
model. F
u
n
c
tional
feature
s
m
a
p
p
ing i
s
th
e
norm
a
l
way
to co
nst
r
u
c
t
model,
whi
c
h
begi
ns with
the
simul
a
tion
comp
one
nts i
n
function
al feature
s
lib
rary. For
the sim
ilar devi
c
es,
based on the
rede
sig
n
theo
ry,
the template
libra
ry is p
r
e
s
ented to
sup
port templ
a
te
-ba
s
ed
de
sig
n
pro
c
e
d
u
r
e.
With pa
ram
e
tric
desi
gn templ
a
te, for exam
ple, the micro spring
can be redesi
gned with facility, which
can be
fabricated by
LIGA process [
10]. For those a
n
o
m
alou
s part
s
, direct geo
metric ele
m
e
n
t
con
s
tru
c
ting
method is
recom
m
en
ded
. To optimize the rou
g
h
model, the
multi-physi
cs
simulatin
g
m
e
thod is
pref
erred, whi
c
h
is also a co
mmon way for the an
alyzing of traditio
nal
mech
ani
cal d
e
vice
s [11]. Besid
e
s the d
e
s
ign rule
s
ch
ecking, the proce
s
s f
eature
s
and
con
s
tra
i
nt
feature
s
are essential for the model
optimizin
g
proce
s
s. With these featu
r
e
s
, a three le
vel
modelin
g fra
m
ewo
r
k is
co
nstru
c
ted
as
sho
w
n i
n
Fig
u
re 2. T
he
system level m
odelin
g focu
ses o
n
the function
and beh
avior, while the process leve
l
modelin
g wo
rks at man
u
fa
ctura
b
ility. With
feature
s
map
p
ing procedu
re, these diff
erent f
eatu
r
e
s
are
con
n
e
c
ted to pre
s
ent an efficient
desi
gn way throug
hout the
whol
e de
sign
flow.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Hierarchi
c
al
De
sign Meth
od for Micro
De
vice (Zh
e
n
g
Liu)
2576
F
e
atu
r
es
m
a
ppi
n
g
F
e
atu
r
es
m
a
ppi
n
g
Func
t
i
on
al
f
eat
u
r
es
3
D
de
s
i
gn
f
eat
u
r
es
m
anu
f
a
c
t
uri
ng
f
eat
u
r
es
Cons
t
r
aint
f
eat
u
r
es
S
y
ste
m
lev
e
l
D
e
v
ice
le
v
e
l
P
roces
s le
v
e
l
St
r
u
c
t
ur
a
l
la
y
e
r
1
St
r
u
c
t
u
r
a
l
la
y
e
r
n
D
e
posi
t
i
o
n
f
e
at
u
r
e 1
E
t
chi
ng
f
e
at
u
r
e (
1
,1)
E
t
chi
ng
f
e
at
u
r
e (
1
,n)
ma
s
k
(
1
,1
)
Sa
cr
ificial
la
y
e
r
1
E
t
ch
m
ode
E
t
chan
t
Et
c
h
i
n
g
d
eepn
ess
E
qui
pm
e
n
t
E
t
ched
solids
St
r
u
c
t
ur
a
l
la
y
e
r
1
St
r
u
c
t
u
r
a
l
la
y
e
r
n
D
e
posi
t
i
o
n
f
e
at
u
r
e 1
E
t
chi
ng
f
e
at
u
r
e (
1
,1)
E
t
chi
ng
f
e
at
u
r
e (
1
,n)
ma
s
k
(
1
,1
)
Sa
cr
ificial
la
y
e
r
1
E
t
ch
m
ode
E
t
chan
t
Et
c
h
i
n
g
d
eepn
ess
E
qui
pm
e
n
t
E
t
ched
solids
CS
GTre
e
3
D
s
o
lid
Rig
h
tT
r
e
e
Le
ftTree
So
l
i
d
Fa
c
e
L
i
s
t
Edg
e
L
i
s
t
Ve
r
t
ex
L
i
st
Fa
c
e
Ou
t
L
oo
p
Loo
p
L
i
s
t
S
u
rfa
c
e
Edge
Fa
t
h
e
r
S
o
l
i
d
RH
al
f
E
dg
e
LH
alfE
d
g
e
Ve
rt
ex
C
o
ord
i
na
t
e
Pr
e
V
e
r
te
x
Fa
t
h
e
r
S
o
l
i
d
B
e
nd
do
w
n
B
e
nd u
p
Can
t
ile
ver
Mi
c
r
o
s
p
r
i
n
g
T
h
r
oug
h h
o
l
e
Bl
ind ho
l
e
F
ace
th
ic
ke
n
CS
GTre
e
3
D
s
o
lid
Rig
h
tT
r
e
e
Le
ftTree
So
l
i
d
Fa
c
e
L
i
s
t
Edg
e
L
i
s
t
Ve
r
t
ex
L
i
st
Fa
c
e
Ou
t
L
oo
p
Loo
p
L
i
s
t
S
u
rfa
c
e
Edge
Fa
t
h
e
r
S
o
l
i
d
RH
al
f
E
dg
e
LH
alfE
d
g
e
Ve
rt
ex
C
o
ord
i
na
t
e
Pr
e
V
e
r
te
x
Fa
t
h
e
r
S
o
l
i
d
B
e
nd
do
w
n
B
e
nd u
p
Can
t
ile
ver
Mi
c
r
o
s
p
r
i
n
g
T
h
r
oug
h h
o
l
e
Bl
ind ho
l
e
F
ace
th
ic
ke
n
Co
m
p
o
n
e
n
t
s
Bea
m
Ma
s
s
An
c
h
o
r
Subm
ode
l
2
Subm
ode
l
n
Subm
ode
l
1
Subm
ode
l
3
Co
m
p
o
n
e
n
ts
Be
am
Ma
s
s
An
c
h
o
r
Co
m
p
o
n
e
n
t
s
Bea
m
Ma
s
s
An
c
h
o
r
Subm
ode
l
2
Subm
ode
l
n
Subm
ode
l
1
Subm
ode
l
3
Co
m
p
o
n
e
n
ts
Be
am
Ma
s
s
An
c
h
o
r
F
e
atu
r
es
m
a
ppi
n
g
F
e
atu
r
es
m
a
ppi
n
g
Func
t
i
on
al
f
eat
u
r
es
3
D
de
s
i
gn
f
eat
u
r
es
m
anu
f
a
c
t
uri
ng
f
eat
u
r
es
Cons
t
r
aint
f
eat
u
r
es
S
y
ste
m
lev
e
l
D
e
v
ice
le
v
e
l
P
roces
s le
v
e
l
St
r
u
c
t
ur
a
l
la
y
e
r
1
St
r
u
c
t
u
r
a
l
la
y
e
r
n
D
e
posi
t
i
o
n
f
e
at
u
r
e 1
E
t
chi
ng
f
e
at
u
r
e (
1
,1)
E
t
chi
ng
f
e
at
u
r
e (
1
,n)
ma
s
k
(
1
,1
)
Sa
cr
ificial
la
y
e
r
1
E
t
ch
m
ode
E
t
chan
t
Et
c
h
i
n
g
d
eepn
ess
E
qui
pm
e
n
t
E
t
ched
solids
St
r
u
c
t
ur
a
l
la
y
e
r
1
St
r
u
c
t
u
r
a
l
la
y
e
r
n
D
e
posi
t
i
o
n
f
e
at
u
r
e 1
E
t
chi
ng
f
e
at
u
r
e (
1
,1)
E
t
chi
ng
f
e
at
u
r
e (
1
,n)
ma
s
k
(
1
,1
)
Sa
cr
ificial
la
y
e
r
1
E
t
ch
m
ode
E
t
chan
t
Et
c
h
i
n
g
d
eepn
ess
E
qui
pm
e
n
t
E
t
ched
solids
St
r
u
c
t
ur
a
l
la
y
e
r
1
St
r
u
c
t
u
r
a
l
la
y
e
r
n
D
e
posi
t
i
o
n
f
e
at
u
r
e 1
E
t
chi
ng
f
e
at
u
r
e (
1
,1)
E
t
chi
ng
f
e
at
u
r
e (
1
,n)
ma
s
k
(
1
,1
)
Sa
cr
ificial
la
y
e
r
1
E
t
ch
m
ode
E
t
chan
t
Et
c
h
i
n
g
d
eepn
ess
E
qui
pm
e
n
t
E
t
ched
solids
St
r
u
c
t
ur
a
l
la
y
e
r
1
St
r
u
c
t
u
r
a
l
la
y
e
r
n
D
e
posi
t
i
o
n
f
e
at
u
r
e 1
E
t
chi
ng
f
e
at
u
r
e (
1
,1)
E
t
chi
ng
f
e
at
u
r
e (
1
,n)
ma
s
k
(
1
,1
)
Sa
cr
ificial
la
y
e
r
1
E
t
ch
m
ode
E
t
chan
t
Et
c
h
i
n
g
d
eepn
ess
E
qui
pm
e
n
t
E
t
ched
solids
CS
GTre
e
3
D
s
o
lid
Rig
h
tT
r
e
e
Le
ftTree
So
l
i
d
Fa
c
e
L
i
s
t
Edg
e
L
i
s
t
Ve
r
t
ex
L
i
st
Fa
c
e
Ou
t
L
oo
p
Loo
p
L
i
s
t
S
u
rfa
c
e
Edge
Fa
t
h
e
r
S
o
l
i
d
RH
al
f
E
dg
e
LH
alfE
d
g
e
Ve
rt
ex
C
o
ord
i
na
t
e
Pr
e
V
e
r
te
x
Fa
t
h
e
r
S
o
l
i
d
B
e
nd
do
w
n
B
e
nd u
p
Can
t
ile
ver
Mi
c
r
o
s
p
r
i
n
g
T
h
r
oug
h h
o
l
e
Bl
ind ho
l
e
F
ace
th
ic
ke
n
CS
GTre
e
3
D
s
o
lid
Rig
h
tT
r
e
e
Le
ftTree
So
l
i
d
Fa
c
e
L
i
s
t
Edg
e
L
i
s
t
Ve
r
t
ex
L
i
st
Fa
c
e
Ou
t
L
oo
p
Loo
p
L
i
s
t
S
u
rfa
c
e
Edge
Fa
t
h
e
r
S
o
l
i
d
RH
al
f
E
dg
e
LH
alfE
d
g
e
Ve
rt
ex
C
o
ord
i
na
t
e
Pr
e
V
e
r
te
x
Fa
t
h
e
r
S
o
l
i
d
B
e
nd
do
w
n
B
e
nd u
p
Can
t
ile
ver
Mi
c
r
o
s
p
r
i
n
g
T
h
r
oug
h h
o
l
e
Bl
ind ho
l
e
F
ace
th
ic
ke
n
Co
m
p
o
n
e
n
t
s
Bea
m
Ma
s
s
An
c
h
o
r
Subm
ode
l
2
Subm
ode
l
n
Subm
ode
l
1
Subm
ode
l
3
Co
m
p
o
n
e
n
ts
Be
am
Ma
s
s
An
c
h
o
r
Co
m
p
o
n
e
n
t
s
Bea
m
Ma
s
s
An
c
h
o
r
Subm
ode
l
2
Subm
ode
l
n
Subm
ode
l
1
Subm
ode
l
3
Co
m
p
o
n
e
n
ts
Be
am
Ma
s
s
An
c
h
o
r
Figure 2. Fea
t
ures-b
ased frame
w
o
r
k of t
h
ree level
s
1)
Functio
nal Fe
ature
s
Map
p
i
n
g
In the sy
ste
m
level, lum
ped b
ond
graph
i
s
u
s
e
d
to co
nst
r
u
c
t system
dynamical
simulatio
n
m
odel
s to
re
prese
n
t the fu
nction
al
requ
ireme
n
ts. T
h
e fun
c
tional
feature
s
lib
ra
ry
inclu
d
e
s
man
y
physical
si
mulation com
pone
nts. By
the co
nversio
n
from the predefine
d
phy
sical
para
m
eters t
o
the ge
omet
ric
and m
a
terial paramet
e
r
s, the fun
c
tio
nal features
are m
appi
ng
to
the 3D d
e
si
g
n
feature
s
. T
he map
p
ing
pro
c
e
ss i
s
fo
rmali
z
ed by t
he ma
cro
script langua
ge
to
sup
port the fe
edba
ck between level
s
.
2)
Manufa
c
turi
n
g
Features M
appin
g
The 3D d
e
si
gn feature
s
are con
s
tru
c
t
ed in desi
g
n
module an
d function o
r
iented
norm
a
lly, whi
l
e the m
anuf
acturi
ng fe
ature
s
a
r
e
f
abricating
ori
ent
ed. They
are
org
ani
zed
with
manufa
c
turi
n
g
layers. The
mapping p
r
o
c
ed
ure i
s
performed by m
ean
s of
algorithms incl
udi
ng
referen
c
e fea
t
ures g
ene
rati
on and
con
s
traint applying
pro
c
ed
ure.
Above all, so
me desi
gn rul
e
s are applie
d to t
he geometric featu
r
es to avoid conflicts in
the following
derivation
ste
p
s. Taki
ng the micro moto
r as the example, as sh
own
in Figure 3, the
3D mod
e
l is restri
cted with
many rule
s.
3)
Con
s
trai
nt for Feature
s
Although pe
rf
ormin
g
the d
e
sig
n
rule
s
chec
kin
g
, the feature
s
are
still not good
enoug
h
for man
u
fact
uring. T
he
constraint feat
ure
s
a
r
e
u
s
e
d
to re
stri
ct the ge
ometri
c para
m
eters
for
better manuf
acturability. Design fe
atures are associ
ated with
cons
traint features based on the
mature p
r
o
c
e
s
ses.
Here, MUMPs i
s
a
dopted a
s
th
e stand
ard [12]. By the key issu
e, etched
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 5, May 2013 : 2574 – 258
2
2577
solid
s in
sa
cri
f
icial layers, the rel
a
tion
shi
p
s b
e
twe
en 3
D
de
sign fe
ature
s
an
d con
s
traint featu
r
es
are con
s
tru
c
t
ed.
6
14
15
16
23
24
25
12
1
2
3
4
8
13
17
21
22
26
5
7
1
:
B
a
s
e
2
:
I
n
s
u
l
a
t
i
o
n
3
:
R
o
t
o
r-
b
a
se
4~
11:
S
t
ato
r
1
2
:
R
o
t
o
r
13
~
2
0
:
S
t
a
t
o
r
2
1
:
S
h
af
t
22
~
2
9
:
Me
t
a
l
6
14
15
16
23
24
25
12
1
2
3
4
8
13
17
21
22
26
5
7
6
6
14
14
15
15
16
16
23
23
24
24
25
25
12
12
1
1
2
2
3
3
4
4
8
8
13
13
17
17
21
21
22
22
26
26
5
5
7
7
1
:
B
a
s
e
2
:
I
n
s
u
l
a
t
i
o
n
3
:
R
o
t
o
r-
b
a
se
4~
11:
S
t
ato
r
1
2
:
R
o
t
o
r
13
~
2
0
:
S
t
a
t
o
r
2
1
:
S
h
af
t
22
~
2
9
:
Me
t
a
l
A
d
d
i
t
i
on
al
s
t
r
u
c
t
u
r
e
i
n
m
a
n
u
fa
c
t
ur
i
n
g
or
ien
t
a
t
io
n
Un
r
e
as
on
a
b
le
st
r
u
c
t
u
r
e
A
d
d
i
t
i
on
al
s
t
r
u
c
t
u
r
e
i
n
m
a
n
u
fa
c
t
ur
i
n
g
or
ien
t
a
t
io
n
Un
r
e
as
on
a
b
le
st
r
u
c
t
u
r
e
Pr
op
os
i
n
g
c
u
t
t
i
n
g p
l
an
e
Pr
op
os
i
n
g
c
u
t
t
i
n
g p
l
an
e
1
h
2
h
12
hh
1
h
2
h
12
hh
12
hh
Propo
s
i
ng
cutt
i
n
g p
l
ane
h
3.
5
hm
Propo
s
i
ng
cutt
i
n
g p
l
ane
h
3.
5
hm
3.
5
hm
Fea
t
ures
id
e
n
tif
ica
t
ion
De
sign ru
le
s
li
br
a
r
y
3D m
i
c
r
o
de
v
i
c
e
m
o
de
l
6
14
15
16
23
24
25
12
1
2
3
4
8
13
17
21
22
26
5
7
1
:
B
a
s
e
2
:
I
n
s
u
l
a
t
i
o
n
3
:
R
o
t
o
r-
b
a
se
4~
11:
S
t
ato
r
1
2
:
R
o
t
o
r
13
~
2
0
:
S
t
a
t
o
r
2
1
:
S
h
af
t
22
~
2
9
:
Me
t
a
l
6
14
15
16
23
24
25
12
1
2
3
4
8
13
17
21
22
26
5
7
6
6
14
14
15
15
16
16
23
23
24
24
25
25
12
12
1
1
2
2
3
3
4
4
8
8
13
13
17
17
21
21
22
22
26
26
5
5
7
7
1
:
B
a
s
e
2
:
I
n
s
u
l
a
t
i
o
n
3
:
R
o
t
o
r-
b
a
se
4~
11:
S
t
ato
r
1
2
:
R
o
t
o
r
13
~
2
0
:
S
t
a
t
o
r
2
1
:
S
h
af
t
22
~
2
9
:
Me
t
a
l
A
d
d
i
t
i
on
al
s
t
r
u
c
t
u
r
e
i
n
m
a
n
u
fa
c
t
ur
i
n
g
or
ien
t
a
t
io
n
Un
r
e
as
on
a
b
le
st
r
u
c
t
u
r
e
A
d
d
i
t
i
on
al
s
t
r
u
c
t
u
r
e
i
n
m
a
n
u
fa
c
t
ur
i
n
g
or
ien
t
a
t
io
n
Un
r
e
as
on
a
b
le
st
r
u
c
t
u
r
e
Pr
op
os
i
n
g
c
u
t
t
i
n
g p
l
an
e
Pr
op
os
i
n
g
c
u
t
t
i
n
g p
l
an
e
1
h
2
h
12
hh
1
h
2
h
12
hh
12
hh
Propo
s
i
ng
cutt
i
n
g p
l
ane
h
3.
5
hm
Propo
s
i
ng
cutt
i
n
g p
l
ane
h
3.
5
hm
3.
5
hm
A
d
d
i
t
i
on
al
s
t
r
u
c
t
u
r
e
i
n
m
a
n
u
fa
c
t
ur
i
n
g
or
ien
t
a
t
io
n
Un
r
e
as
on
a
b
le
st
r
u
c
t
u
r
e
A
d
d
i
t
i
on
al
s
t
r
u
c
t
u
r
e
i
n
m
a
n
u
fa
c
t
ur
i
n
g
or
ien
t
a
t
io
n
Un
r
e
as
on
a
b
le
st
r
u
c
t
u
r
e
Pr
op
os
i
n
g
c
u
t
t
i
n
g p
l
an
e
Pr
op
os
i
n
g
c
u
t
t
i
n
g p
l
an
e
1
h
2
h
12
hh
1
h
2
h
12
hh
12
hh
Propo
s
i
ng
cutt
i
n
g p
l
ane
h
3.
5
hm
Propo
s
i
ng
cutt
i
n
g p
l
ane
h
3.
5
hm
3.
5
hm
Fea
t
ures
id
e
n
tif
ica
t
ion
De
sign ru
le
s
li
br
a
r
y
3D m
i
c
r
o
de
v
i
c
e
m
o
de
l
Figure 3. Applying con
s
trai
nt to 3d features
3. Mapping Dev
i
ce Features to M
a
n
u
fac
t
uring F
eatur
es
1)
The De
po
sition feature of
the ith Sacrifi
c
ial Layer (
()
i
D
ep
S
a
c
)
The maximu
m height of th
e cantileve
r structu
r
e
is
got
as the thickn
es
s of the de
positio
n.
It is re
presen
ted a
s
ma
x
()
i
h
Sac
.
US
M
L
is t
he u
ppe
r
surface
of layer.
A protru
sion
ope
ration
is
execute
d
with
the param
eters
of
ma
x
()
i
h
Sac
and
US
M
L
of
1
i
M
to get
()
i
D
e
p
Sac
. It is represente
d
as
UE
O
(
1
()
i
US
M
L
M
,
ma
x
()
i
hS
a
c
).
2)
The Featu
r
e
of Model Re
mained After
the
Etching of
the ith Sacrificial Laye
r
(
i
Sac
)
The d
epo
sitio
n
mod
e
l of th
e sacrificial
la
ye
r exe
c
ute
s
Boolean
op
eration of Su
btraction
with the mod
e
l of the ith structu
r
al laye
r to get
i
Sac
. It is repre
s
ente
d
as
((
)
,
)
ii
BS
D
e
p
S
a
c
L
.
3)
The Etche
d
Solid Featu
r
e
s
of the ith Sacrificial Laye
r
(
()
i
E
s
s
Sac
)
The de
po
sitio
n
feature of t
he sa
crificial l
a
ye
r exe
c
ute
s
Boole
an op
eration
of Interse
c
tion
with the featu
r
e of the ith
structu
r
al laye
r to get
()
i
E
s
s
Sac
. It is
repres
ented as
((
)
,
)
ii
BI
D
e
p
S
a
c
L
and illu
strate
d in Figure 4.
4)
The De
po
sition feature of
the ith Structural Laye
r
(
i
D
ep
)
F
i
r
s
tly, th
e etc
h
in
g fe
a
t
ure
o
f
th
e
k
t
h s
a
cr
ific
ia
l laye
r
(k<
i
) is re
vis
e
d if th
er
e
is
a
n
intersectio
n
relation between
i
L
an
d
k
Sac
. Then, th
e th
ickne
s
s of t
he d
e
si
gn fe
ature
s
i
s
cal
c
ulate
d
. The max value
ma
x
()
i
hL
is as the para
m
eter of
thickn
ess fo
r depo
sition.
Finally, a
protrusi
on
op
eration
is ex
ecute
d
with t
he p
a
ra
meters of
ma
x
()
i
hL
an
d
US
M
L
of the
combi
n
e
d
solid of
1
i
M
and
i
Sac
to get
()
i
D
ep
S
a
c
. It is
repres
ented as
1m
a
x
(
(
(
,
))
,
(
))
ii
i
UE
O
U
S
M
L
B
U
M
S
a
c
h
L
and illu
strate
d in Figure 5.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Hierarchi
c
al
De
sign Meth
od for Micro
De
vice (Zh
e
n
g
Liu)
2578
BI
i
L
a
yer
1
i
L
a
yer
i
Sac
rif
i
c
i
al
L
a
y
e
r
i
Sac
Ess
i
Sac
Ess
i
L
i
Sac
Dep
BI
BI
i
L
a
yer
1
i
L
a
yer
i
Sac
rif
i
c
i
al
L
a
y
e
r
i
Sac
Ess
i
Sac
Ess
i
L
i
Sac
Dep
Figure 4. Etched solid feat
ure
s
of sa
crifi
c
ial layer
ma
x
h
1
,
ii
BU
M
S
ac
i
Lay
e
r
1
i
Lay
e
r
i
S
a
c
r
i
f
i
ci
a
l
L
a
ye
r
i
De
p
ma
x
h
1
,
ii
BU
M
S
ac
i
Lay
e
r
1
i
Lay
e
r
i
S
a
c
r
i
f
i
ci
a
l
L
a
ye
r
i
De
p
ma
x
h
1
,
ii
BU
M
S
ac
1
,
ii
BU
M
S
ac
i
Lay
e
r
1
i
Lay
e
r
i
S
a
c
r
i
f
i
ci
a
l
L
a
ye
r
i
De
p
Figure 5. Dep
o
sition featu
r
e of stru
ctural
layer
5)
The Etche
d
Solid Featu
r
e
s
of the ith Structural L
a
yer (
()
i
Es
s
L
)
The d
epo
sitio
n
mod
e
l of th
e structu
r
al l
a
ye
r exe
c
ute
s
Boolean
op
eration of Su
btraction
with
i
L
to get
()
i
Es
s
L
. It is repre
s
en
ted as
(,
)
ii
BS
D
e
p
L
and illustrate
d in Figure 6.
()
i
Es
s
L
is th
e
set of the etched solid feat
ure
s
.
BS
i
La
y
e
r
1
i
La
y
e
r
i
Sacri
fic
i
a
l
L
ay
er
i
L
Es
s
i
L
Es
s
i
De
p
i
L
BS
BS
i
La
y
e
r
1
i
La
y
e
r
i
Sacri
fic
i
a
l
L
ay
er
i
L
Es
s
i
L
Es
s
i
De
p
i
L
Figure 6. Etched solid feat
ure
s
of stru
ct
ural laye
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 5, May 2013 : 2574 – 258
2
2579
The re
sults of
the above
map
p
ing
proce
dur
e are
referen
c
e ma
nufactu
ring
f
eature
s
,
whi
c
h
are
the
found
ation
o
f
the follo
win
g
recon
s
tru
c
ting p
r
o
c
e
ss.
Although th
e
prima
r
y featu
r
es
are
co
nstruct
ed, the ma
n
u
facturability is n
o
t goo
d eno
ugh. T
herefo
r
e, the
con
s
traint a
n
d
revisio
n
are n
e
ce
ssary.
4. The Con
s
traint
for Ma
nufa
c
turing
Features a
n
d Rec
ons
tru
c
ting Proc
e
dure of F
e
a
t
ure
Model
4.1. Apply
i
ng the Co
nstr
aint to Stru
c
t
ural La
y
e
r Featur
es
The
step
s of
applying
the
co
nstraint to
the
stru
ctural layer featu
r
es a
r
e illu
strated in
Figure 7. Fi
rstly, the refe
ren
c
e fe
ature
s
of th
e
ith
sa
crifici
a
l lay
e
r a
r
e
cal
c
ul
ated to pi
ck
up
()
i
E
s
s
Sac
. Then, the
re
feren
c
e m
a
sk set of the i
-
1
t
h and
ith
stru
ctural
layers i
s
calculated,
whi
c
h
is
referen
c
e f
o
r th
e follo
wi
ng
com
pari
n
g
step.
Finally,
the
proj
ectio
n
patte
rn
of the et
che
d
sol
i
d is
comp
ared wit
h
the refere
n
c
e ma
sk. The
referen
c
e m
a
sk is revise
d base
d
on the manufa
c
tu
ring
con
s
trai
nt rul
e
s. Based on
the revise
d m
a
sk,
the stru
ctural features
are recon
s
tru
c
ted.
Y
N
C
a
lc
ula
t
in
g
Meeti
ng the requ
i
r
em
en
ts ?
Appl
y
i
ng the cons
trai
nt rul
e
s
Cal
c
u
l
at
i
n
g
the revi
sed m
a
sk
Rec
o
n
s
tructi
ng the
struc
t
ural
f
eature
s
Calc
ul
at
ing
i
Sa
c
Es
s
1
i
St
r
MASK
C
a
lc
ula
t
in
g
i
Str
MASK
Pro
j
ec
t
i
ng the rou
gh
m
a
sk t
o
the ho
ri
z
onta
l
pl
ane
Y
N
C
a
lc
ula
t
in
g
Meeti
ng the requ
i
r
em
en
ts ?
Appl
y
i
ng the cons
trai
nt rul
e
s
Cal
c
u
l
at
i
n
g
the revi
sed m
a
sk
Rec
o
n
s
tructi
ng the
struc
t
ural
f
eature
s
Calc
ul
at
ing
i
Sa
c
Es
s
1
i
St
r
MASK
C
a
lc
ula
t
in
g
i
Str
MASK
Pro
j
ec
t
i
ng the rou
gh
m
a
sk t
o
the ho
ri
z
onta
l
pl
ane
Figure 7. Applying the con
s
traint
to stru
ctural laye
r feature
s
To explai
n th
is p
r
o
c
ed
ure,
the d
e
rivative process
ab
out
1
Es
in
4
()
Es
s
S
a
c
of th
e micro
motor i
s
illustrated as an example. It is
shown
i
n
Figure 8. A
s
soci
ated
with the
constraint
feature,
1
Es
is
an
insta
n
ce of
constraint feat
ure
A
N
CHOR1. Some
rule
s a
bout A
N
CHO
R
1
are
a
s
follows
.
Rule A: POLY0 spa
c
e to
ANCHOR1 by 4.0
μ
m. T
he necessa
ry separation
between
POLY0 and A
N
CHO
R
1 h
o
l
e
is to ensure
that POLY0 is not expo
se
d.
R
u
le B: PO
LY0
e
n
c
l
os
e
AN
CH
OR
1 by 4
.
0
μ
m. Th
e di
stan
ce
n
e
ce
ssary
bet
wee
n
the
edge of POL
Y
0 and an A
N
CHO
R
1 h
o
l
e
to ensure t
he hole
doe
s
not extend be
yond the ed
g
e
of
POLY0.
Rule
C: POL
Y
1 encl
o
se ANCHO
R
1 b
y
4.0
μ
m. The amou
nt that POLY1 must extend
beyond the e
dge of an ANCHOR1 hole
to ens
u
r
e co
mplete cove
rage of the hol
e.
The feature of
1
Es
is restri
cted with these rules. It
is
only illustrate the mask-revision
pro
c
e
s
s with
the rule
C.
Firstly, the
referen
c
e mas
k
o
f
PO
L
Y
1 is
e
x
tra
c
ted. Se
c
o
nd
ly, th
e
boun
dary of
1
Es
is proj
ecte
d to horizontal pl
ane an
d com
pare
d
with th
e referen
c
e
mask. Withou
t
revisin
g
, normally, the b
ound
arie
s co
incid
e
. It
is
obviou
s
ly poor manufa
c
t
u
rability for the
referen
c
e m
a
sk set. Finall
y
, with the ru
le C, the
bou
ndary
of the
mask exten
d
s
beyo
nd th
a
t
o
f
1
Es
to a distance
of
δ
(
δ≥
4.0
μ
m). For the ot
her etched
so
lids,
it is the similar process.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Hierarchi
c
al
De
sign Meth
od for Micro
De
vice (Zh
e
n
g
Liu)
2580
R
e
v
i
se
d pa
rt
f
o
r
in
the
p
r
ecise
m
a
s
k
Ro
u
g
h
m
a
sk
co
n
cern
e
d
w
ith
.
1
Es
Ho
r
i
zo
n
t
al
p
l
an
e f
o
r
proje
c
tio
n
Th
e
1
s
t
sa
cri
f
icial
lay
e
r
To
p
vi
e
w
fo
r
il
lus
t
ra
ti
on
A
n
o
f
f
s
e
t
d
i
stan
ce
o
f
is
re
qu
ire
d
b
y
MUMP
s
1
Es
1
Es
R
e
v
i
se
d pa
rt
f
o
r
in
the
p
r
ecise
m
a
s
k
Ro
u
g
h
m
a
sk
co
n
cern
e
d
w
ith
.
1
Es
Ho
r
i
zo
n
t
al
p
l
an
e f
o
r
proje
c
tio
n
Th
e
1
s
t
sa
cri
f
icial
lay
e
r
To
p
vi
e
w
fo
r
il
lus
t
ra
ti
on
A
n
o
f
f
s
e
t
d
i
stan
ce
o
f
is
re
qu
ire
d
b
y
MUMP
s
1
Es
1
Es
Figure 8. Con
s
traini
ng the
manufa
c
tu
ri
n
g
feature
s
of micro motor
4.2. Recon
s
tructing Fe
atures of Stru
ctural Lay
e
r
The features
of
1
i
L
and
i
L
are reco
nstructe
d with the revised mask an
d corre
s
p
ondin
g
referen
c
e fea
t
ures. Above
all, the referen
c
e d
epo
si
tion feature
s
are obtai
ne
d, which is t
he
foundatio
n of the etching
operati
on. Th
e necessa
ry loop informat
ion is got by
the inverse
d
pattern
of p
r
e
c
ise m
a
sk
of the
st
ru
ctural l
a
yer. Th
en, t
he et
che
d
p
a
rt is
con
s
truct
ed by
executing
the extrud
e
operation
with the lo
op
data an
d th
e dee
pne
ss
of etchin
g fe
ature.
With the
depo
sition an
d etchin
g parameters, t
he revise
d features of the stru
ct
ural laye
r are cal
c
ulate
d
by
the Boolean
operation of subtractio
n b
e
twee
n
the d
epo
sition mo
del and the
etche
d
part. The
recon
s
tru
c
tio
n
pro
c
e
ss for features of
4
L
of the micro
motor is illu
strated in Figu
re 9. In addition,
these p
r
o
c
e
dure
s
of re
constructio
n
make in
flu
e
n
c
e on the
model of sa
crifici
a
l layer. A
recon
s
tru
c
tio
n
of the affe
cted mo
del i
s
ne
ce
ssary.
Fortun
ately, sa
crifici
a
l la
yer is
remov
e
d
before t
he mi
cro
device works. It ma
ke
s no i
n
fluen
ce
on the fin
a
l
perfo
rman
ce
. Therefo
r
e, it
is
fixed on the premi
s
e th
at the stru
ctural mo
del
meets the f
unctio
nal re
q
u
irem
ents. T
h
e
recon
s
tru
c
tio
n
of corre
s
po
nding
sa
crifici
a
l la
yer mod
e
l is made afte
r function
al a
nalysi
s
.
4
Dep
Bo
ole
a
n ope
r
a
tio
n
of s
ubtr
a
cti
o
n
Ex
t
r
ud
e
op
er
a
t
io
n
R
e
c
o
nstr
uc
te
d
.
.
4
L
In
ve
rs
e th
e
re
v
i
se
d
ma
s
k
4
Dep
Bo
ole
a
n ope
r
a
tio
n
of s
ubtr
a
cti
o
n
Ex
t
r
ud
e
op
er
a
t
io
n
R
e
c
o
nstr
uc
te
d
.
.
4
L
In
ve
rs
e th
e
re
v
i
se
d
ma
s
k
Figure 9. Fea
t
ure re
co
nstruction of st
ru
ctural laye
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 5, May 2013 : 2574 – 258
2
2581
4.3. Recon
s
tructing Fe
atures of Sa
crificial La
y
e
r
The featu
r
e
s
of sa
crifici
a
l l
a
yer a
r
e reco
ns
tru
c
ted
ba
sed on the
mo
del of the st
ructura
l
layers
clo
s
e
above and b
e
low it. As an instan
ce,
the re
con
s
tru
c
tive pro
c
e
s
s of the featu
r
e
s
c
o
nc
er
n
i
ng
4
Sac
of the micro
m
o
tor i
s
illu
stra
ted in
Fi
gure
10. The
revi
sed featu
r
e
s
a
bout
3
L
and
4
L
of the micro
motor a
r
e d
e
rived
in
the pre
c
edi
ng ste
p
.
Firstly,
3
()
US
M
L
M
is
picked u
p
. T
h
e
thickne
ss for
extrude op
eration is got b
y
the c
antilever structu
r
al i
n
formatio
n of the revised
4
L
.
With
3
()
US
M
L
M
and the
thickne
ss, th
e dep
ositio
n feature
of
the
sa
crifici
a
l lay
e
r i
s
calculat
ed by
the extrude o
peratio
n. Secondly,
the etching feature is de
rived
by executin
g Boolean o
peration
of subtra
ction
between the
revise
d
4
()
D
ep
Sac
and
4
L
. Finally, these recon
s
tru
c
ted manufa
c
tu
ring
feature
s
ma
ke up of the manufa
c
turin
g
model for the
sa
crifici
a
l layer.
1
2
3
NIT
R
IDE
Deduc
ti
n
g
D
educ
t
i
n
g
4
Sac
Dep
4
Sac
C
onstr
uct
i
ng
re
vis
e
d
.
4
M
3
L
4
Sac
4
Sac
Dep
4
M
4
L
1
2
3
NIT
R
IDE
Deduc
ti
n
g
D
educ
t
i
n
g
4
Sac
Dep
4
Sac
C
onstr
uct
i
ng
re
vis
e
d
.
4
M
3
L
4
Sac
4
Sac
Dep
4
M
4
L
Figure 10. Fe
ature recon
s
truc
tion of sacrificial layer
With the
abo
ve-mentio
ned
co
nstraint a
pplying
a
nd f
eature
s
re
co
nstru
c
ting
p
r
oce
s
se
s,
the revisi
on
of manufa
c
tu
ring featu
r
e
s
arou
nd th
e
ith sa
crifici
a
l layer i
s
finish
ed. Similar
pro
c
e
s
ses a
r
e carrie
d out arou
nd the ot
her sacrifici
a
l layers. Be
cau
s
e of the affection of the la
ter
step
s, it is likely to revise the model fixe
d in t
he form
er ste
p
s. Th
e
r
efore,
in view of the overall
situation, this revision is a
spiral pro
c
e
s
s from
the lo
wer laye
rs to
the uppe
r together with so
me
nec
es
sa
ry
ret
u
rn
s.
5. Conclusio
n
This pa
pe
r presents a fe
ature
-
ba
se
d desi
gn fram
e
w
ork of micro device. Th
e main
contri
bution
li
es in
the th
ree-level
hie
r
archical
syst
em of featu
r
es, by
whi
c
h
the “fu
n
ctio
n-to
-
sha
pe-to
-ma
s
k” d
e
sig
n
flow is a
c
hieve
d
. T
he map
p
ing procedu
re between
different leve
ls
con
s
tru
c
t
s
the linka
ge of
variou
s featu
r
es. In ad
di
tion, the co
nst
r
aint of manu
facturin
g feat
ure
s
improve
s
the
manufa
c
tura
bility. As a starting poi
nt, this pa
per f
o
cu
se
s o
n
th
e micro d
e
vice
fabricated
by su
rface mi
croma
c
hi
ning pro
c
e
ss. Fut
u
re wo
rk
wil
l
be
e
m
ph
a
s
ized on
b
u
l
k
microma
c
hini
ng pro
c
e
s
s.
Ackn
o
w
l
e
dg
ment
This
work was finan
cially
supp
orted
b
y
t
he Scientific Re
se
arch
Program Fu
n
ded by
Shaanxi Pro
v
incial Edu
c
ation De
part
m
ent
(No. 11JK0
864
), Scien
c
e an
d Tech
nolo
g
y
Develo
pment
Plan Found
a
t
ion of Shaan
xi Province
(No. 201
1K07
-11
)
, Presi
d
e
n
t Fund of Xi’an
Tech
nolo
g
ica
l
University (No. XAGDX
JJ10
07)
a
nd S
haanxi Majo
r
Subject Con
s
truction P
r
oje
c
t.
Referen
ces
[1]
Gao F, Hong YS, Sarma
R.
F
eature
Mod
e
l
for Surfac
e Micr
o-machined M
E
MS
. Procee
di
ngs
of ASM
E
Desig
n
Eng
i
n
e
e
rin
g
T
e
chnical
Confere
n
ces. Chica
go. 2
003:
149-1
58.
[2]
Li J, Gao S,
Liu Y. F
eat
ure
-
Based Proc
es
s La
yer Mode
l
i
ng for Surfac
e Micro-Mach
i
ned MEMS.
Journ
a
l of Micr
omech
anics a
n
d
Microe
ngi
ne
erin
g
. 200
5; 15
: 620-63
5.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Hierarchi
c
al
De
sign Meth
od for Micro
De
vice (Zh
e
n
g
Liu)
2582
[3]
Liu Y, J
i
a
ng P,
Zhan
g D.
3D
-feature-
bas
ed
Structure D
e
si
gn for S
ilic
on
Fabricati
on of Micro
D
e
vices.
Microsystem
Technologies
. 2007; 13: 7
01-7
14.
[4]
McCorqu
o
d
a
le
MS, Gebara F
H
, Kraver KL, Marsman E
D
, Seng
er R
M
, Bro
w
n
RB.
A T
op-Dow
n
Microsyste
m
s
Desig
n
Method
olo
g
y an
d
Associated
Chal
le
nges
. P
r
ocee
din
g
s of
the Desig
n
,
Automatio
n
an
d T
e
st in Europ
e
Confer
enc
e and E
x
h
i
biti
on.
Los Alamitos.
200
3: 292-
296.
[5]
T
h
imm G, Britton GA, F
o
k
SC. A Grap
h
T
heoretic App
r
oach
Li
nkin
g
Desig
n
Dime
n
s
ioni
ng
an
d
Process Pla
n
n
in
g Part 1: Desig
n
i
ng to Process Pla
n
n
in
g.
Internati
ona
l Journ
a
l
of Advance
d
Manufactur
i
ng T
e
chno
logy
. 2
004; 24: 2
61-2
71.
[6]
F
edder
GK.
Structured D
e
sig
n
of Integrate
d
MEMS
.
T
w
elfth IEEE Internati
onal Conference on Micr
o
Electro Mech
a
n
ical S
y
stems.
F
l
orida. 1
9
9
9
: 1-8.
[7]
Ananth
a
kris
hn
an V, Sarma
R, Ananth
a
s
ures
h GK. S
y
stematic M
a
sk S
y
nthes
is
for Surface
Mi
cro
m
a
c
hi
ne
d Mi
croe
l
e
ct
rom
e
chanical S
y
st
ems.
Jour
nal
of micro
m
echa
nics and
micr
o
eng
ine
e
ri
ng
.
200
3; 13: 927-
941.
[8]
Schiek
R, Sc
hmidt R.
Aut
o
mated
Surfa
c
e Micro-M
a
c
h
ini
n
g
Mask
Creati
on from
a
3D M
ode
l
.
Microsystem
technologies
. 20
06; 12: 20
4-20
7.
[9]
Ma L, A
n
tons
son EK.
A
u
to
mate
d M
a
sk-L
a
yout
an
d Pr
ocess Sy
nthe
sis for MEMS
. T
e
chnica
l
Procee
din
g
s of
the 20
00 Inter
natio
nal
Co
nfe
r
ence
on Mo
de
ling
an
d Simu
l
a
tion
of Micros
ystems. Sa
n
Dieg
o
. 20
00: 2
0
-23.
[10]
Li G, Sui L,
Shi G. Study o
n
the
Lin
earl
y
R
a
n
ge
of S-Shap
ed
MEMS Plan
ar Micro-spri
ng
.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2012; 1
0
(6): 1
327-
133
2
[11]
Z
hang Y, H
uan
g X, H
uan
g T
,
Ru
a
n
J, W
u
X.
Ventil
ation Stru
cture
Improve
m
ent of Air-coo
led In
ductio
n
Motor Usin
g
Multip
h
y
sics Si
mulati
ons.
T
E
LKOMNIKA Indon
esia
n Jo
ur
nal
of Electric
al En
gin
eeri
n
g
.
201
2; 10(3): 45
1-45
8.
[12]
Carter J, et al. MUMPs Desig
n
Han
d
b
ook. R
e
visio
n
11.
0. Durham: MEMSCAP Inc. 2005.
Evaluation Warning : The document was created with Spire.PDF for Python.