TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 16, No. 1, Octobe
r 201
5, pp. 46 ~ 5
1
DOI: 10.115
9
1
/telkomni
ka.
v
16i1.842
9
46
Re
cei
v
ed
Jun
e
24, 2015; Revi
sed Aug
u
st
2, 2015; Accepted Augu
st
20, 2015
A 45 nm 6 Bit Low Power Current Steering Digital to
Analog Converter Using GDI Logic
Bhar
at H. Na
gpara
C.U.Shah C
o
ll
ege of En
g
i
n
e
e
r
ing
a
n
d
T
e
c
hnolo
g
y
, W
a
dh
w
ancit
y, Gujarat,
India
E-mail: bh
aratn
agp
ara8
3@
g
m
a
i
l
.
com
A
b
st
r
a
ct
In this p
aper,
the d
e
sig
n
a
nd i
m
ple
m
ent
ation
low
pow
er curre
nt steerin
g di
gita
l to an
al
o
g
converter
in
4
5
n
m
tec
h
n
o
lo
g
y
usi
ng GDI
Lo
gic
usin
g T
A
N
N
ER T
OOL V1
5 is
pres
ente
d
. T
h
is
architect
u
r
e
gives the
mos
t
optimi
z
e
d
re
sults in ter
m
s
of s
peed, re
soluti
on a
nd p
o
w
e
r. T
he de
sign
ed 6-
bit D
A
C
oper
ates w
i
th tw
o supply vol
t
ages, 1 V a
n
d
3.3 V. T
he
simulati
on r
e
s
u
lt show
s the
transie
nt ana
ly
sis
w
a
veforms
of
current steer
in
g DAC. T
h
e a
v
erag
e p
o
w
e
r dissip
a
tio
n
is
364.0
6
μ
W
.
T
he to
ol us
ed f
o
r
simulati
on
is T
ann
er S-Ed
it a
nd T
-
Sp
ice. C
o
mparis
ons
sh
ow
that usi
ng
GDI logic
co
ns
ists low
p
o
w
e
r a
s
compare to the CMOS logic.
Ke
y
w
ords
:
CMOS, current-source, TANNER TOOL
Co
p
y
rig
h
t
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
GDI Logi
c in
CMOS tech
nologi
es h
a
s been u
s
ed
for low po
wer appli
c
atio
ns; also
submi
c
ron
proce
s
se
s h
a
ve allo
wed
CMOS to a
c
hi
eve low po
wer. In a
wi
rel
e
ss
system t
h
e
quality of the
co
mmuni
cati
on lin
k i
s
m
a
i
n
criteri
a
, for
long
dista
n
ce
tran
smi
ssi
on
it is
ne
ce
ssa
r
y
to conve
r
t analog
sign
al into digital si
gnal at i
nput
side, sa
me
as convert di
gital sign
al into
analo
g
si
gnal
at output
si
de. In this p
aper cu
rrent
steeri
ng
DAC usi
ng 4
5nm
tech
nology
are
pre
s
ente
d
.
CMOS te
ch
nology di
ssi
pates le
ss
power
com
p
are to
othe
r de
sign.
CMOS
architectu
re
can b
e
ea
sily
scaled
do
wn
for the
maj
o
r three
facto
r
s:
1)
Are
a
2) Speed 3
)
Power
[1].
Energy p
e
rfo
r
mance requi
rem
ents
are forci
ng d
e
si
gn
ers
of
next-g
eneration
systems to
explore
app
roache
s to le
ase
po
ssibl
e
power
co
n
s
umption. Po
wer
co
nsum
ption is m
a
j
o
rly
affected by p
o
we
r supply
voltage. Scali
ng of po
we
r
sup
p
ly voltage is majo
r fa
ctor to redu
ce
power Co
nsu
m
ption.
Th
e techni
que
to achi
eve
ul
tra
-
low po
we
r i
s
to
ope
rate
the c
i
rcuit with
sup
p
ly voltage less than
threshold vol
t
age. T
he re
gion where sup
p
ly voltage is less tha
n
threshold
voltage i
s
call
ed
sub
threshold
re
gion.
Ultra
-
low po
we
r
consumption
can b
e
a
c
hi
eve
d
by operating
digital circui
ts at sub th
resh
old r
egio
n
. Here prop
ose
d
su
b thresh
old ci
rcuit
is
based
on
G
D
I (Gate
Di
ffusion In
put
) te
chniq
ue.
GDI
techni
que
allo
ws
redu
cin
g
p
o
wer
con
s
um
ption,
delay, are
a
o
f
the digital ci
rcuit
wh
ile
ma
intaining lo
w
compl
e
xity of logic
de
sign a
s
comp
ared to other CMOS
(Co
m
plem
ent
ary
Metal Oxide Semicond
uctor) ci
rcuits
[2].
Scaling
of po
wer supply v
o
ltage i
s
maj
o
r fa
ct
or to
redu
ce the
po
wer con
s
ump
t
ion. Sub
threshold
ope
ration h
a
s
gai
ned a lot of at
tention du
e to ultralo
w
-p
ower con
s
um
ption ap
plicatio
n
s
requi
rin
g
low to medium
perfo
rman
ce.
It has also been
sho
w
n
that by optimizing the
dev
ice
stru
cture, po
wer
co
nsum
ption of digit
a
l su
b thre
shold l
ogi
c
ca
n be furth
e
r minimized
while
improvin
g its perfo
rman
ce.
To ac
complish this
task
c
i
rc
uit
with lower
fre
que
ncy
sho
u
ld b
e
o
perate
d
in th
e we
ak
inversi
on
re
gi
on o
r
su
b thresh
old
regi
o
n
. Sub th
re
shold circuit
s
are
very sen
s
itive
to
p
r
o
c
ess
variation
s
a
n
d
temp
eratu
r
e fluctu
ation.
The
s
e,
and
othe
r fa
ctors, have
to
be ta
ken
int
o
con
s
id
eratio
n
when d
e
si
gni
ng circuit
s
for sub thresh
ol
d operation.
The archite
c
t
u
ral te
chniq
u
e
described i
n
this pap
er
sug
g
e
s
ts a d
e
sig
n
to mini
mize a
r
ea
and
cap
a
cita
nce
by usi
ng
Gate Diffu
sio
n
Input (GDI
) multiplexer.
As feature si
ze of the
CM
OS
(Co
m
plem
ent
ary Metal Oxide Semico
n
ducto
r) te
ch
n
o
logy contin
u
e
s to scale
down, leaka
g
e
power ha
s be
come a
n
ever-incre
asi
ng i
m
porta
nt
part
of the total p
o
we
r co
nsum
ption of a chi
p
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A 45 nm
6 Bit Low Power
Curre
n
t Steering Digital to
Analog Con
v
erter… (Bha
rat H. Nagp
ara)
47
Figure 1. GDI
Basic
Cell [4]
The G
D
I m
e
thod i
s
ba
se
d on
the
sim
p
le
cell
sho
w
n i
n
Fig
u
re
1. A ba
si
c
GDI
cell
contai
ns
four terminal
s -
G
(the comm
on
gate
in
put
of
the nM
OS a
nd pM
OS tra
n
si
stors), P
(t
he
outer diffu
sio
n
node of the
pMOS tran
si
stor), N
(the
outer diffu
sio
n
node of the
nMOS tran
si
stor)
and th
e D no
de (th
e
com
m
on diffu
sion
of both
tran
sistors).
P, N and D
m
a
y
b
e
u
s
ed
as
eit
her
input o
r
o
u
tp
ut port
s
, de
p
endin
g
on
th
e ci
rcuit
st
ructure. Simple
r gate
s
, lower tran
sisto
r
co
unt,
and lo
we
r po
wer
dissip
ation in ma
ny impleme
n
ta
tio
n
s, a
s
compa
r
ed
with sta
n
dard
CM
OS and
PTL desi
gn tech
niqu
es. M
u
ltiple-in
put g
a
tes can be
impleme
n
ted
by combinin
g several G
D
I
cell
s. The buf
fering con
s
tra
i
nts, due to possible VT
H
drop, a
r
e de
scrib
ed in deta
il in, as well as
techn
o
logi
cal
comp
atibility with CM
OS and SOI
[2].
Table 1. Som
e
logic fun
c
tio
n
s that ca
n b
e
impleme
n
te
d with a sin
g
l
e
GDI cell
[4]
2. DA
C
Ar
chite
c
ture
The Segm
ent
ed Current- S
t
eering
archit
ecture is
sho
w
n in
Figu
re
2. The a
r
chitecture is
a
c
o
mb
in
a
t
ion
o
f
tw
o
p
a
r
ts
, th
e
MSB is
g
o
i
n
g
th
ro
u
g
h
th
e
th
e
r
mome
te
r
co
d
e
d
a
r
ch
ite
c
tur
e
and
the LSB i
s
g
o
ing th
ro
ugh
the Bina
ry
Weighted
a
r
chitecture. Th
e i
nput n
-
di
gital co
de
s
are
sent
into buffer to get enou
gh a
m
plitude an
d synchro
n
ized
with the clock. Then the (N-B) bit
s
MSBs
are
decode
d
by thermo
me
ter de
cod
e
r t
o
re
duce t
he
glitch a
nd a
c
hieve well ma
tching
of cu
rrent
sou
r
ces. T
h
e
B Bits LSB is given to th
e
LSB Delay.
The
signal
after de
co
ding
will be
co
ntro
lled
by latch to pu
t into current swit
ch array
or no
t, whi
c
h
deci
d
e
s
the o
u
tput cu
rre
nt dire
ction [3-4].
The bi
na
ry weighted
archi
t
ecture
is very simple,
but
less
accu
rat
e
. The th
erm
o
meter
cod
ed archite
c
ture i
s
very accurate, but the circ
uit co
mplexity is very high, and i
s
com
p
a
r
atively
slo
w
.
The 3-bit LSB are implem
ented u
s
ing
binary weight
ed archite
c
tu
re, thus
requi
res
only
three
current
so
urce
s. T
h
e 3
-
bit MSB
is
impl
eme
n
ted usin
g thermometer
cod
ed archite
c
tu
re,
whi
c
h
requi
re
s 7
cu
rrent source
s. So, total 10
cu
rre
nt sou
r
ce
s a
r
e nee
ded to
impleme
n
t 6-bit
DAC, whi
c
h
is quite lo
w as c
o
mpa
r
e
d
to fully
thermometer
cod
ed archite
c
tu
re. The bin
a
r
y
weig
hted
cu
rrent sou
r
ce
i
s
also
simila
r,
but to
com
p
e
n
sate
the
del
ay of row-col
u
mn
decode
r in
thermom
e
ter
cod
ed curren
t source
s, the dummy
co
mbination lo
g
i
c is p
r
ovide
d
,
which e
n
sures
that the
digita
l input i
n
b
o
th
bina
ry
weig
h
t
ed an
d the
r
mometer
cod
ed
cu
rre
nt so
urce
rea
c
h
e
s at
the swit
che
s
at the same i
n
stant.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 1, Octobe
r 2015 : 46 – 5
1
48
Figure 2. Segmented Curre
n
t Steering Di
gital to Analog Conve
r
ter
The m
a
in
bui
lding
blo
c
ks i
n
this p
r
ototype
a
r
e th
e u
n
it cu
rrent
ce
lls, Lat
che
s
a
nd the
thermom
e
ter decode
r
de
si
gn.
3.
Cas
c
ode
Cu
rrent Sour
ce
w
i
th T
h
ick
Oxide La
y
e
r Cas
c
oded S
w
i
t
che
s
The
cu
rre
nt cell configu
r
ati
on u
s
e
d
he
re
is
a thick
oxide laye
r tra
n
s
isto
r fo
r the
swit
ch
Ca
scode [5]
.
The low voltage hea
droo
m proble
m
in 45-nm techn
o
logy can b
e
solved usi
n
g
a
thick oxide l
a
yer tran
sist
or fo
r the
switch
casc
ade [5]. This thick
oxide layer trans
i
s
t
or c
an
operate
with
a high
er
su
p
p
ly voltage u
p
to 3.
3 V.
Hen
c
e th
e v
o
ltage h
ead
room i
s
in
cre
a
sed
signifi
cantly. Care
shoul
d
be taken to p
r
event the
voltage at the
drain of t
he swit
chin
g
tran
si
stors
from in
crea
si
ng b
e
yond
the m
a
ximum
su
pply volta
ge in
45
-nm
tech
nolo
g
y i
.
e. beyond
1
V.
Method
s u
s
e
d
to keep th
e voltage at
the drain
of
the switchin
g tran
si
stor
belo
w
1 V a
r
e
explained
b
e
l
o
w.
The
d
r
ai
n voltage
of t
he
swit
chin
g
transi
s
to
r
can
be
held
con
s
tant by u
s
ing
a
voltage reg
u
l
a
tor. The vol
t
age re
gulato
r
(Ze
ner di
od
e) is
con
n
e
c
ted in pa
rallel
such that the
voltage at th
e drai
n re
ma
ins b
e
low
1
V, but
its un
kno
w
n le
aka
ge current fl
ows thro
ugh
th
e
output of
the
DAC. T
h
e
out
put current
of
the
cu
rr
ent steering
DAC sho
u
ld be pro
portion
al
to
the
input co
de
[5]
.
Figure 3. Ca
scod
e Cu
rrent Source with
T
h
ick Oxide La
yer Ca
scode
d Switche
s
[5
]
A novel impl
ementation
of a GDI
DFF i
s
sho
w
n in Fi
gure
4. It is b
a
se
d on th
e Maste
r
-
Slave con
n
e
c
tion of two
G
D
I D-Lat
che
s
. Each lat
c
h
consi
s
ts
of fou
r
ba
si
c G
D
I cells, resultin
g
in
a simple
eigh
t-tran
sisto
r
st
ructu
r
e. Th
e comp
one
nt
s
of the circuit can b
e
divide
d into two m
a
in
c
a
te
go
r
i
es
:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A 45 nm
6 Bit Low Power
Curre
n
t Steering Digital to
Analog Con
v
erter… (Bha
rat H. Nagp
ara)
49
(a)
Bo
dy
g
a
t
es
– re
spo
n
si
b
l
e for the stat
e of the circui
t.
These gate
s
are controlle
d by the Clk sign
al and create two alte
rnative path
s
: one for
transpa
rent
state of the
la
tch
(when
th
e Cl
k
i
s
low
and th
e
sign
als
are p
r
op
agating
thro
u
gh
PMOS tran
si
stors),
and
a
nother for th
e hol
ding
st
a
t
e of the l
a
tch (whe
n the
Clk is high
a
n
d
internal valu
e
s
are m
a
intai
ned du
e to co
ndu
ction of the NMOS tra
n
s
isto
rs).
(b)
I
n
ve
rt
er
s
(marke
d by ×) – re
spo
n
si
b
l
e for maintai
n
ing the com
p
lementa
r
y value
s
of
the intern
al si
gnal
s and th
e circuit outp
u
ts. An additi
onal impo
rtan
t role of inverters i
s
bufferi
ng
of the internal
signal
s for swing resto
r
ati
on and imp
r
o
v
ed driving a
b
ilities of the outputs.
Figure 4. GDI
D-Flip
-Flo
p impleme
n
tatio
n
This pa
rtition
to categori
e
s ca
n be hel
pful for unde
rstan
d
ing of
circuit ope
rati
on and
optimizatio
n.
As can b
e
se
en, in bo
dy g
a
tes the
tran
smissi
on
of the sig
nal i
s
p
e
r
forme
d
throu
g
h
the diffusi
on
node
s
of the
GDI
cell
s. It might cau
s
e
a swin
g d
r
op
of VTH in th
e outp
u
t si
gn
als.
This p
r
obl
em
is solved by
the internal in
verters
in thei
r buffer role. Perform
a
n
c
e
optimizatio
n of
the pro
p
o
s
ed
circuit
can
b
e
perfo
rme
d
by adju
s
ting t
he tran
si
stor
sizes
(a
s
swe
ep pa
ram
e
ter in
simulatio
n
) to
obtain
a
min
i
mal po
we
r
d
e
lay produ
c
t.
This procedu
re i
s
ite
r
ative
and
contain
s
a
seq
uen
ce
of sep
a
rate size
adjustme
n
ts:
(a) First, the
same
scaling
facto
r
i
s
o
b
tained
for all t
r
an
sisto
r
s of
the
circuit
(bo
d
y gate
s
and inverte
r
s).
(b) Secondly,
iterative
size
optimization
s
a
r
e
applie
d
se
parately to inverte
r
s a
nd bo
dy
gates
(mo
s
tly by oppo
site shifting of th
e scali
ng fa
ct
ors
aro
und t
he “o
peration
point” foun
d
in
(a)), while ta
rgeting the mi
nimal po
we
r-delay pro
d
u
c
t.
(c) F
o
r
high
l
oad
req
u
irem
ents, a
n
a
ddit
i
onal
optimization can
be
sep
a
rately pe
rforme
d
on the inverte
r
of the Slave latch.
The rel
a
tively compa
c
t structure of the pr
opo
se
d DFF, containi
n
g
18 tran
sist
ors
(with
the inverter for com
p
lem
e
ntary value of D), make
s it an efficient
alternative fo
r obtainin
g
the
combi
nation
of low are
a
a
nd high p
e
rfo
r
man
c
e [6].
4. Binar
y
-to-Th
e
rmomete
r
Deco
der
The Bina
ry to therm
o
met
e
r de
co
der i
s
used to
co
n
v
ert N bit bin
a
ry input into
2
N
– 1
Therm
o
mete
r code
d output
lines.
Figure 5. 3-b
i
t Binary to Therm
o
mete
r De
cod
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 1, Octobe
r 2015 : 46 – 5
1
50
In this im
ple
m
entation, 3
bits a
r
e
co
nverted i
n
to the
7 bit th
erm
o
meter
co
de.
The 3
bit
binary to 7 bit
thermom
e
ter bit deco
der
a
r
e sho
w
n
in fi
gure. It req
u
ires two input
and three inp
u
t
AND gate
an
d OR gate fo
r Impleme
n
ta
tion. This
logi
c gate
s
are Impleme
n
ted
usin
g GDI Lo
gic
[7].
Figure 6 sho
w
the re
con
s
t
r
ucte
d sin
e
wave
of the segmented
DAC and Figu
re
7 shows
its FFT sp
ect
r
um from Fi
g
u
re 7, the m
easure
d
SFDR is 77
dB. The mea
s
u
r
ed
averag
e po
wer
dissipatio
n is
364.06
μ
W.
Figure 6: Sine Wave Outp
ut of 6-bit DAC
Figure 7. Fast Fourie
r Tra
n
s
form of Sine
wave output
of 6-bit DAC
Figure 8. DNL & INL Plots of 6-bit DAC
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A 45 nm
6 Bit Low Power
Curre
n
t Steering Digital to
Analog Con
v
erter… (Bha
rat H. Nagp
ara)
51
The mea
s
u
r
e
d
respon
se ti
me is 672 p
s
and settling
time is 72 ps. Figure 8 sh
ows the
DNL a
nd I
N
L plot
s. As
sho
w
n, th
e
measur
ed
DNL
and
INL
are 1.0
LS
B and
0.8
L
S
B,
respe
c
tively, whi
c
h i
s
q
u
ite a
c
ceptable
in term
s of
m
onotoni
city condition. T
abl
e 2
summ
ari
z
e
s
and comp
are
s
the sim
u
lati
on re
sult
s of 6-bit segm
e
n
ted DA
C with
previou
s
impl
ementation
s
.
It
sho
w
s that
DAC i
s
u
s
in
g
GDI lo
gic im
plementatio
n
Co
nsume
lo
w p
o
wer the
n
the
DA
C u
s
ing
CMOS
Table 2. Summary and
compa
r
ison of simulatio
n
re
sults of 6
-
bit dac d
e
si
gn
s
Parameter
This
Implementa
tion
(G
DI LOGIC)
Chen
et
a
l
[ 8 ]
Resolution
6 bit
6 bit
Technolog
y
45 nm-
G
DI
90nm CM
OS
DNL
1.0 LSB
0.05 LSB
INL
0.8 LSB
0.07 LSB
SFDR
77 dB
41.54 dB
Average po
w
e
r
Consumption
364.06 uW
8.32mW
Suppl
y
Voltage
1 v & 3.3 v
1.2 v & 2.5 v
Response Time
672 ps
--
Settling Time
72 ps
--
5. Conclu
sion
This imple
m
ented DA
C provide
s
de
sired level of accura
cy with very low powe
r
con
s
um
ption.
In any
appli
c
ation
s
with t
he r
equi
rem
e
nt of hig
h
sp
eed
and
accura
cy, this
DAC
can
be u
s
ed.
Some Co
mp
romi
se with t
he DNL & INL then the
CMOS is ob
se
rved but u
s
in
g
some
spe
c
ial
Curre
n
t Calib
ration Te
ch
ni
que it can b
e
remove
d.
Referen
ces
[1]
W
i
kner J Jac
o
b. Studi
es on
CMOS Dig
ital-
T
o-Analog C
o
nverters
ǁ
. Diss
e
rtation T
hesis
. Linkö
p
i
ng,
S
w
e
d
en Li
nkö
p
in
g. Dep
a
rtment of Electrica
l
Engi
neer
in
g L
i
nkö
p
in
gs Univ
ersitet; 2001.
[2]
Arkadi
y M
o
rg
e
n
shtei
n
, Ale
x
a
nder F
i
s
h
, Isra
il A W
a
gner.
An
Effi
ci
en
t Im
pl
em
en
ta
ti
on o
f
D
-
fl
ip
-fl
op
usin
g GDI T
e
chni
que
. IEEE. 2004.
[3]
W
e
i-She
ng Ch
eng, Min-
Han
Hsieh, Sh
uo-H
ong
H
u
n
g
, Szu-Yao H
ung,
Charl
i
e C
hun
g
-
Ping C
hen
. A
10-b
i
t Current-
S
teerin
g DAC
for HomePl
ug
AV2 Po
w
e
r lin
e Co
mmu
n
icati
on Syste
m
in 90n
m CMOS.
Graduate Instit
ute of Electron
i
cs E
ngin
eeri
n
g
,
IEEE. National T
a
i
w
a
n
Un
iv
ersit
y
, T
a
ipei,
T
a
i
w
a
n
. 201
3.
[4]
B
y
u
ng-
Do Y
a
n
g
a
nd B
o
-Seo
k Seo. 1
0
-Bit
200-MS/s
C
u
rr
ent-Steeri
ng
D
A
C Usi
ng
Dat
a
-De
pen
de
nt
Current-C
ell C
l
o
ck-Gating.
ET
RI Journa
l.
201
3; 35(1).
[5]
Z
i
te Sha
l
aka
E, Beek P
C
W
,
Briair
e Jo
ost, Hegt JA,
Ro
ermun
d
AHM.
Scal
ing
a
Di
gital-to-A
nal
o
g
Conv
erter from CMOS18 to CMOS090.
In Pro Risc. 200
5.
[6]
R Jacob B
a
ker
.
CMOS Circuit Desig
n
, La
yo
u
t
and Si
mul
a
tio
n
.
T
h
ird Editio
n. W
ile
y
P
ubl
ic
ation. 19
64
:
1-31.
[7]
Rahmi H
e
zar,
Lars Risb
o
, Hali
l Kip
e
r, Moun
ir
F
a
res, Baher H
a
rou
n
,
Gangad
har
Burra, Gabrie
l
Gomez.
A 1
1
0dB S
NR
an
d
0.5
m
W
C
u
rre
nt-Steerin
g
A
u
dio
DAC
Impl
emente
d
i
n
4
5
n
m
CMOS
ǁ
.
ISSCC. 2010.
[8]
Ren-
Li C
h
e
n
,
Soon-J
y
h
C
h
a
ng. A
6-bit
Cur
r
ent-Steeri
ng
DAC
w
i
t
h
C
o
m
pou
nd
Curre
nt
Cel
l
s for B
o
th
Commun
i
cati
o
n
a
n
d
Ra
il-to-
R
ail
Vo
ltag
e-S
ource
Ap
plic
ations.
IEEE
T
r
ansacti
ons
on
Circu
its a
n
d
System
s-II: Express Briefs.
2
012; 59(
11).
Evaluation Warning : The document was created with Spire.PDF for Python.