TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.1, Jan
uary 20
14
, pp. 98 ~
1
05
DOI: http://dx.doi.org/10.11591/telkomni
ka.v12i1.3012
98
Re
cei
v
ed Ap
ril 26, 2013; Revi
sed Aug
u
st
22, 2013; Accepted Sept
em
ber 10, 20
13
Design of Receiver Used for Passive Millimet
er Wave
Imaging System
Bao
-
Hu
a Ya
ng*
a
, Zhi-Ping Li
b
, Tong-Fei Yu
c
, Jin Z
h
ang
d
, Xian-Xun Yao
e
, An-Yong Hu
f
,
Chen
g zhe
n
g
g
, Jun-Gan
g
Miao
h
Schoo
l of Elect
r
onic a
nd Infor
m
ation En
gi
ne
erin
g, Beih
ang
Univers
i
t
y
,
100
191, Bei
jin
g, C
h
in
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
y
a
n
g
b
a
ohu
a7
28@
163.com
*
a
, zhipin
g_l
i@b
uaa.e
du.cn
b
,
152
10
809
12
0
@
16
3.com
c
, zhang
jin
85
022
4
@
13
9.com
d
, y
a
ox
ia
nx
un
@1
26
.co
m
e
, ha
y8
0
090
6@1
26.co
m
f
,
zhen
gch
eng
@
s
ina.com
g
, jmi
a
obrem
en@
12
6
.
com
h
A
b
st
r
a
ct
As m
i
llimeter
wave (MMW) electronic tec
h
nologies
have
m
a
tur
ed, the
MMW im
aging using for
hu
ma
nsecur
ity insp
ectio
n
is
emergi
ng
as a
n
effectiv
e
ap
p
r
oach to
i
m
a
g
i
ng thro
ug
h o
b
scurin
g
materi
als
,
such as c
l
oth
i
ng for co
nce
a
l
ed w
eap
ons
d
e
tection
or
p
l
a
s
tic mi
nes. T
h
i
s
pap
er i
n
trod
uces te
mp
erat
ure
sensitivity firstl
y an
d the
n
t
he fri
nge-w
a
s
h
in
g func
ti
ons
are
der
ived
w
h
ich d
e
cid
e
the structure
th
e
anten
na
array
and t
he rec
e
iv
ers of the sys
tem B
HU-2
D
.F
inal
ly, the fri
n
ge-w
a
shi
ng fu
nctions
an
d th
ei
r
phas
es are ca
l
c
ulate
d
from th
e freque
ncy re
spons
es of
24-
receiv
er, they all sh
ow
good
consiste
ncy of the
receiv
ers which also can be proved from
the
test result
s of receiv
ers. From the final im
aging of our system
,
the 1-2K te
mp
erature se
nsitiv
ity is reali
z
ed s
u
ccessfully.
Ke
y
w
ords
: rec
e
iver, ap
erture
synthesis, rad
i
ometer, fringe-
w
a
shing fu
nction
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Since the
ap
erture synth
e
s
is
wa
s int
r
o
ducedi
nto mi
cro
w
ave
ra
di
ometry of th
e ea
rth,
steady p
r
og
resse
s
h
a
ve
been
mad
e
for mo
re
than 50
years [1]. Many ape
rt
ure
synthe
sisradi
ometers in
e
a
rth remote
sen
s
in
g
ap
pli
c
ation have develop
ed such as
ESTAR
(Electroni
call
yScanne
d T
h
inne
d Arra
y Radio
m
et
er)
and
MIRAS (Mi
c
ro
wave Ima
g
i
n
g
Radi
omete
r
wi
th Apertu
re
Synthesis) [2
-3]. All of
th
eir a
ppli
c
atio
ns
we
re ai
m
ed at
remot
e
sen
s
in
g.
The appli
c
ati
ons ofmi
crowave
system
s for near-fiel
d
zon
e
non
contact in
spe
c
tion wa
s
very appe
ali
ng re
ce
ntly, whi
c
h rang
e
d
from
civil and ind
u
st
ria
l
engine
eri
n
g
to biomedi
ca
l
analysi
s
[3-5]
.
Since 1990
s, many com
panie
s
hav
e
develop
ed se
veral types p
a
ssive millim
eter
wave (PMM
W) im
aging
systems
who
s
e appli
c
ation
s
were
aimed
at human in
spe
c
tion at h
a
rb
o
r
and
airp
ort f
o
r
example
Millivision.co, Sago
and
QinetiQ [7
-8].
Owi
ng to
th
eir p
a
ssive
MMW
receiver, the
s
e
system
s
maybe h
a
ve
fewer ha
rm f
o
r h
u
man
he
althy than th
e traditio
n
X
ray
system.
Th
e Electrom
agn
etics Lab
orat
ory
ofBeiha
n
g
Unive
r
sity al
so e
nga
ged i
n
the research on
the ape
rturesynthesi
s
MM
W radiom
ete
r
. Ase
r
ies
of
8mm ba
nd in
strum
ent with
disk ante
n
n
a
s
has bee
ndev
elope
d for a
pplication of
human
secu
rity apparatus that is B
HU-2D [9-12]. T
he
imaging
prin
ci
ple ofsynthe
tic apertu
re
interfer
om
e
t
ric ra
diomet
er (SAIR) a
nd ba
ckg
ro
u
nd
can
c
ell
a
tionm
ethod have b
een state
d
by our lab [13].
SAIR confro
nts decorrela
tion orso-call
ed fri
nge
-wa
s
hin
g
effects due to wide
field of
viewre
qui
rem
ent. These effects h
a
ve be
en co
nsi
dere
d
detailedly in
this pape
r.
2. Instrument Description
The dan
ge
ro
us mate
rial
s can b
e
ch
ecked wi
th the secu
rity inspe
c
tion devi
c
e
based on
the bri
ghtne
ss temp
erature di
ffere
nce
betwe
en the
m
and
hum
a
n
bodi
es by
PMMW te
chn
o
logy.
Whe
n
the
d
ange
rou
s
m
a
terial
s
are
made
of m
e
tal, plasti
c
o
r
cerami
c, their bri
ghtne
ss
temperature
differen
c
e
s
wi
th human bo
dies, nam
ed
tempe
r
ature sensitivit
y, are about 6-8 k
and
1-2
k
re
sp
ecti
vely acco
rdin
g to their emi
ssivitie
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
TELKOM
NIKA
TELKOM
NIKA
Vol. 12, No
. 1, Janua
ry 2014: 98 – 10
5
99
12
1
T
TT
SY
S
AR
Te
e
T
T
pi
BB
TT
T
T
WW
AR
AR
s
NN
pL
O
V
L
O
V
BB
FF
ee
(1)
Whe
r
e the p
a
ram
e
ters
A
T
,
R
T
,
B
and
is the anten
na temperature,
the noise
temperature,
the
system
ban
dwi
d
th
and th
e inte
gration
time
respe
c
tively,
is the
ap
ertu
re
efficien
cy of unit antenna,
W
is the facto
r
of
windo
w fun
c
t
i
on,
L
O
is the L
O
factor
F
is the filter
fac
t
or,
V
N
is the sampling
number
of re
ctangular vi
sibility function,
e
is th
e
equivalen
t
integratio
n time of 1bit/2l
e
vel digital correlation,
th
e tempe
r
ature sen
s
itivity of the syste
m
is
about 1.5 K from the a
bov
e formula [1
2
]. As can be
see
n
, the item
B
is the only
variant. Fro
m
the formula
(2) it is the
same for the f
r
inge
-wa
s
hin
g
function
which m
ean
s the de
co
rrel
a
tion
effect of the interferometic
aper
tu
r synth
e
si
s radi
omet
er due to wi
d
e
field of view requi
reme
nt.
sin
ij
rc
B
(2)
So, the fringe
-wa
s
hi
ng fun
c
tion is
descri
bed by
asi
n
c-function in th
e ca
se, which
is only
depe
ndent o
n
band
width
of thereceiv
e
rs. Fo
rcom
pari
s
on, Figu
res 1
sho
w
s this theoreti
c
al
fringe
-washin
g
functio
n
for MIRAS receiver
s (ban
d
w
idth
19 M
H
z), for HUT-2
D
re
ceivers
(ban
dwi
d
th 7 MHz) [13] an
d for our
re
ce
ivers of BHU-2D (b
and
widt
h 400M
Hz).
The maxim
u
m delay form the ed
ge
of the field
of view of B
H
U-2
D
is ±0
.4ns, a
s
explained in
Section 3. Fo
r com
pari
s
o
n
, the ma
ximum delay in the ca
se of MIRAS and HUT-2
D
is ±1
2.5 n
s
a
nd ±6.1
ns
re
spe
c
tively. From Fi
gu
re 2 i
t
can be
se
e
n
that maximum attenuati
o
n
cau
s
e
d
by the theoretical
fringe
-washin
g
function
at these d
e
la
ys
are 0.0
90 for MIRAS, 0.005
for HUT-2D a
nd 0.21 for B
H
U-2
D
.
In pra
c
tice, the freq
uen
cy
respon
se
s o
f
rece
ive
r
s
are not re
ctang
ular, they ha
ve ripple
on the passb
and and finit
e
attenuation
on the stopb
and. They are also no
n-sy
mmetric
cau
s
ing
formula (2) t
o
the compl
e
x. So they ar
e not
simila
r from one to
anothe
r. The
fringe-wa
shi
ng
function
ij
r
is defined a
s
formula (3
) [13-16].
Figure 1. Frin
ge-wa
shin
g functio
n
s of M
I
RAS,
HUT-2
D and BHU-2
D
re
ceive
r
s,
assume
d hav
ing
recta
ngul
ar freque
ncy re
sp
onses, (b
) is
zoom
ed from
(a)
0
*2
,0
,
0
1
()
jf
ij
n
i
n
j
f
ij
rH
f
f
H
f
f
e
d
f
BB
(3)
(a) (b)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
De
sign of Re
cei
v
er
Usedfo
r
Passive Millim
eter Wave Im
aging Syste
m
(Bao-Hu
a Yang)
100
Whe
r
e
n
H
is the normali
ze
d freque
ncy re
sp
onses of re
ce
ivers
i
and
j
.
The aperture synthesis millimeter
waver
adiometer is a two-dim
e
nsional imaging
radio
m
eter h
a
ving 2
4
a
n
te
nna/re
ceive
r
element
s. It
consi
s
ts of a
d
i
sk ante
nna
array, re
ceive
r
s, a
data a
c
qui
sitionsub
system
, and a PC. F
i
gure
2 illu
st
rates the
ante
nnaa
rray and
the re
ceive
r
s of
the instru
men
t
.
(a)
(b)
Figure 2. Illustrates the a
n
tenna
array
an
d the re
ceivers of the instru
ment
The com
p
let
e
in
strum
ent con
s
i
s
ts of
2
4
a
K
-band
recei
v
ers
whi
c
h
a
r
e a
r
rang
ed i
n
Y-
sha
ped confi
guratio
n.
The
receiver di
stance is 3.07
, double
-
si
de
band
width i
s
400M
Hz, the
cente
r
frequ
e
n
cy i
s
34.1
G
Hz an
d
the l
onge
st ba
seli
ne len
g
th of t
he
compl
e
te i
s
0.3
7
m. At the
edge of field
of view (20º
),
these
cha
r
a
c
teristics
le
d to maximum
s
delay of±0.4
ns. After the I/Q
demod
ulated,
the signal i
s
digitize
d in 1-bi
t. All parameters a
r
e tab
u
lated in Tabl
e 1.
The si
gnal
s collecte
d
by the antenn
as
a
r
e fed into a
grou
p of dual
-co
n
versio
n receive
r
s
with I/Q dem
odulato
r
s. F
r
om Figure 2,
each
r
e
c
eive
r co
nsi
s
ts of
a RF front
end an
d an IF
module. Th
e
down
-
conve
r
ters in the
RF fro
n
t end
and the IF
module i
s
op
erated i
n
sin
g
le
side
ban
d mode and
doubl
e side
band mo
de
resp
ectivel
y
. Thenomi
nal gain a
nd
noisetempe
r
a
t
ure ofthe re
ceivers a
r
e 8
7
dB and 370K
respe
c
tively.
Table 1. The
Main Para
me
ters of BHU-2
D
Parameter
Power
(k
W
)
Center Freq
uency
34.1GHz
Band
w
i
dth
LO F
r
equenc
y
Field of View
Temper
ature Se
nsitivity
Geomet
r
y
of Ant
enna Arr
a
y
Number of
Receiver Elements
Antenna Element
Spacing
Number of B
a
selines
Number of
Cor
r
elators
Number of
Cross
Correlato
rs
Calibr
a
tions
400MHz
32GHz (f
or R
F
fr
ont end)
2GHz (fo
r
I/
Q de
modulator)
20°
~1K(0.5s Integra
t
ion time)
~3K(0.05s Integr
ation time)
Y
-
shap
ed
24
27mm(3.07
wavelengths)
427
924
852
Noise Injection(Extern
al point sour
ce)
Background Can
c
ellation
In orde
r to equali
z
ethe
gain bet
wee
n
cha
nnel
s, the gain of IF module can b
e
adju
s
tedby a
variabl
e attenuator. For
the pu
r
pose of re
d
u
cin
g
the d
i
mensi
on of
the
instrument,the receiv
ers are installed parallel to the
arra
y. The RF front end andthe IF module
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
TELKOM
NIKA
TELKOM
NIKA
Vol. 12, No
. 1, Janua
ry 2014: 98 – 10
5
101
are i
n
stall
edi
n Figu
re
2
(a
) an
d
(b).
As
is
sho
w
n
in F
i
gure
3, the
structu
r
e
of th
e sy
stem
ca
n
be
see
n
.
Figure 3. Block di
agram of
the receiving
element.
3. Results of Cacula
tion and Mea
s
ure
m
ent
3.1. Cacula
tion of the F
r
inge-Wa
s
hin
g
Function
The fring
e
-washi
ng functi
on of 24 re
ceivers
of BHU-2
D
are
cal
c
ulate
d
as follows.
Freq
uen
cy re
spo
n
ses of 2
4
BHU-2D
re
ceivers we
re
measured usi
ng a Vecror
Nerwo
r
k Anal
yser
firstly. Forty
eight me
asured fre
que
ncy
re
spo
n
se
s(
on
ly Q
c
h
an
ne
ls
a
r
e sh
own
fo
r co
n
v
ie
nc
e
)
are sho
w
n in
Figure 4.
Figure 4. Fre
quen
cy re
spo
n
se
s of 24 B
H
U-2
D
re
ceiv
ers
(Q chan
n
e
ls)
From
the
me
asu
r
ed
results it i
s
straight
forwa
r
d
to
cal
c
ulate
the
frin
ge-wa
shin
g f
unctio
n
ac
cor
d
ing to
(3). F
o
rty
eig
h
t re
ceiv
er
s f
o
rm
alto
geth
e
r 5
64 b
a
seli
nes,
who
s
e f
r
inge
-wa
s
hin
g
function
s
are
sh
own in
Fi
gure
5
(
a) (m
oduli) an
d (b
) (pha
se
). In
orde
r to
ma
ke their ab
sol
u
te
value eq
ual
s
to 1and th
eir pha
se e
qual
s to 0
at
0
, these f
r
inge
-wa
s
hin
g
fun
c
tio
n
s a
r
e th
e
one
s normali
zed
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
De
sign of Re
cei
v
er
Usedfo
r
Passive Millim
eter Wave Im
aging Syste
m
(Bao-Hu
a Yang)
102
From fig
u
re
5
(
a) we
can
se
e that the
att
enuatio
n is a
pproxim
ately 0.1 aroun
d 0.
4 n
s
. Its
not far away
from the estimation of (2
),
the difference bet
wee
n
the minimum and maximum
attenuation i
s
almo
st 0.06.
From fig
u
re
5(b
)
we
can
see th
at the f
r
inge
-wa
s
hin
g
functio
n
ph
ase
gets value
s
a
pproxim
ately ±0.5°
betwe
en
±0.4 ns.
3.2. Measure
ment Re
sults of Re
ceiv
e
rs
In ord
e
r to
g
e
t good
pe
rf
orma
nce of t
he
system, t
he
con
s
iste
n
c
y of 24
I or Q an
d
betwe
en I and Q chan
nel
s is very important. Fr
o
m
figure 4, the good
con
s
iste
ncy of 24 Q
cha
nnel
s
wa
s g
e
t. The
consi
s
ten
c
y b
e
twee
n I a
n
d
Q
cha
nnel
s
can
be
get f
r
om the
figure
6.
From figu
re 5
(a) a
nd (b
) show the a
m
pl
itude er
ro
r of 24-re
ceiver I/
Q
cha
nnel
s a
nd its averag
e
value, the results vary from
-0.54 to +0
.6
9 dB, its most average valu
e is 0.5 dB.
The interm
e
d
iate re
ceive
r
stru
cture is
dou
ble-sid
eban
d, so the ortho
gon
al pha
se
differen
c
e of
I/Q chan
ne
l output si
g
nals i
n
ban
dwidth
ha
s
two pa
rts, it
s ba
nd
width
is
400M
Hzf
r
om
-200
to 20
0
MHz. F
r
om
figure
7
sho
w
s that the orth
ogon
al ph
ase
differen
c
e
of I/Q
cha
nnel outp
u
t
sig
nal
s
is betwe
en-4.5º
-9º and
th
eir
averag
e valu
e vary from 0
.
34 º to
3.75
º, it
sho
w
s the go
od ortho
gon
al
phase of the I/Q chann
els.
(a)
(b)
Figure 5. Fringe-wa
shi
ng
function
s of BHU-2
D
24
-re
ceiver. (a) Mo
duli of 1128 fringe-wa
shi
n
g
function
s; (b
) Phase
s
of 24
fringe
-washin
g
function
s
(a)
(b)
Figure 6. The
amplitude co
nsi
s
ten
c
y of 24-receiver
, (a
) the amplitud
e error of the
24-re
ceiver
I/Q chann
els;
(b) the ave
r
a
ge value of I/Q cha
nnel
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
TELKOM
NIKA
TELKOM
NIKA
Vol. 12, No
. 1, Janua
ry 2014: 98 – 10
5
103
(a)
(b)
Figure7. The
orthog
onal e
r
ror of 24
-rece
i
ver I/Q
chan
nels, (a
) the o
r
thogo
nal e
r
ror of I/Q
cha
nnel
s; (b
) its averag
e va
lue of ortho
g
onal erro
r.
3.2. Measure
ment Re
sults of Sy
stem
To ch
eck the
instru
ment p
e
r
forma
n
ce, we ta
ke
seve
ra
l scene
s that
peopl
e take
d
i
fferent
material
s such as a ba
g of oatmeal with
a size of 20*1
7
.5cm
From Fig
u
re
8 it shows that the concea
l
weapo
n and
some dan
ge
rou
s
materi
al
s ca
n be
detecte
d by t
he
system
su
ch
as glu
e
a
n
d
po
wd
er.
T
h
eir
right fig
u
res
of figure 8
(a
) ,
(b) an
d
(c)
can
be
obtai
ned from the
su
btra
ct of
the left tw
o.
We
se
e that
the b
r
ightn
e
ss tempe
r
atu
r
e
differen
c
e of 1-2
k
can
be d
e
tected
successfully
and
the requi
rem
e
nt of tempe
r
a
t
ure
sen
s
itivity is
reali
z
ed.
4. Conclusio
n
The aperture synthesi
s
mi
llimet
er waveradiometer
used for
human security inspection
wa
s de
sign
e
d
by the Ele
c
trom
agn
etics La
boratory
of Beihang
Univ
ersity. Fro
m
the re
sults of
freque
ncy re
spo
n
ses,
the fringe
-washin
g
functi
o
n
, and final pe
rfo
r
man
c
e, o
u
r requireme
nts
for
the sy
stem
h
a
ve be
en
re
a
lized
which h
a
s
goo
d
p
e
rf
orma
nce of
the a
m
plitude
and
o
r
thog
o
nal
pha
se con
s
istency and 1
-
2 K temperat
ure
sen
s
itiv
ity. The next generation
of our system
is
U-
sha
ped SAIR with 48 re
cei
v
ers.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
De
sign of Re
cei
v
er
Usedfo
r
Passive Millim
eter Wave Im
aging Syste
m
(Bao-Hu
a Yang)
104
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
05
0.
1
0.
15
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
0
5
0.
1
0.
1
5
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
05
0.
1
0.
15
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
0
5
0.
1
0.
1
5
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
05
0.
1
0.
15
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
0
5
0.
1
0.
1
5
(a) Peo
p
le ta
king a
knife
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
05
0.
1
0.
15
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
0
5
0.
1
0.
1
5
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
05
0.
1
0.
15
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
0
5
0.
1
0.
1
5
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
05
0.
1
0.
15
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
0
5
0.
1
0.
1
5
(b) Peo
p
le ta
king a b
ag of oatmeal
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
05
0.
1
0.
15
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
0
5
0.
1
0.
1
5
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
05
0.
1
0.
15
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
0
5
0.
1
0.
1
5
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
05
0.
1
0.
15
-0
.
1
5
-0
.
1
-0
.
0
5
0
0.
0
5
0.
1
0.
1
5
(c) People ta
king a b
ag of glue
Figure 8. The
image of peo
ple with different ma
terial
s,
(a) pe
ople ta
king a
knife; (b) peo
ple
taking a b
ag
of oatmeal; (c) peopl
e takin
g
a bag of glu
e
.
Referen
ces
[1]
R T
hompson,
JM Moran,
and
GW
S
w
e
n
so
n
Jr.
Interferometryand Sy
nthes
i
s
in R
a
d
i
o Astr
ono
my
. 2nd
ed. John W
i
l
e
y &Sons. Ne
w
Y
o
rk. 2001: 1
2
-4
0.
[2]
B
T
anner, WJ Wilson, and B
H
Lam
br
igsten et al..Initial resultsof
the geostationar
y
s
y
nt
hetic thinned
arra
y ra
di
omet
er (GeoST
A
R)demo
n
strator i
n
strument.
IEEE Trans. Geosci. Rem
o
t
e
Sens.
20
07; 4
5
(
7): 1947-
19
57.
[3]
Simora
ngkir
R
o
y
BV
B, Muni
r Achmad. N
u
meri
cal
des
ign
of ultra-
w
i
de
ban
d pri
n
ted
anten
na fo
r
surface p
e
n
e
trating r
a
d
a
r ap
plicati
on.
T
e
lk
o
m
n
i
kaIn
don
esi
an Jo
urn
a
l of
Electrical
Eng
i
neer
ing
. 2
0
11;
9(2): 341-
35
0.
[4]
B
T
anner, BH Lambri
g
s
t
en,
T
M
Gai
e
r, F
T
o
rres.
Near field
characteri
z
a
t
i
on of t
h
e
GeoST
A
Rde
m
onstrator
. Proc
IEEE IGARSS, Denver, Co, USA. 2006; 2
5
29–
25
32,.
[5]
Ding
H. Ap
pl
ic
ation
of W
i
rel
e
ss Sens
or N
e
tw
o
r
k i
n
T
a
rget Detecti
on
and
Loc
aliz
ation.
TEKOMNIKA
Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
T
o be pulish
e
d
in 2013; 1
1
(1
0).
[6]
WANG
Nan-nan
,
QIU Jing-
hui
,
DENG W
e
i-b
o
.Deve
l
o
p
m
ent Status
of Mill
imeter
W
a
ve Imag
in
g
S
y
stems for C
once
a
le
d Dete
ction.
Infrared T
e
chno
logy
. 2
009; 31(
3): 129
-135.
[7]
Gordon
N Si
ncl
a
ir, Ru
pert N A
nderto
n, an
d R
oger A
ppl
eb
y.
Outdoor P
a
ssi
ve Mill
i
m
eter
W
a
ve Secur
i
ty
Screen
ing
. Sec
u
rit
y
T
e
chno
lo
g
y
200
1 IEEE 35th Intern
atio
nal C
a
rna
h
a
n
. 200
1: 172-
179.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
TELKOM
NIKA
TELKOM
NIKA
Vol. 12, No
. 1, Janua
ry 2014: 98 – 10
5
105
[8]
John
A L
o
vbe
r
g, Chris
Marti
n
, an
d Vl
adim
i
r Koli
nko.
Vi
de
o-Rate P
a
ssiv
e
Mil
l
i
m
eter-w
ave I
m
a
g
in
g
Using P
hase
d
Arrays
. Micro
w
ave S
y
m
pos
iu
m 2007,IEEE/MTT-S
Internation
a
l. 20
07: 16
89-1
692.
[9]
Yong
Xue, Ju
n
gan
g Mia
o
, Gu
olo
ng W
an, A
n
yo
ng
Hu, F
e
n
g
Z
hao.
Prototy
pe d
e
vel
o
p
m
e
n
t of an
8mm
ban
d 2-D
i
men
s
ion
a
l a
pertur
e
synthesis r
adi
o
m
eter.
2
0
0
8
Internati
ona
l
GeoScie
n
ce
and R
e
mot
e
Sensi
ng s
y
mp
osium. Boston
. 2008: 41
3-41
6.
[10]
Any
o
ng and Miao Ju
ngang. Protot
y
pe dev
elopment of an 8mm-band t
w
o
di
mensional interferometer
s
y
nt
hetic ap
erture radi
ometer.
Mechan
ic Automa
tio
n
and C
ontrol En
gin
eer
ing (MACE), 2
011 Sec
o
n
d
Internatio
na
l C
onfere
n
ce. Bao
t
ou. 201
1: 148
7-14
90.
[11]
Yong
Xue, J
u
n
gan
g Mi
ao,Gu
olo
ng W
a
n.
De
velo
p
m
ent
of the d
i
sk a
n
ten
n
a
array
ap
ertur
e
synth
esis
mi
lli
meter w
a
ve radio
m
eter.
In
ternatio
nal C
o
n
f
erence o
n
Micro
w
av
e and Mil
limeter W
a
ve T
e
chn
o
lo
g
y
.
ICMMT
2008. 200
8; 2: 806 –
809.
[12]
Bao-H
ua Ya
ng
, Ghulam Meh
d
i, An
yon
g
Hu
.
T
he Roun
d-
Ende
d Des
i
gn
and Me
asure
m
ent of Al
l
S
y
mmetric Ed
ge-C
oup
le
d Ba
ndp
assfilter.
Progress In Elect
r
omag
netics R
e
searc
h
C
. 20
13; 38: 191-
203.
[13]
Che
ng Zhe
ng,
Xi
an
xun Ya
o, An
yon
g
Hu, a
n
d
Jun
gan
g Mia
o
. A Passive M
illim
eter-W
ave
Imager Use
d
F
o
rconce
a
le
d W
eapo
n Detec
t
ion.
Progress I
n
Electrom
agnetics Research B
. 2013; 46: 3
79-3
97.
[14]
T
o
rres F,
T
anner AB, Bro
w
n
ST
, et al. An
al
ysis
of Arra
y Distortion i
n
a Micro
w
a
v
e Interferometri
c
Radi
ometer.
Application to t
h
e GeoSTAR Pr
ojec
t. IEEE Tr
ans. Geosci.
Rem
o
te Sens.
20
07;
45(
7):
195
8-19
66.
[15]
Juha
Kai
n
u
l
ai
nen, K
i
mmo
Rauti
a
in
en, M
a
rtti Ha
llik
ain
e
n
,
Exper
i
m
ent
al V
e
rificati
on
of F
r
in
ge-
w
a
shing
C
al
ibr
a
tion
T
e
ch
niq
u
e
s i
n
L
a
rg
e Ap
erture Sy
nthes
i
s
Ra
dio
m
eters
. IEEE MicroRad. SanJ
uan.
200
6: 13-1
7
.
[16]
Xi
an
xun Ya
o,
Z
h
ipi
ng L
i
, Ch
eng Z
h
en
g, Ba
ohu
a
Ya
ng. An
al
ysis a
nd
Cor
r
ection
of the Inter-cha
nn
el
Mismatch i
n
S
y
nt
hetic A
p
e
r
ture Ra
di
ometer.
T
EKOMNIKA Indo
nes
ian J
our
nal
of Electrica
l
Engi
neer
in
g
. T
o
be pu
lis
hed i
n
Dec. 201
3.
Evaluation Warning : The document was created with Spire.PDF for Python.