TELKOM
NIKA
, Vol. 11, No. 12, Decem
ber 20
13, pp.
7251
~72
5
8
e-ISSN: 2087
-278X
7251
Re
cei
v
ed
Jul
y
23, 201
3; Revi
sed Aug
u
st 17, 2013; Accepted Aug
u
s
t 29, 2013
Temperature Monitoring System based on PLC
Shouchen
g
Ding*, Wen
h
u
i Li
Coll
eg
e of Elec
trical an
d Information En
gi
ne
erin
g,
Lanz
hou
Universit
y
of T
e
chn
o
lo
g
y
, Lan
zhou 7
3
0
050,
Gansu, Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: dingsc
@
lut.c
n
A
b
st
r
a
ct
T
he progr
amma
bl
e log
i
c control
l
er (PLC
) is an
indust
r
ial contro
l co
mp
uter; it is the new
auto
m
atic
devi
c
e inh
e
rite
d computer, a
u
to
matic c
ontrol
techno
lo
gy an
d co
mmun
icati
on tech
nol
ogy
.
System te
mper
ature si
gna
l d
e
t
ected by th
e temper
at
ure se
nsor. The te
mperatur
e trans
mitter w
ill
be t
h
e
temp
eratur
e valu
e converte
d into a volta
ge sig
nal
of
0-10V i
n
to PL
C. PLC voltag
e sign
al settin
g
compar
ed to the te
mper
atur
e devi
a
tio
n
after PID oper
ati
on; the system w
ill iss
ue a te
mp
eratur
e con
t
rol
sign
al to r
eac
h the
el
ectric
heater
volta
g
e
control. S
o
th
at it i
m
p
l
e
m
e
n
t
s a conti
n
u
o
u
s
monitor
i
n
g
a
n
d
control of the temper
ature. T
he te
mper
ature
mon
i
tori
ng sys
tem in th
e ind
u
s
trial fiel
d has
a certain va
lu
e.
Ke
y
w
ords
: temp
eratur
e mon
i
torin
g
, PID, cont
rol, config
ura
t
ion softw
are, PLC
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
The temp
erature i
s
comm
only used in
the i
ndu
stri
al
pro
d
u
c
tion
p
r
ocess para
m
eters,
while
clo
s
ely
related to
p
eople'
s live
s
. In many
fields of
sci
entific
re
se
arch a
nd
produ
ctio
n
pra
c
tice, the
temperature
control occu
p
i
es a very
important po
siti
on, espe
ciall
y
in metallurg
y,
chemi
c
al i
n
d
u
stry, buildi
n
g materi
als, f
ood, ma
chin
e
r
y, petrole
um
and oth
e
r in
dustri
e
s, h
a
s a
pivotal role.
Programma
bl
e Logi
c Cont
rolle
r (PL
C
) i
s
an in
du
stri
al cont
rol co
mputer; inh
e
rit
comp
uter,
au
tomatic
cont
rol technolo
g
y and
co
mmu
nicatio
n
tech
nology a
s
on
e of the
ne
w
automatic d
e
vice. It has stro
ng a
n
ti-interfe
ren
c
e ability and chea
p price, relia
bility,
prog
ram
m
ing
is sim
p
le, e
a
sy to lea
r
n
and u
s
e, by
the proj
ect o
perato
r
, like i
n
the indu
stri
al
field, the PLC has be
en wi
dely use
d
in variou
s a
r
ea
s
of industri
a
l control.
The
configu
r
ation softwa
r
e is a
n
auto
m
atic
control system
m
onit
o
ring
l
a
yer a softwa
r
e
platform
and development environment. Its flex
ible configurati
on
w
ill provi
de users
with
softwa
r
e tool
s to quickly b
u
ild indu
strial
automat
ic
co
ntrol sy
stem monitori
ng an
d gene
ral lev
e
l.
Before the ap
pearan
ce of the co
nfiguration software,
the indu
strial
area
s of the u
s
er
by
hand
or entrust a
third
party to
writ
e HMI
(Hum
an Ma
chi
ne
Interface software), it
ha
s
develop
ed a
long time, low efficien
cy and po
or reliability short
c
oming
s
; or b
u
y a dedicated
indu
st
rial con
t
rol
sy
st
e
m
s.
I
t
usua
lly is a
clo
s
ed
syste
m
, the choi
ce
of small, often can
not me
et
the dema
nd,
and it is
difficult to exch
ange
data
with the outsi
d
e
wo
rld, up
g
r
ade
and
ad
d
function
ality to be seve
rely restri
cte
d
. T
he em
erge
nce of the c
onfig
uration softwa
r
e
config
uratio
n softwa
r
e allo
ws u
s
e
r
s to b
u
ild a
system
whi
c
h be
st su
it
s their own appli
c
ation
s
.
With the ra
pi
d increa
se in
the level of indu
strial auto
m
ation, com
p
uter wid
e
ly u
s
ed in
the ind
u
stri
al
field, a
wid
e
ra
nge
of
cont
rol
equi
p
m
ent an
d p
r
oce
s
s mo
nito
ring
devices
in
indu
strial ap
p
lication
s
, indu
strial control softw
a
r
e ha
s
been u
nable t
o
meet the diverse n
eed
s
of
the u
s
er. In
the devel
opm
ent of the t
r
a
d
itional in
du
strial control
software,
on
ce
the ind
u
st
ria
l
controlled
obj
ect
cha
nge
s,
it is n
e
cessa
r
y to m
odify th
e source
cod
e
control
sy
stem, leadi
ng t
o
long devel
op
ment cycl
e; indu
strial
cont
rol softw
are has su
ccessf
ully
dev
elope
d so that e
a
ch
control diffe
rent re
peate
d
low u
s
a
g
e
, it's
expe
nsive. Gen
e
r
al ind
u
stri
al
automation
config
uratio
n
softwa
r
e
ca
n
be a
good
solution to th
e
pro
b
lem
s
of
traditional i
n
d
u
strial
control
softwa
r
e, e
n
a
b
les
users to
any co
nfigu
r
a
t
ion of
obj
ect
s
an
d
cont
rol
purp
o
ses, th
e
com
p
letion
o
f
the final auto
m
ation co
ntro
l engine
erin
g [1].
This pap
er d
e
sig
ned a
te
mperature
m
onitorin
g
syst
em ba
se
d o
n
Mitsubi
shi
PLC. Thi
s
system th
rou
gh the an
alo
g
input mod
u
l
e cap
abl
e
of temperatu
r
e
chan
ge
s in
the amou
nt of
conve
r
si
on to digital into
the PLC, PID cont
rolle
r temperatu
r
e
rea
c
he
s th
e set value,
it
comp
ares the
current temp
eratu
r
e and
set temperat
u
r
e, if beyond the set value the system
wil
l
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 12, Dece
mb
er 201
3: 725
1 – 7258
7252
alarm. At the same time, th
e system was
adopted M
C
GS uppe
r mo
nitoring
syste
m
, to achieve
human
-comp
u
ter integ
r
atio
n.
2. Sy
stem Hard
w
a
r
e
Blo
ck Diagr
a
m
The tem
p
e
r
at
ure
control
system
hardware blo
c
k
diag
ram i
s
sho
w
n
i
n
Fig
u
re
1. S
y
stem
controlled
ob
ject is
a si
g
nal of the te
mperat
ure, a
nd the temp
eratu
r
e
sen
s
or dete
c
ts th
e
temperature
of the heati
ng t
ube. Th
rough th
e ou
tput module,
the tempe
r
ature valu
e
is
conve
r
ted to a digital sign
al fed to the
PLC
modul
e. PLC to the tempe
r
ature signal obtain
e
d
with the temp
eratu
r
e settings are co
mp
ared, an
d
the
n
get the temperatu
r
e d
e
viation after PID
operation, it will issue a
control
signal
and the
corre
s
po
ndin
g
ope
ration, such a
s
high
er tha
n
50
degree
s Cel
s
i
u
s, and the al
arm [2].
2.1. I/O Assignment
Input interface: (X0) button
,
star
t button; (X1) button,
stop button.
Output interfa
c
e: (Y0
)
start
indicator; (Y1
)
stop light; (Y2) the no
rm
al operation o
f
light;
(Y3) ala
r
m in
dicato
r; (Y4
)
heating
lamp;
Y5-Y
14:
LE
D
lig
hts a se
gment-h seg
m
ent.
Y15
-
Y17:
LE
D chi
p
sel
e
ct
sig
nal
s.
2.2. PID Con
t
rol Sy
stem
PID is the abbreviation of prop
ortio
n
, differ
entiation, integratio
n, and PID controller
i
s
the
mo
st wid
e
ly
used clo
s
ed-lo
op co
ntroller.
PL
C an
alog
PID con
t
rol,
the use of
the
follo
wi
ng
method
s:
(1) PID p
r
o
c
ess co
ntrol m
odule
s
: proce
ss
cont
rol mo
dule contain
s
the A/D con
v
erter
and D/A con
v
erters, PID control pro
c
e
dure
s
de
sig
n
ed PLC man
u
facturer
s, a
nd stored in the
module, the
u
s
er
use only
need to
set some pa
ra
m
e
ters, ve
ry con
v
enient to use, a module
can
control a few road o
r
eve
n
dozen
s of road cl
osed
lo
op. Ho
weve
r, the relatively high value o
f
this modul
e, gene
rally use
d
in large a
n
d
medium-si
z
e
d
control syst
em.
(2) PI
D in
stru
ction: ma
ny PLC h
a
s fo
r PI
D p
r
o
c
e
ss
co
ntrol mo
dule
and the PI
D
control
function in
struction, for ex
ample
FX2
N
PID instru
ctio
n. They ar
e a
c
tually used for PID co
ntro
l
sub
r
outin
e u
s
ed i
n
co
nju
n
ction
with a
nalog in
put / output mod
u
les, you
ca
n get a si
mil
a
r
pro
c
e
ss
with PID control m
odule effe
ct, but the price is mu
ch chea
per.
(3) The
edit
ed p
r
og
ram
PID clo
s
e
d
-l
oop
co
ntrol:
Some PL
C
PID process co
ntrol
module
and
the PID in
stru
ction. Althou
g
h
it ca
n u
s
e t
he PID
cont
rol inst
ru
ction
s
, but h
ope t
h
e
other imp
r
ov
ements PI
D control alg
o
ri
thm. In the above case, it requires t
he u
s
er to t
h
e
prep
aration o
f
the
PID control program.
(4)
clo
s
ed
-loo
p cont
rol of the inverte
r
: Inve
rter d
o
e
s
not gene
rally have a PI co
ntrolle
r
or PID cont
rol
l
er. For this type of closed-l
oop co
ntrol system of con
s
tant pre
s
su
re water
suppl
y,
the
feed
ba
ck
sig
nal ca
n be re
ce
ived f
eedb
ack
sig
n
a
l inp
u
t termi
nal of th
e in
verter, inve
rt
er
internal
co
ntrol its cl
osed-l
oop
control [3]. PLC
thro
u
gh commu
nication or
switch sig
nal to th
e
inverter fre
q
u
ency refe
re
nce sign
al and the st
art an
d stop comma
n
d
s. If the feedba
ck
sign
al is
sent to the PLC anal
og in
put module
with PLC PID
close
d
-lo
op co
ntrol, analo
g
sign
al as a D/
A
conve
r
ter
out
put inverte
r
f
r
equ
en
cy of
a given
sig
n
a
l, the ne
ed
to increa
se t
he PL
C an
al
og
input modul
e
s
and a
nalo
g
output modul
e,
will increa
se the co
st of hard
w
a
r
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Tem
peratu
r
e
Monitori
ng System
based o
n
PLC (Sho
u
c
he
ng Di
ng)
7253
2.3. PID Algorithm
In engin
eeri
n
g practi
ce, th
e mo
st wid
e
ly use
d
regul
ator
control la
w for the p
r
o
p
o
r
tional,
integral, differential control,
PID control
f
o
r sh
o
r
t. Whe
n
not fully
un
derstand
a
sy
stem a
nd th
e
controlled
ob
ject, o
r
can
not be
me
asured
th
roug
h
effective m
ean
s to
obta
i
n the
syst
e
m
para
m
eters, the most
suita
b
le PID cont
rol techn
o
logy
. PID controll
er is ba
se
d o
n
the error of
the system,
using a proportio
nal, in
tegral, diffe
rential, the calcul
at
ed co
ntrol amou
nt is
controlled.
Propo
rtional (P)
control: prop
ortio
nal cont
rol is o
n
e
of the mo
st simpl
e
, the most
comm
only
u
s
ed cont
rol mode,
the controlle
r
out
put and in
p
u
t error
sign
al pro
portio
n
a
l
relation
shi
p
. Whe
n
only a prop
ortio
nal control
sy
stem
output, there
is a steady
-state erro
r.
Integral (I
) control: integ
r
al cont
rol,
the co
ntroll
er output
and
input error signa
l
prop
ortio
nal t
o
the inte
gral
relatio
n
ship. An aut
om
atic control sy
stem, stea
dy-state error i
n
t
o
the ste
ady
state, this sy
ste
m
is called
st
eady-state
error of the
syst
em. In o
r
de
r t
o
elimin
ate th
e
steady
state
error, m
u
st
refer to
the i
n
tegral
te
rm
in
the
cont
rolle
r. The
integ
r
al term
for th
e
cal
c
ulatio
n of
the e
r
ror
dep
end
s o
n
the ti
me integ
r
al
of the in
crea
se
over time, th
e
integral te
rm
increa
se
s. T
hus,
even
when th
e e
r
ror is sm
all, th
e
integ
r
al te
rm will
in
cre
a
s
e
over time
to
increa
se, h
e
pushed
the
controlle
r
outp
u
t is i
n
crea
se
d, so
that the
stea
dy state
error i
s
fu
rthe
r
redu
ce
d until
it is eq
ual to
ze
ro. The
r
ef
ore,
u
s
ing
proportio
nal
+ i
n
tegral
co
ntroller
can
ma
ke
the system in
to the steady-state
is no
steady-state error [4, 5].
Derivative (D) cont
rol: differential
control,
the contro
ller output is propo
rtional
to the
input. The a
u
tomatic
con
t
rol system i
n
the adj
u
s
tment pro
c
e
s
s to overcom
e
the error
may
oscillations and even i
n
stability. T
he reason i
s
the
presence of lar
ge inertial assembly or aft
e
r
assembly hav
ing sup
p
re
ssi
on
e
r
ror of
th
e
rol
e
ch
a
nge
; the variatio
n
is
alway
s
b
e
h
ind th
e e
rro
r.
The
solution i
s
to inhi
bit the role
of the
error
cha
nge
s ah
ead. T
h
a
t
is, in the co
ntrol whe
r
ein
the
referen
c
e o
n
l
y
the prop
orti
onal term is
often not en
o
ugh, the role
of the pro
p
o
r
tional term onl
y
enlarge the
a
m
plitude of th
e erro
r term,
and the
cu
rr
e
n
t increa
se
of the differe
ntial term, it can
predi
ct the
trend
of chan
g
e
in th
e e
r
ror. Thu
s
,
propo
rtional + de
ri
vative
control
to
adva
n
ce so
that the role
of sup
p
re
ssio
n error
equ
al
to ze
ro, or
e
v
en neg
ative, thus avoi
din
g
the serio
u
s
overshoot of t
he amo
unt ch
arge
d.
Prop
ortional + d
e
riv
a
tive controll
er can imp
r
ov
e the dynami
c
perfo
rman
ce
of the system
in the mediation pro
c
e
s
s [6].
PID controlle
r can a
d
ju
st the loop outp
u
t, so
that th
e system re
a
c
he
s a stea
d
y
state.
The rel
a
tion
ship of the deviation e, the i
nput amou
nt r and the out
put c is given
by:
)
(
)
(
)
(
t
c
t
r
t
e
(1)
PID control lo
op blo
ck di
ag
ram is
sho
w
n
in Figure 2.
The output of
the controller is given by:
]
)
(
)
(
1
)
(
[
)
(
1
0
dt
t
de
T
dt
t
e
T
t
e
K
t
u
d
i
p
(2)
In the where:
u
(t)-PID loop
output
K
p
-Propo
rtion
a
lity
coefficie
n
t
T
i
-Integral co
efficient
T
d
-Differential c
oeffic
i
ent
PID regul
ator transfe
r funct
i
on is given b
y
:
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 12, Dece
mb
er 201
3: 725
1 – 7258
7254
s
T
s
T
K
s
E
s
U
s
D
d
i
p
1
1
[
)
(
)
(
)
(
(3)
Digital
comp
uter p
r
o
c
e
ssi
ng fun
c
tion
relation
shi
p
must b
e
di
screti
zed
co
ntinuou
s
function th
e
sampli
ng d
e
viation cy
cl
e, and
the
n
cal
c
ulate t
he outp
u
t value. The P
I
D
discreti
zation
law is a
s
sho
w
n in Tabl
e 1
.
Table 1. PID Discretizatio
n
Law
Analog form
Discrete form
)
(
)
(
)
(
t
c
t
r
t
e
)
(
)
(
)
(
n
c
n
r
n
e
dT
t
de
)
(
T
n
e
n
e
)
1
(
)
(
dt
t
e
t
0
)
(
n
i
n
i
i
e
T
T
i
e
0
0
)
(
)
(
The discrete
PID output eq
uation is give
n by:
0
0
)
(
)
(
)
(
)]}
1
(
)
(
[
)
(
)
(
{
)
(
u
n
u
n
u
n
u
n
e
n
e
T
Td
i
e
T
T
n
e
K
n
u
d
i
p
n
i
i
p
(4)
In the formula
,
Proportion
al
is given by:
)
(
)
(
n
e
K
n
u
p
p
(5)
Integral term i
s
given by:
n
i
i
p
i
i
e
T
T
K
n
u
0
)
(
)
(
(6)
Differential te
rm is given b
y
:
)]
1
(
)
(
[
)
(
n
e
n
e
T
T
K
n
u
d
p
d
(7)
In the
above
formul
a, th
e integ
r
al
te
rm i
s
i
n
cl
udi
ng a
first
sa
mpling
pe
rio
d
to
a
cumul
a
tive value of all the errors of the curre
n
t sampl
i
ng cycl
e. Cal
c
ulatio
n, there is no ne
ed to
retain
all th
e
error term
of
the samplin
g
perio
d,
an
d
o
n
ly nee
d to
retain the
inte
gral
sum. It can
use the PID i
n
stru
ction in t
he PLC to co
ntrol algo
rith
m amount.
PID pa
ram
e
ter tu
ning
me
thod i
s
to
de
termin
e
the
regulato
r
p
r
o
p
o
rtion
coeffici
ent P,
integratio
n ti
me
T
i
an
d derivative time
T
d
to improve the
system
'
s
stat
ic and dyna
mic
cha
r
a
c
t
e
ri
st
ic
s of
t
h
e
sy
st
em t
r
a
n
sit
i
o
n
pro
c
e
s
s t
o
a
c
hiev
e
t
he m
o
st
sat
i
sf
ie
d
wit
h
t
h
e
qu
alit
y
indicators req
u
irem
ents
ge
nerally
can
b
y
theoreti
c
al
cal
c
ulatio
ns t
o
dete
r
mine
but the e
r
ror
is
too larg
e. Cu
rrently, the mo
st widely u
s
e
d
engin
e
e
r
ing
tuning meth
o
d
, as the em
p
i
rical m
e
thod,
the attenuatio
n cu
rve meth
od, criti
c
al p
r
oportio
n
s
and
rea
c
tion
cu
rve method. T
he expe
rien
ce
method calle
d trial and error metho
d
, it
doe
s not re
q
u
ire the prio
r calcul
ation
s
an
d experime
n
ts,
but usi
ng a
set of em
piri
cal p
a
ramete
rs, b
a
sed o
n
ope
rating
e
x
perien
c
e, th
e co
nsta
ntly
cha
ngin
g
pa
rameters in
a
c
cord
an
ce
wi
th the effect
of the re
sp
on
se
cu
rve for
a tempe
r
atu
r
e
control syste
m
, and PID param
eters la
w is sho
w
n in
Table 2.
Table 2. Tem
peratu
r
e
Cont
ro
l PID Experience Param
e
ters
Controlled
variable
regular
Proportionalit
y
Integration time
(minutes)
Derivative time
(minutes)
Temper
ature
Lag
larger
20-60
3-10
0.5-3
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Tem
peratu
r
e
Monitori
ng System
based o
n
PLC (Sho
u
c
he
ng Di
ng)
7255
2.4. PID Con
t
roller Circui
t
PID controlle
r circuit is
sh
own in Fig
u
re 3.
The arit
hmetic
circuit
of the controller is a
con
c
ate
natio
n of the two arithmetic
circuits of
the PD and PI. Operational amplif
ier A1, A2, A3,
24V singl
e p
o
we
r su
pply, the same p
h
a
se a
nd t
he inverting inp
u
t can not wo
rk aro
und at 0
V
input mea
s
u
r
ement sig
nal
is ba
sed on t
he startin
g
1-5V voltage to zero volts, the input circuit
to
con
d
u
c
t voltage level
shifting, the devia
tion level
of the voltage i
s
raised to 1
0
V
as a
startin
g
point of the chang
e, so the signal volta
ge u01,
u02, u03 are to 10V starting re
feren
c
e. In the
amplifier A1
prop
ortio
n
differential ci
rcuit,
the derivative action i
s
nee
ded to
introdu
ce o
r
excisi
on.
Whe
n
the
dif
f
erential
acti
on i
s
n
o
t re
quire
d, the
switch
K1 i
s
i
n
the
disco
n
necte
d
positio
n, the amplifier A1 i
s
propo
rtiona
l amplif
ier. Without distu
r
b
ance intro
duced differe
ntial
,
differential
ca
pacita
n
ce
C
D
will
not
wo
rk th
rou
gh th
e switch K1
is
con
n
e
c
ted
to the
volta
ge
divider on ch
argin
g
the
ca
pacito
r
C
D
. S
o
, the n
eed
t
o
introdu
ce
a
differe
ntial ef
fect, the
switch
K1 can b
e
re
adily turned "
on" po
sition, without
cau
s
i
ng a sudde
n j
u
mp of the o
u
tput voltage
u
02
of the impact,
i.e. without the
pro
c
e
s
s b
e
ing controll
e
d
[7, 8].
Figure 3. PID Control
Circu
i
t Diagra
m
s
In Figure
3, the differe
ntial
gain
K
d
=
n
=1
0 the differe
n
t
ial time
T
d
= nC
D
R
D
, C
D
= 3.
9
μ
F,
R
D
= 62 k
Ω
-1
5M
Ω
then to
T
d
=0.0
4-1
0
m
i
n, a rang
e of
variation
of t
he fee
dba
ck
voltage ratio i
s
1-25
0. In am
plifier A2 p
r
o
portion
al inte
gral
ci
rcuit, switch K
2
is
a in
tegration ti
me multiplied
swit
ch. When
place
d
"× 1"
positio
n, 1k
Ω
resi
sto
r
one
e
nd ope
n. K2 placed in the
positio
n of the
"× 10", inp
u
t voltage
u
02
a
fter 1/10 pa
rt
ial pre
s
su
re
con
n
e
c
ted to
the integrating re
si
stor
R
1
.
Integral vel
o
city slows m
times, b
e
cau
s
e no
chang
e i
n
the
pro
porti
on of
deg
ree,
so
the i
n
tegral
time
T
i
=
m
R
1
C, con
s
id
er t
o
add to the
R
2
sign
al am
plitude m times, the ultim
a
te limits of the
integral
outp
u
t amplitude
will drop, so
in this
ca
se t
he integ
r
al g
a
in is
also
d
e
crea
sed to
m
times
.
In the
c
i
rc
uit
C
1
=C
M
=10
μ
F, R
1
= 6
2
k
Ω
-1
5M
Ω
, set
A2=
1
0
5
, when
m
= 1,
T
i
=0.01
-
2.5mi
n
,
K
i
=10
5
.
Re
sisto
r
conn
ected to the
o
u
t
put terminal
of amplifier A
2
, a diode
D1
and the emitt
e
r of
the transi
s
to
r
T
1
constituti
ng plate follo
wer. Th
e am
plifier A3, the transi
s
tors
T
2
and
T
3
form a
voltage-cu
rre
nt conversio
n
of t
he output circuit, it PID circuit
1-5V betwee
n
the chan
g
e
in
output voltag
e
u
03
convert
ed to
a
curre
n
t output
of 4
-
20mA, 2
5
0
Ω
re
sist
o
r
R
14
, then th
e 4
-
20
mA
conve
r
ter
1 -5V voltage o
u
tput.
u
03
based chan
ging
voltage (1
0V) is a
s
a
starti
ng poi
nt, whil
e
the SCR tri
g
ger voltag
e control si
gna
l is co
nne
cte
d
betwe
en t
he output te
rminal an
d the
grou
nd, there
f
ore the outp
u
t circuit must al
s
o
ass
u
me the tas
k
of level s
h
ifting [9].
3. Sy
stem Soft
w
a
re a
nd Con
f
igura
t
ion Soft
w
a
re
Software
flo
w
cha
r
t of t
he
system
consi
s
ts
of fo
ur
part
s
, a
n
d
they a
r
e
the m
a
in
prog
ram flo
w
chart, flow chart of tempe
r
ature
setting
, alarm sub
r
o
u
tine flowcha
r
t and interru
p
t
the prog
ram f
l
ow chart. Th
e main program flow ch
art
is sho
w
n in F
i
gure 4.
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 12, Dece
mb
er 201
3: 725
1 – 7258
7256
With the ra
pi
d increa
se in
the level of indu
strial auto
m
ation, com
p
uter wid
e
ly u
s
ed in
the indu
strial
field, one of t
he
re
qui
reme
nts of ind
u
stri
al automatio
n
is in
cre
a
si
ng
, a wide
ran
g
e
of cont
rol e
q
u
ipment a
n
d
pro
c
e
s
s mo
nitoring
dev
ices in i
ndu
stri
al appli
c
atio
n
s
, ma
king th
e
traditional
ind
u
strial
control
software
Un
able to
meet
the diverse
n
eed
s of th
e u
s
er.
MCGS t
he
emergen
ce o
f
industri
a
l control
config
uration
software p
r
ovide
s
a ne
w way
to solve
so
m
e
pra
c
tical
e
ngi
neeri
ng,
beca
u
se
of it
s a
b
ili
ty to so
lve
th
e p
r
oble
m
s of
traditio
nal i
n
dustri
a
l
co
ntro
l
softwa
r
e, all
o
wing
users t
o
any g
r
o
up
unde
r the
co
ntrol o
b
je
ct a
nd
control p
u
rpo
s
e
s
stat
e,
compl
e
ted th
e final a
u
to
mation
control engi
nee
rin
g
. MCGS
Chine
s
e in
du
strial autom
ation
control confi
guratio
n software is
a set of
32 en
ginee
ring
sof
t
ware,
stable
operation i
n
Wind
ow95/98
/Me/NT/200
0
other op
era
t
ing sy
stems, set a
n
imati
on, process co
ntrol, d
a
ta
acq
u
isitio
n, equipme
n
t con
t
rol and o
u
tpu
t, data transm
i
ssi
on net
work, hot stan
db
y, engineeri
n
g
repo
rts, data
and cu
rve
s
and many
other po
werful f
unctio
n
s in o
ne, and su
pp
ort at home a
nd
abro
ad m
any
data a
c
q
u
isi
t
ion on th
e
output d
e
vice, and i
s
wi
dely u
s
ed i
n
the pet
role
u
m
,
power, che
m
ical
s, iron
and steel,
mining, me
tallurgy, m
a
chi
nery, te
xtile, aerosp
a
ce,
con
s
tru
c
tion,
material
s, ref
r
ige
r
ation, tra
n
sp
ortation, communi
catio
n
s, food, ma
nufactu
ring a
nd
processi
ng i
ndustry, wat
e
r tr
eatm
ent
, environmental protec
ti
on, intelligent buildings
,
laboratori
e
s a
nd other e
ngi
neeri
ng field
s
[10].
MCGS to
p
r
ovide u
s
e
r
s
with a
comp
lete p
r
og
ram
to
solve
practical e
ngin
eerin
g
probl
em
s an
d develo
p
me
nt platform, a
b
le to
com
p
lete on
-site
d
a
ta a
c
qui
sitio
n
, real
-time
a
n
d
histori
c
al d
a
t
a
, alarm an
d
security me
cha
n
is
m
s
, proce
s
s co
ntrol
,
animation, trend
cu
rve a
nd
statement
s o
u
tput, as well
as ente
r
p
r
ise moni
tori
ng
netwo
rk fu
nct
i
ons. M
C
GS,
use
r
s d
o
no
t
have the kno
w
led
ge of co
mputer p
r
o
g
ramming
can
be develo
p
e
d
in a sh
ort
perio
d of time
easily compl
e
ted a ru
n stable, full-fe
atured,
lo
w
maintena
nce
and a high
ly speci
a
lize
d
comp
uter mo
nitoring
syste
m
[11].
MCGS has a simple, good visibility, maintain
ability, the salient f
eatures of the high-
perfo
rman
ce,
high relia
bility, and has been
su
ccessf
ully use
d
in the petroch
emical in
du
stry,
steel ind
u
st
ry, electri
c
po
wer sy
stem
s, water
t
r
eatm
ent, environ
mental monit
o
ring, m
a
chi
n
ery
manufa
c
turi
n
g
, transp
o
rtat
ion, energy, raw materi
als,
agricultural automation, aero
s
p
a
ce
a
n
d
other field
s
, the actu
al ope
ration of the variou
s field of
long-te
rm, st
able an
d relia
ble system.
MCGS
confi
guratio
n software top five par
t, MCG
S
configu
r
ati
on soft
ware
cre
a
ted
works by the maste
r
win
d
o
w
, the device
windo
w,
the use
r
win
d
o
w
, the real-time
databa
se an
d
run
strategy i
n
five p
a
rts,
each p
a
rt
of
the c
onfigu
r
a
t
ion op
eratio
n to
com
p
let
e
the
work, h
a
s
different ch
aracteri
stics. M
C
GS is
sho
w
n in Figure 5.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Tem
peratu
r
e
Monitori
ng System
based o
n
PLC (Sho
u
c
he
ng Di
ng)
7257
Ho
st monito
ring, tempe
r
at
ure
monito
rin
g
sy
stem, it nee
ds to create the
followin
g
variable
s
: the
start button, stop button, start ligh
t, stop light, normal indicator, sto
p
lights, alarm
indicator an
d temperature
displ
a
y. Where in
the temperatu
r
e di
spla
y type is numeric.
Grap
hical int
e
rface
syste
m
rid
e
by th
e
grap
hi
c obj
ect is
stationa
ry
, these
g
r
ap
hi
c o
b
je
ct
animation
de
sign, truly de
scribe
the
sta
t
e of
the o
u
tsi
de worl
d obj
e
c
ts
ch
ange,
a
c
hieve
proce
ss
real
-time mo
nitoring p
u
rp
ose. MCGS grap
hics
ani
mation de
sig
n
s the user
wind
ow g
r
ap
hic
obje
c
ts and d
a
ta object
s
in
the real-time
databas
e to establi
s
h the
correl
ation co
nne
ction and
set the
anim
a
tion prope
rtie
s. Th
e
syste
m
is ru
nnin
g
,
the ap
pea
ran
c
e
and
state
of the g
r
ap
hi
cs
obje
c
t, driven by the real-time colle
cti
on of dat
a object
s
in ord
e
r to achi
eve the grap
hi
cs
animation. M
C
GS the
ala
r
m p
r
o
c
e
ssi
n
g
as a d
a
ta
obje
c
t attrib
utes, en
ca
psulated in
dat
a
obje
c
ts
from the
re
al-time databa
se aut
omatically
p
r
oce
s
sed.
Wh
en the valu
e
or
state of th
e
data obje
c
t is chan
ged, the
real-tim
e dat
aba
se to
dete
r
mine
wheth
e
r
an ala
r
m o
r
the alarm h
a
s
been g
ene
rat
ed co
rrespon
ding data o
b
j
e
ct ha
s end
e
d
, and the ge
nerate
d
ala
r
m information
to
the re
st
of th
e sy
stem, th
e same
time, the
r
eal
-time
data
b
a
s
e a
c
cordi
ng use
r
configu
r
atio
n
setting
s, the alarm info
rma
t
ion is sto
r
ed
in the spe
c
ifie
d save the da
tabase file.
The define
d
alarm ope
ration is as f
o
llows: temp
eratu
r
e varia
b
le in the real-time
databa
se, d
o
uble-cli
c
k the
"temperature", sele
ct
"A
llow al
arm
p
r
ocessin
g
, al
arm
attribute
;
alarm
setting
s, sel
e
ct" lim
it alarm, the
alarm
value is
s
e
t to: 50 degrees
; alarm
Note: t
h
e
temperature excee
d
s
the uppe
r
lim
it of 50 deg
ree
s
whe
n
the ala
r
m; che
c
k al
arm info
rmati
on
automatically saved to
di
sk p
r
op
ertie
s
. Real
-tim
e d
a
ta re
port
s
real
-time data
variable
s
fo
r th
e
curre
n
t time display and p
r
i
n
ting ce
rtain report form
at (use
r co
nfiguration): refle
c
t the amount of
instanta
neo
u
s
, real-tim
e d
a
ta repo
rts throu
g
h
the
MCGS
sy
ste
m
re
al-time
f
o
rm
co
mpo
n
ents
config
ure
d
to displ
a
y real
-t
ime data state
m
ents [12, 13
].
Analog devi
c
es MCGS software to g
enerat
e a set of the simulation curve data,
according
to the pa
ram
e
ters set for th
e
use
r
commi
ssioni
ng
works. The mem
b
e
r
can g
ene
rat
e
stand
ard
sin
e
wave, squa
re wave
and t
r
iangl
e wave; sa
w tooth
wave sig
nal a
n
d
its am
plitud
e
and pe
riod
ca
n be set a
r
bitrarily.
4. Conclusio
n
The p
r
og
ram
m
able
contro
ller ha
s
stro
ng anti-i
n
terf
eren
ce
abilit
y and ch
eap
price,
reliability, programmi
ng is
simple, easy
to lear
n and use by the projec
t operator, like in the
indu
strial fiel
d. This arti
cl
e is
de
sign
e
d
temp
e
r
atu
r
e monito
ring
system
ba
sed on
Mitsub
ishi
PLC. PID
co
ntrolle
r allo
ws the te
mpe
r
ature
re
a
c
h
e
s
the
set val
ue, and
the
system compa
r
es
the current te
mperature
an
d set tempe
r
ature, te
m
perature
co
ntrol;
beyon
d the
set valu
e, th
e
system
will alarm. Th
e syst
em h
a
s
good
stabilit
y, high relia
bility, and broad ap
plication
pro
s
pe
cts.
Referen
ces
[1]
SC Din
g, W
H
Li. Researc
h
on Phot
oel
ec
tric Sensor T
u
rbidit
y D
e
tectin
g S
y
stem.
Se
nsor Letters
.
201
1; 9(4): 157
1-15
74.
[2]
SC Ding, AM An, X
K
Gou.
Digi
tal
w
a
v
e
form gen
erator bas
e
d
o
n
F
P
GA.
Re
search
Jour
nal
of Ap
pli
e
d
Scienc
es Engi
neer
ing a
nd T
e
chno
logy
. 2
012
; 4(14): 216
0-2
166.
[3]
Pouch Al
ison
M, Car
y
, T
heodore W
,
Schul
tz, Susan M Sehg
al, Cha
ndr
a M. In vivo noni
nvasiv
e
temperatur
e m
easur
ement
b
y
B-mode
ultras
oun
d im
agi
ng.
Journ
a
l of
Ultr
a
sou
nd in
Me
d
i
cine
. 20
10;
29(1
1
): 159
5-1
606.
[4]
SX Qiu, DF
W
ang,
XC
C
h
en, LB
So
ng.
Res
earch
a
n
d
d
e
vel
opm
en
t of ins
pecti
on
s
y
st
em for
automotiv
e di
gi
tal instrume
nt clusters.
Automotive Engineering
. 201
0; 32(1
0
): 909-9
13.
[5]
SH Shin, C C
heo
ng. E
x
per
i
m
ental ch
aract
e
riza
ti
on of in
strument pa
ne
l buzz, squ
eak
, and rattle
(BSR) in a vehicle.
Appl
ied Ac
oustics
. 201
0; 71(1
2
): 116
2-1
168.
[6]
J Qian, RQ Yang, M Yang,
SX W
u
, CX W
ang. Movab
l
e coordi
nate f
r
ame bas
ed si
multan
eous
local
i
zati
on a
n
d
mapp
ing
of intelli
ge
nt vehic
l
e.
Journ
a
l of S
han
gh
ai Jia
o
to
ng Un
iversity
. 200
9; 43(6):
857-
861.
[7]
C Ra
o, J Z
ou,
XZ
Gu. Ap
pli
c
ation
of fiber
Br
agg grati
ng temperatur
e
s
ensors in
m
i
cro
w
av
e
fiel
d.
Journ
a
l of T
r
an
sducer T
e
ch
no
logy
. 20
03; 22(
10): 1-4.
[8]
T
Yu,
ZT
F
an, Z
J
Xu, XQ Wu, HF
W
ang. Inve
stig
atio
n on T
e
mperature
Dis
tributio
n C
haracter
i
stic
and Its Effect F
a
ctors of the S
odi
um Sil
i
cate
Sand M
oul
d H
a
rde
ned
b
y
Mi
cro
w
av
e He
ati
ng.
F
oun
dry
.
201
1; 60(3): 23
8-24
2.
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 12, Dece
mb
er 201
3: 725
1 – 7258
7258
[9]
SC Di
ng, LM
Xi
ao, R
Hu
an
g, W
H
Li, SZ
Yang. Gam
e
s T
r
ack Competition Pr
oj
ect Informatio
n
Mana
geme
n
t
Based
on
Pers
ona
l C
o
mputer
.
Journ
a
l
of Co
nverg
ence
Info
rmati
on T
e
c
h
n
o
lo
gy
. 20
12
;
7(15): 17
6-1
8
4
.
[10]
X He, L Xi
ao, SK
Li
u.
T
he
Lo
calize
d
Ar
ea C
o
ve
ra
ge
al
gorit
hm Bas
ed
on
Distanc
e Pri
o
rit
y
Sc
hem
e In
W
i
reless S
ens
or N
e
t
w
orks.
I
n
ternati
o
n
a
l J
o
urna
l of
Di
gital
Co
ntent T
e
c
h
nol
ogy
an
d its
Appl
icatio
ns
.
201
2; 6(3): 271
-279.
[11]
SC Din
g, JH L
i
, LM
Xia
o
, R
Hua
ng, SZ
Ya
ng.
Intell
ig
ent Digita
l
Mu
lti-pu
rpose V
ehic
l
e
Instrument.
Pr
z
e
gl
ad Elektr
otechn
ic
z
n
y
. 2
012; 88(
5b): 64
-67.
[12]
H Z
han
g,
XY
W
ang, YY
Xi
a
o
. Simil
a
rit
y
R
e
searc
h
for Ur
ban I
n
tersectio
n
T
r
affic F
l
o
w
.
Internati
ona
l
Journ
a
l of Dig
ital Co
ntent T
e
chno
logy
and its
Applic
ations
. 2
012; 6(1): 4
39-
455.
[13]
James
R Ma
ha
n, Co
nat
y W
a
rr
en, N
e
ils
en
Ja
mes,
Pa
yton
P
a
xt
on, Ste
phe
n
B C
o
x. F
i
e
l
d
p
e
rformanc
e
in
a
g
ricu
ltural
settings
of a w
i
rel
e
ss
temp
eratur
e m
onit
o
ring s
y
stem
b
a
sed
on
a l
o
w
-
cost infrare
d
sensor.
Co
mpu
t
ers and Electr
onics i
n
Agricu
l
t
ure
. 2010; 7
1
(
2
): 176-1
81.
Evaluation Warning : The document was created with Spire.PDF for Python.