TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.7, July 201
4, pp
. 5144 ~ 51
5
3
DOI: 10.115
9
1
/telkomni
ka.
v
12i7.580
6
5144
Re
cei
v
ed Fe
brua
ry 6, 201
4; Revi
se
d Ma
rch 12, 201
4
;
Accepte
d
March 27, 201
4
Direct Virtual Power Control
Li Xiang*, Han Minxiao
State Ke
y
L
a
b
o
rator
y
of Alter
nate Electric
al
Po
w
e
r S
y
stem
w
i
t
h
Re
ne
w
a
bl
e Energ
y
So
ur
ces
Schoo
l of Elect
r
ical & Electro
n
i
c Engi
neer
in
g
North Ch
ina El
ectric Po
w
e
r U
n
iversit
y
Beiji
ng C
h
in
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: xia
ng.l
ee.c@
gmail.c
o
m
A
b
st
r
a
ct
A direct virtua
l
pow
er control
algor
ith
m
is p
r
es
ente
d
in th
i
s
paper for V
S
C-HVDC star
tup. T
h
is
control al
gor
ith
m
is bas
ed on
direct
pow
er control (DPC) a
nd exp
ands
th
e rang
e of DPC.
W
hen
the
V
S
C
converter
AC
side
op
en c
i
rc
uit or t
he A
C
side c
u
rre
nt is
z
e
ro, th
e co
ntrol a
l
g
o
rith
m
ma
inta
ins th
e
DP
C
feedb
ack lo
op
by intro
duci
ng
a virtual
pow
er
, so that
the D
P
C is ab
le to
control th
e AC
output vo
ltag
e
amplit
ude
an
d
freque
ncy sta
b
ility
before t
h
e VSC co
nv
er
ter conn
ectin
g
to the gri
d
n
e
tw
ork and ke
ep
consiste
nt w
i
th the grid co
nn
ection p
o
i
n
t. This al
gor
ith
m
p
r
ocess is si
mp
le, c
ontai
ni
ng
most of the D
P
C
control
mo
dul
e
,
and consiste
n
t
w
i
th
the DPC structure. T
her
efore, the cont
rol alg
o
rith
m s
w
itches smoot
hly
before
an
d after the VSC c
o
nverter co
nn
ec
ting to t
he
gri
d
. T
h
is pap
er u
s
es PSCAD /
EMT
DC software
platfor
m
a
nd l
a
boratory
hardw
are circu
i
t exp
e
ri
ments to
tes
t
and verify the
correctness a
nd val
i
dity of t
h
e
control a
l
gor
ith
m
.
Ke
y
w
ords
: VSC-HVDC, starti
ng-u
p
, grid i
n
te
gratio
n, virtual
pow
er
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
In recent ye
ars, voltag
e sou
r
ce conve
r
te
r hig
h
voltage di
re
ct
cu
rre
nt(Voltag
e
Source
Conve
r
ter
Hi
gh Voltage
Dire
ct
Curre
n
t, VSC-HV
D
C) te
chn
o
lo
gy is devel
o
p
ing
rapidly,
it is
tremen
dou
s
pro
s
pe
ct of transmi
ssion
a
nd di
strib
u
tio
n
sol
u
tion
s f
o
r the
mod
e
rn po
we
r sy
st
em
[1]. It is a n
e
w tran
smission sy
stem t
hat is
suit
a
b
l
e
for
grid
int
e
rconn
ectio
n
, isolate
d
p
o
w
er
sup
p
ly, large-scale
re
newa
b
le e
n
e
r
gy g
r
i
d
-conn
ectio
n
and
etc [2-6].
With
the
ra
pi
d devel
opme
n
t
of rene
wabl
e
energy an
d distrib
u
ted p
o
we
r,
VSC-HVDC technol
ogy will have
to be a further
developm
ent and ap
plicati
on.
Re
sea
r
che
s
on
VSC-HVDC cont
rol alg
o
rithm
have
b
een develo
p
i
ng re
cent yea
r
s, whi
c
h
is based on the theory of curre
n
t control. Throug
h
the rotating a
x
is oriente
d
by the voltage or
the virtual
flu
x
, current
co
ntrol m
a
kes t
he A
C
side
current d
e
cou
p
led i
n
to
acti
ve and
rea
c
tive
curre
n
t com
p
onent, with
relatively low
static e
r
ror a
nd better
dynamic
re
sp
o
n
se [7]. But this
control algo
rithm operation
is depen
dent
on the sy
ste
m
param
eters accu
ra
cy, and pro
b
lem
s
are
more
compli
cated o
n
the
current lo
op
co
ntrol
strate
gy
[8]. Based
on
the
prin
cipl
e
of direct to
rqu
e
control, a
ne
w
control al
gorithm i
s
d
e
velope
d,
which i
s
dire
ct powe
r
cont
rol(Direct Po
wer
Control, DPC). This control
algorithm do
esn’t ne
ed
PI controll
er an
d curre
n
t inne
r loop control. It
can
compute
the
cont
rol
output a
c
cording to
the
v
i
rtual flux a
n
d
in
stantan
e
ous re
active
and
active po
wer,
so it has the
advantage
s
of simple
con
t
rol stru
ctu
r
e,
fast dynamic respon
se, et
c
[9, 10]. But before the VS
C-HVDC
c
onve
r
te
r
s
t
ar
ting
gr
id
-c
on
n
e
c
t
io
n
,
th
e co
nve
r
te
r
AC
s
i
de
is
equivalent to open
circuit with no cu
rre
n
t. If the
DPC take
contro
l, the control
module
will lose
control feedb
ack input, so
that t
he entire control alg
o
rithm do
es
not work. Thi
s
arti
cle is ba
sed
on the algo
rithm of dire
ct powe
r
co
ntrol
with sp
ace vector mo
dulati
on (Di
r
e
c
t Power
Cont
rol with
Space V
e
cto
r
Modulatio
n, DPC-SVM),
prop
oses
a d
i
rect virtu
a
l p
o
we
r control algorith
m
tha
t
is
applie
d to the
VSC co
nvert
e
rs sta
r
tup a
nd gri
d
-co
n
n
e
ction
co
ntrol
.
When th
e A
C
si
de
curre
n
t
is
zero,
the net
work co
ntrol is
u
s
ing
the virtual
converter outp
u
t po
wer ap
pro
a
ches t
o
keep
the
feedba
ck pat
h of DPC
mo
dule, ther
eby
DPC al
go
rith
m is abl
e to
effectively co
ntrol the A
C
side
voltage
stabl
e befo
r
e VS
C co
nverte
r
starting
gri
d
-co
nne
ction. Th
e
ch
ara
c
te
risti
c
s of thi
s
con
t
rol
algorith
m
a
r
e
the
stru
cture
is
sim
p
le, u
s
ing mo
st com
m
on cal
c
ulati
on
a
nd co
ntrol
unit
to
geth
e
r
with the origi
nal SVM-DP
C
, basi
c
stru
cture of
the netwo
rk
controller re
main
s the same be
fore
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Dire
ct Virtual
Powe
r Co
ntro
l (Li Xiang)
5145
and after th
e conve
r
ter
startup a
nd
grid
-conn
ecti
on and the
control algo
ri
thm is swit
chin
g
smoothly.
2. VSC-HV
D
C Sy
stem St
artup Pro
ces
s Des
c
riptio
n
Its startu
p proce
s
s is firstl
y
conn
ectin
g
one
side inv
e
rter to th
e g
r
id throug
h a
curre
n
t
limiting re
sist
or, blo
cki
ng t
he IGBT sta
r
ting pul
se, re
cha
r
gin
g
to the DC si
de b
y
using
six a
n
ti-
diode st
ru
ctu
r
ed re
ctifier
circuit. Whe
n
the
DC ch
arge rea
c
he
s a pred
etermined voltag
e,
relea
s
in
g pul
se bl
ocka
de,
and b
egin to
control t
he
DC voltage
sta
b
ilize
d
by co
ntrol al
gorith
m
s.
The othe
r
si
de of the
converte
rs i
s
necessa
ry to cont
rol the
AC si
de vo
ltage amplitu
de,
freque
ncy
ke
eping
co
nsi
s
t
ant with
the g
r
id voltag
e a
m
plitude
and
freque
ncy, th
en
con
n
e
c
t to
the
grid [1, 11].
The
cont
rol al
gorithm
prese
n
ted in
this
p
aper is
to
con
t
rol the
othe
r
side
of the
co
nverter
voltage stabili
ty after the DC voltage sta
b
led, and
ke
e
p
the voltage the sam
e
wit
h
the grid. Th
is
control alg
o
rithm use
s
the structu
r
e
of DP
C-SV
M algorith
m
to redu
ce
and control the
fluctuation
s
caused by the control algo
rit
h
m sw
it
chin
g pro
c
e
ss d
u
ri
n
g
the netwo
rk conn
ectio
n
.
Figure 1. Pro
posed Ci
rcuit
of the VSC-HVDC System
L
1
and
L
2
in figure 1 a
r
e re
actan
c
e
s
bet
wee
n
the co
n
v
erters and g
r
ids.
3. DPC-SVM
Bas
e
d on th
e Virtual Flux
There are already some a
r
ticle
s
on
DP
C cont
rol
alg
o
rithm, which
[12-18] i
s
ab
out the
traditional
DP
C control
alg
o
rithm b
a
sed
on switch
ta
bles, a
nd [19
-
21] is
abo
ut improve
d
DP
C-
SVM, but in
this pap
er, the pre
s
e
n
ted
control al
go
rithm is ba
se
d on the se
cond algo
rith
m,
becau
se the
freque
ncy
of DPC-SV
M control switch i
s
fixed and h
a
s better tran
sient
cha
r
a
c
teri
stics. Acco
rdi
ng
to the introd
uction of
the
article [19
-
2
1
], the calcul
ation pro
c
e
ss o
f
virtual flux obtains DP
C-S
V
M.
s
c
(a) Simple c
i
rc
uit for VSC converter with
stationa
ry fra
m
e
s
s
s
c
(b) Simple c
i
rc
uit for VSC converter with
Synchrono
us d-q
fra
m
e
Figure 2. Equivalent Circuit
of a Grid Co
nne
cted VSC Converte
r
In Figure 2
(
a),
s
a
nd
c
are th
e vecto
r
s
of grid flux
and
conve
r
t
e
r flux;
U
s
an
d
U
c
ar
e
the vecto
r
s of
grid
voltage
and
co
nverte
r outp
u
t AC voltage;
I
i
s
th
e vecto
r
of th
e converte
r A
C
side
cu
rrent; in Figu
re 2
(
b), the
ve
ct
ors
by addi
n
g
the supe
rscript
s
is th
e co
rrespon
d
i
ng
quantitie
s o
n
the syn
c
h
r
on
ous axe
s
;
1
is
syn
c
hrono
us f
r
equ
en
cy;
L
i
s
rea
c
tan
c
e
between
the
c
o
n
v
er
te
r
an
d g
r
id
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5144 – 51
53
5146
Imagine th
e
VSC convert
e
r to
be
an i
d
eal voltag
e
source
and
co
nne
cting to
th
e gri
d
, the
simplified e
q
u
i
valent circuit is sh
own in Figure 2
(
a
)
abo
ve. The same
as motor flux
definition, the
grid flux
s
and the co
nverter flux
c
ca
n be define
d
as:
dt
s
s
U
Ψ
(
1
)
dt
c
c
U
Ψ
Acco
rdi
ng to Figure 2(a
)
a
nd Equation
(1), it sho
w
s t
hat:
c
s
Ψ
I
Ψ
*
L
(
2
)
The sy
stem
shown in Fig
u
re 2(a
)
can b
e
conv
e
r
ted to
synchro
nou
s coo
r
din
a
te with the
synchro
nou
s rotating sp
e
ed
1
, as shown in Figure 2
(
b). Th
e following
equatio
n can
be
obtaine
d from
Figure 2
(
b
)
a
nd Equation
(2):
s
c
s
s
s
Ψ
I
Ψ
*
L
(
3
)
s
s
s
s
s
s
Ψ
Ψ
U
1
j
ω
(
4
)
s
c
s
c
s
c
Ψ
Ψ
U
1
j
ω
From Equation (3), the inflow grid
c
u
rre
nt can be
cal
c
ul
ated throu
gh
the flux:
L
s
c
s
s
s
Ψ
Ψ
I
(5)
From the g
r
id
directio
n, the converte
r out
put active an
d rea
c
tive po
wer
P
s
and
Q
s
is
:
s
^
s
s
I
U
*
2
3
jQ
P
s
s
(
6
)
The d-q axe
s
of the rotating coo
r
din
a
t
e
use
s
the dire
ction of the grid flux
s
as
a
r
e
fe
re
nc
e
,
a
s
s
h
ow
n
in
F
i
gu
r
e
2(
b
)
:
sd
Ψ
=
s
Ψ
,
sq
Ψ
=0
(
7
)
The gri
d
voltage and fre
q
u
ency is
con
s
t
ant, so:
dd
dd
==
0
tt
s
ss
d
ΨΨ
(
8
)
Take th
e formula (4
), (5)
and (7
) into (6) to get the active and re
active po
wer:
ss
1
s
d
c
q
c
d
s
d
3
P-
j
Q
=
ωΨ
-
Ψ
-j
Ψ
-
Ψ
2L
(
9
)
Thus th
e formula ca
n be
obtaine
d as b
e
low:
s
1s
d
c
q
3
P=
-
ωΨ
Ψ
2L
(
1
0
)
s
1s
d
c
d
s
d
3
Q=
ωΨ
Ψ
-
Ψ
2L
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Dire
ct Virtual
Powe
r Co
ntro
l (Li Xiang)
5147
sd
and
1
are co
nsta
nts,
beca
u
se the
grid volt
age
is co
nsta
nt, the Equation
(10) can
be differentiat
ed to get:
d
d
dd
cq
s
1s
d
Ψ
P
3
=-
ωΨ
t2
L
t
(
1
1
)
dd
dd
s
cd
1s
d
Q
Ψ
3
=
ωΨ
t2
L
t
From the formula (1
), the relation
shi
p
b
e
twee
n the flux and the voltage vector i
s
:
d
d
=
t
c
Ψ
c
U
(
1
2
)
It can be
se
en from th
e f
o
rmul
a (1
1)
and
(12
)
, adj
usting
output
voltage vect
or of the
conve
r
ter d
u
ri
ng the sam
p
li
ng peri
od
T
s
, it is able to re
duce the po
wer erro
r to ze
ro.
Whe
n
the
sa
mpling
peri
o
d
T
s
is sm
all e
noug
h, di
scre
te the Equ
a
tion (11
)
, so th
at in
T
s
,
the cha
nge
s
of the active and re
active
power a
r
e:
s
1s
d
c
q
3
Δ
P=
-
ωΨ
Δ
Ψ
2L
(
1
3
)
s
1s
d
c
d
3
Δ
Q=
ωΨ
Δ
Ψ
2L
From
Equatio
n (13),
it can
be
see
n
the
cha
nge
s
of a
c
tive an
d
rea
c
tive po
we
r i
n
T
s
are
determi
ned
resp
ectively b
y
the chan
ge
s of
the
co
nverter flux with
in the
sa
me
perio
d a
nd
which
is sho
w
n thro
ugh the
cq
of the q-axis compo
nent and
cd
of the d-axi
s
co
mpone
nt on the
synchro
n
ized
axes.
In the ste
ady
-state
proce
s
s, the p
o
wer
error i
n
T
s
ca
n
be gotten
t
h
rou
gh
th
e
re
feren
c
e
values of the
active po
wer
*
s
P
and rea
c
tive power
*
s
Q
:
*
s
ss
Δ
P
=P
-
P
(
1
4
)
*
s
ss
Δ
Q=
Q
-
Q
The form
ula
(13
)
sh
ows t
hat red
u
ce the po
we
r
error to 0, it ca
n also b
e
u
s
ing th
e
method of ch
angin
g
the co
nverter flux o
n
the d-q
axis co
mpo
nent.
By the formula (13
)
the si
ze
of the desired
chan
ge
s of the flux can b
e
cal
c
ulate
d
:
cq
s
1s
2L
ΔΨ
=-
Δ
P
3
ωΨ
(
1
5
)
cd
s
1s
2L
ΔΨ
=
Δ
Q
3
ωΨ
By the formula (4) it ca
n be
obtained:
d
d
1
=U
-
j
ω
t
s
s
s
c
cc
Ψ
Ψ
(
1
6
)
Acco
rdi
ng to
formula
(16
)
, as the
sampli
ng time is
sh
ort eno
ugh, t
he differe
ntial
value of
the conve
r
ter
flux equals to
the value of the ch
ang
es a
pproxim
ately within the sa
mpling pe
riod
:
s
1s
Δ
=U
*T
-
j
ω
*T
ss
s
cc
c
ΨΨ
(
1
7
)
By the formula (17
)
it can b
e
obtaine
d:
cq
cd
s
1
cq
s
ΔΨ
=U
*
T
+
ωΨ
*T
(
1
8
)
cd
cq
s
1
cd
s
ΔΨ
=U
*T
-
ωΨ
*T
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5144 – 51
53
5148
From the fo
rmula (1
8), th
e value of th
e output targ
et voltage of the co
nverte
r can b
e
obtaine
d duri
ng the sam
p
li
ng time peri
o
d Ts is:
cq
*
cd
1
c
q
s
ΔΨ
U=
-
ωΨ
+
T
(
1
9
)
*
cd
cq
1
c
d
s
ΔΨ
U=
ωΨ
+
T
Combi
ne th
e
formul
a (13) and
(1
9), th
e conver
te
r t
a
rget volta
g
e
value o
n
the
rotating
synchro
nou
s
axis in a sam
p
ling pe
riod
T
s
can be gotte
n from the po
wer
cha
nge:
*
s
cd
1
c
q
s
1s
2L
Δ
Q
U=
-
ωΨ
+
3T
ωΨ
(
2
0
)
*
s
cq
1
c
d
s
1s
2L
Δ
P
U=
ωΨ
-
3T
ωΨ
As
can
be
seen f
r
om th
e
cal
c
ul
ation
equatio
n
of t
he ta
rget volt
age, the
valu
e of the
target voltage
is calculated
from the p
o
wer e
rro
r,
so th
at both of the
active an
d re
active po
we
r i
s
maste
r
ed.
Compa
r
e to v
o
ltage ve
ctor cont
rol
al
go
rithm, the cu
rre
nt doe
s n
o
t need to
be
controlled, th
e cal
c
ulatio
n
pro
c
e
ss
onl
y involv
es si
mple multipli
cation
and d
i
vision with
o
u
t
compl
e
x mathematics cal
c
ulatio
n. The
block di
ag
ra
m about the DPC-SVM co
ntrol algo
rith
m is
s
h
ow
n
in
F
i
gu
r
e
3
.
s
,
1
s
Figure 3. Sch
e
matic Di
ag
ram of DPC-SVM
4. Direct Virtual Po
w
e
r Control
The
above i
s
an i
n
trod
ucti
on to
DP
C-S
V
M co
ntrol
a
l
gorithm. A
s
the first pa
rt
of the
analysi
s
sh
o
w
n th
at b
e
fo
re th
e VSC
conve
r
ter co
nne
cting to
t
he g
r
id, th
e
AC
side
of t
h
e
conve
r
ter i
s
an ope
n circuit, the converter in
put a
nd output a
c
tive and rea
c
tive power
is
con
s
tantly to be zero. Thus DP
C-SV
M control
loses the effecti
v
e f
eedba
ck path,
therefo
r
e,
DPC-SVM al
gorithm d
o
e
s
not wo
rk n
o
rmally in this
ca
se. As a
re
sult it is not b
e
able to rem
a
in
the co
nverte
r AC
side
out
put voltage
stability
and a
c
hieve
a
soft grid
-conn
ect
i
on. To
enabl
e
DPC work be
fore the VSC converte
r co
nne
cting to
the grid, the virtual po
wer i
s
introd
uced in
this pa
per which m
a
kes sure the
DP
C-SVM havi
ng
an effective f
eedb
ack lo
op
in ca
se
of the
conve
r
ter
A
C
side at
an open circuit state,
and
a
c
hieves th
e control to th
e
AC si
de o
u
tput
voltage.
The info
rmati
on of the g
r
id
voltage ampl
it
ude an
d fre
quen
cy shoul
d be
contai
ne
d by the
virtual power.
Firstly, take the grid volta
g
e
as a refere
nce in
put
U
s
, then virtualizes a
current
with
the
same dire
ction as
th
e converte
r,
t
he
amplitude
of t
h
is virtu
a
l
current i
s
s
1s
v
T
ωΨ
I=
-
L
.
s
in
the
virtual curren
t can
be
calculated
by the
grid
volt
age
vector,
so
thi
s
virtu
a
l
current in
clud
es the
amplitude inf
o
rmatio
n of the gri
d
voltag
e. Severa
l ot
her p
a
ra
mete
rs a
r
e
con
s
ta
nts, whi
c
h
ca
n be
eliminated
d
u
ring th
e target voltage calcul
ation
p
r
oce
s
s of the
origin
al DP
C-SVM alg
o
rithm
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Dire
ct Virtual
Powe
r Co
ntro
l (Li Xiang)
5149
control. Finall
y
the target voltage which
inclu
d
e
s
the i
n
formatio
n of the conve
r
te
r output volta
g
e
and the gri
d
voltage is o
b
ta
ined thro
ugh t
he virtual po
wer
cal
c
ulatio
n.
Since this
current does
not exist, it will
not affect the si
ze of and the relative relations
betwe
en oth
e
r
ele
c
tri
c
pa
rameters b
u
t
only introd
uci
ng a virtu
a
l p
o
we
r, in o
r
de
r to a
c
hieve t
he
purp
o
se of e
s
tabli
s
hin
g
DPC-SVM
con
t
rol alg
o
rithm
for po
we
r f
eedb
ack p
a
th. Cho
o
se t
h
e
dire
ction
of th
e rotatin
g
syn
c
hrono
us
axi
s
the
sa
me a
s
the
gri
d
flu
x
dire
ction, d
ue to the
flux of
the conve
r
ter AC side ope
n circuit at steady state is
con
s
i
s
tent with the grid flux direction, a
n
d
the co
nverte
r voltage vect
or di
re
ction i
s
be
hind
th
e
conve
r
ter fl
ux vector
90
degree
s, virtua
l
power
ca
n b
e
obtain
ed by
the virtual
cu
rrent. Sin
c
e th
e directio
n of
the
current
a
nd the
voltag
e
is the same, the virtual rea
c
tive powe
r
Q
sv
should b
e
0, and the virtual active power
P
sv
sh
ould
be:
s
vs
v
v
c
v
s1
s
c
33
P
=
U
*I
=
U
*I
22
3T
ωΨ
U
=-
2L
(
2
1
)
sv
Q=
0
Set the refere
nce valu
e of the virtual po
wer a
s
:
*
s
1s
s
sv
3T
ωΨ
U
P=
-
2L
(
2
2
)
*
sv
Q=
0
Cal
c
ulating
t
he virtu
a
l p
o
w
er e
rro
r
by
usin
g the
val
ue of
refe
ren
c
e vi
rtual
po
wer a
n
d
virtual power:
s
1s
c
s
sv
3T
ωΨ
U-
U
Δ
P=
-
2L
(
2
3
)
sv
Δ
Q=
0
Take
the
erro
r value
s
of th
e virtual
po
wer
into the
formula
(20
)
, an
d by u
s
in
g th
e o
r
iginal
DPC-SVM target voltage calcul
ation mo
dule to get the result:
*
cd
1
c
q
U=
-
ωΨ
(
2
4
)
*
s
v
cq
1
c
d
s
1s
2L
Δ
P
U=
ωΨ
-
3T
ωΨ
As the co
nverter flux and the grid fl
ux is in the same di
rectio
n, so:
cq
Ψ
=0
,
cd
Ψ
=
c
Ψ
(
2
5
)
Take
the fo
rmula (23
)
an
d (2
5) i
n
to e
quation
(2
4),
the targ
et voltage valu
e
can
be
obtaine
d:
*
cd
U=
0
(
2
6
)
*
sv
cq
1
c
s1
s
s
1s
c
s
1c
s1
s
1c
c
s
1c
c
2L
Δ
P
U=
ωΨ
-
3T
ωΨ
3T
ωΨ
U-
U
2L
=
ωΨ
-*
3T
ωΨ
2L
=
ωΨ
-U
-
U
=
ωΨ
+
Δ
U
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5144 – 51
53
5150
The fin
a
l formula
(26
)
ab
out the
targ
e
t
voltage
cal
c
ulation
sh
ows that
be
cau
s
e
of the
introdu
ction
of a virtual p
o
we
r, the co
nverter
powe
r
feedb
ack p
a
th ca
n be e
s
tabli
s
he
d in
the
situation wh
e
n
the conve
r
ter
AC
si
de
cu
rre
nt flow i
s
zero, a
nd all
o
ws
DP
C alg
o
rithm play
a role.
The result
s o
b
tained th
rou
gh the calcul
ation proc
ess sho
w
s th
at the entire co
n
t
rol pro
c
e
s
s i
s
very simpl
e
, and ju
st ne
e
d
a little mod
i
fication to
DPC-SVM alg
o
rithm
whi
c
h
is only a
ddi
ng a
virtual po
we
r cau
c
ul
ation
module,
so t
hat the
p
r
o
c
ess
can be controlled
to swit
ch smo
o
thly
before
an
d af
ter the VS
C
converte
r
start
up a
nd
con
n
nectin
g
to th
e
grid. In
o
r
de
r not to
ch
ange
power erro
r calculation
of the real powe
r
co
n
t
rol module
and the referen
c
e in
p
u
t,
a
comp
en
satio
n
is a
dde
d to
the refe
ren
c
e virtual p
o
wer, an
d the
compen
satio
n
is
s
1s
s
3T
ωΨ
U
2L
. The
entire control algorith
m
blo
ck di
agram is sho
w
n in Fig
u
re 4:
s
1
θ
,
ω
s
θ
c
U
s1
s
3T
ωΨ
2L
s
1s
v
T
ωΨ
I
L
Figure 4. Sch
e
matic Di
ag
ram of the Pr
o
posed Di
re
ct Virtual Powe
r Control
5. Experimental Verifica
tion
In orde
r to verify the effectivene
ss of
t
he propo
se
d VSC-HV
D
C control al
gorit
hm, the
authors
do t
he
studie
s
a
nd a
nalysi
s
f
r
om t
w
o
ang
les
of the
di
gital sim
u
lati
on a
nd p
h
ysi
c
al
experim
ents.
Firstly, doin
g
the simulat
i
on ex
peri
m
e
n
ts on PSCA
D
/EMTDC
so
ftware platfo
rm.
The
simul
a
tio
n
set on
both
sid
e
s of VSC co
nver
te
r rated tra
n
smissi
on p
o
wer
at 2
00MW,
the A
C
side
rate
d vo
ltage at 2
3
0
k
V, DC
bus voltage at
400
kV, and
the
reacto
r o
n
bot
h sid
e
s of th
e
netwo
rk at 0
.
07H. Co
ntrol
algorithm verificati
o
n
test carri
es out
after one si
de of the VSC
conve
r
ters
st
artup
and
the
DC voltag
e i
s
stable,
gri
d
-con
ne
cting
st
arts at the
si
mulation tim
e
of
0.5s. In orde
r to reduce the curre
n
t impact, cont
rol the transmissio
n power after grid-co
nne
cti
o
n
to 0MW. Th
en incre
a
se the tran
smission p
o
wer t
o
200M
W at
0.8s. Throu
gh this p
r
o
c
ess,
observe the
stability of the conve
r
ter A
C
side o
u
tput voltage, cu
rre
n
t and
the p
r
oce
s
se
s of grid
-
con
n
e
c
tion a
nd the co
ntrol
algorithm
s switchi
ng.
Figure 5. AC Voltage and
AC Cu
rre
nt of the VSC Con
v
erter
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Dire
ct Virtual
Powe
r Co
ntro
l (Li Xiang)
5151
As ca
n be
see
n
from F
i
gure
5, bef
ore the
co
n
v
erter
con
n
e
c
ting to the
grid, the
amplitude
an
d
freq
uen
cy are stabl
e when usi
ng
th
e direct vi
rtu
a
l po
we
r
con
t
rol alg
o
rithm
to
control the converte
r AC side o
u
tput voltage.
There is only very small fluctuation
s
on the
conve
r
ter AC sid
e
outp
u
t
voltage an
d
current b
e
fo
re
and after
the
grid
-conn
ecti
on.
Thi
s
re
sul
t
s
indicate that
the pro
p
o
s
ed
cont
rol alg
o
rithm
is effe
ctive and a
c
hi
e
v
es a
smoot
h switch
befo
r
e
and after the
grid
-conn
ecti
on.
Figure 6. Virtual Powe
r an
d Output Power of the Con
v
erter AC Sid
e
It can be
see
n
from the virtual power
cu
rve,
before th
e grid
-conn
ection, the dire
ct virtual
power co
ntro
l
algo
rithm control
s
th
e converte
r
A
C
side
voltage
remai
n
stabl
e by trackin
g
the
output
virtual
power.
An
d
t
he conve
r
ter AC side out
pu
t c
u
r
v
e
s
h
ow
s th
er
e
ar
e
s
m
a
ll fluc
tu
a
t
io
n
s
on output p
o
we
r du
ring
the grid
-conn
ection. Afte
r the grid
-co
nne
ction, the
control met
hod
swit
che
s
dire
ct virtual
po
wer
co
ntrol
to
DPC
with
a
smooth
h
and
over
pro
c
e
ss. Thu
s
, DP
C is
able to effecti
v
ely control the
output po
wer of the
co
nverter.
Based
on th
e sim
u
lation
experim
ents,
build a
phy
sics exp
e
rim
ental ci
rcuit
unde
r the
laboratory en
vironme
n
t to verify the effectivene
ss of the algo
rithm.
The test ci
rcuit stru
cture
doe
s a ce
rtai
n simp
lification to the si
mulation sy
stem circuit
stru
cture, whi
c
h the DC
si
de usi
ng lithi
um battery
p
o
we
ring, an
d
the conve
r
te
r is conn
ecte
d to
the 380V gri
d
through the
0.5mH g
r
id re
actors an
d tra
n
sformer
with
variable ratio
of 260V/400
V,
the system ra
ted cap
a
city is 50
kVA. The
exper
ime
n
tal
circuit device
is sho
w
n in F
i
gure 7.
Figure 7. The Photos of Experime
n
tal Setups
To do the
net
work te
st and
power a
d
ju
stment
test ba
sed
on this
e
x
perime
n
tal system.
Firstly, u
s
e t
he o
s
cillo
sco
pe to
get the
tra
c
e
s
of th
e
both
sid
e
s voltage
of the
brea
ke
r
and
the
curre
n
t of the converte
r AC side.
Figure 8. AC Voltage and
AC Cu
rre
nt at the Cutting-i
n
Moment
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5144 – 51
53
5152
The traces show,
before t
he g
r
id
-conn
ection,
th
e control algo
rit
h
m
finely co
ntrols
the
conve
r
ter o
u
tput voltage in
con
s
iste
nt with t
he amplitude, freq
uen
cy and p
h
a
s
e
of the grid A
C
voltage, so t
hat the g
r
id-conne
ct
ion proce
s
s
is sm
o
o
thly
compl
e
ted. Mean
whil
e the conve
r
ter
control al
go
ri
thms
switch
sm
oothly from the
dire
ct virtual
po
wer
control
before
the
g
r
id-
con
n
e
c
tion st
ate to DPC.
Then do the
experiment
on netwo
rk output pow
er adjustme
n
t. Adjust the conve
r
ter
output p
o
wer from
2kW t
o
9kW.
Re
co
rd the volta
g
e
and
current t
r
aces of th
e t
r
an
sient
process
in Figure 9.
Figure 9. AC Voltage and
AC Cu
rre
nt at t
he Moment of Chan
ging t
he Output Po
wer
From th
e tra
c
es it
can
be
seen that
DPC can
e
ffective
l
y control the
size of the
co
nverter
AC side p
o
wer output.
6. Conclusio
n
This a
r
ticle i
s
about DP
C
probl
em of la
ck
of
control
on the AC vo
ltage stability
before
the VSC-HV
D
C converte
r start
up, an
d
the a
u
t
hors pro
p
o
s
e th
e
app
roa
c
h
of
esta
blishing
a
feedba
ck loo
p
mad
e
by th
e virtual p
o
wer. Thi
s
m
e
th
od do
es mini
mal chan
ge
s
to the st
ru
ctu
r
e of
DPC-SVM control al
go
rithm and
introdu
ce
s t
he
virtual po
we
r as the i
n
p
u
t. It makes the
traditional
DP
C-SVM al
gori
t
hm to be abl
e to co
ntrol th
e AC
side o
u
tput voltage re
maining
stabl
e
before
the
co
nverter
co
nn
ecting to
the
grid. Also
its
cal
c
ulatio
n proce
s
s an
d al
gorithm
struct
ure
is relatively
simple
an
d
having a
fast dynamic re
spo
n
se. It proves th
at th
e sim
u
lation
and
physi
cal
circu
i
t tests havin
g the validity on this
algo
rithm,
and ca
n be
smoothly swit
che
d
bef
ore
and after the
conve
r
ter
con
nectin
g
to the grid.
Ackn
o
w
l
e
dg
ements
This work wa
s su
ppo
rted
by National K
e
y Tech
n
o
log
y
R&D Program of the Ministry of
Scien
c
e an
d Tech
nolo
g
y of China (Gra
n
t
No. 2009BA
A
22B01).
Referen
ces
[1]
Z
hang
Jin
g
,
Xu Z
h
e
ng, C
h
e
n
Hair
on
g.
Startup Pr
oced
ures
for the VS
C-H
V
DC S
y
stem.
T
r
ansactio
n
s
of Chin
a Electr
otechn
ical S
o
ci
ety
. 2009; 09:1
59-1
65.
[2]
Xi
an
g Li, Min
x
i
ao Ha
n. A coordin
a
ted contr
o
l
st
rateg
y
of ser
i
es multi-te
rminal VSC-HVDC for offshore
w
i
nd farm.
T
r
ansactio
n
s of Chin
a Electrotec
hnic
a
l Soci
ety.
201
3; 05: 42-4
8
+
57.
[3]
Hail
ese
l
assi
e T
M
,
T
o
rres-Ol
gui
n RE, Vran
a T
K
, Uhlen K
,
Undel
and T
.
Main gri
d
freq
uenc
y su
pp
ort
strateg
y
for VS
C-HVDC c
o
n
n
e
cted
w
i
n
d
far
m
s
w
i
t
h
var
i
ab
l
e
spe
ed
w
i
n
d
t
u
rbi
nes.
Power
Tech., IEEE
T
r
ondh
ei
m
. 20
11.
[4]
Yao Xi
ng-j
i
a, Ding Yan
g
,
Guo
Qin
g
-di
ng.
Re
se
arch o
n
app
licati
on
of VSC-HVDC
s
y
stemi
n
th
e
offshore w
i
nd
farm.
Renew
ab
l
e
Energy R
e
so
urces
. 201
2; 0
2
: 37-41.
[5]
Ola
w
ol
e J
o
se
ph P
e
tinri
n
, M
oham
ed S
h
a
a
ban. Overc
o
mi
ng
Cha
lle
ng
es
of R
ene
w
a
b
l
e En
erg
y
on
Future Smart Grid.
T
E
LKOMNIKA Indon
esi
an Jour
nal
of
Electrical E
ngi
ne
erin
g.
201
2; 10
(2): 229-2
3
4
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Dire
ct Virtual
Powe
r Co
ntro
l (Li Xiang)
5153
[6]
Yoge
ndr
a Ar
ya, Naren
d
ra K
u
mar, Hitesh
Dutt Ma
thur. Automatic Gen
e
r
ation C
ontro
l in Multi Ar
e
a
Interconn
ected
Po
w
e
r S
y
ste
m
b
y
usi
ng HV
DC Li
nks.
Inter
natio
nal J
our
n
a
l of Pow
e
r El
ectronics
a
n
d
Drive System
s.
2012; 2(1): 6
7
-
75
[7]
Li Shuang, Wang Zhix
in, Wang
Guoqiang. Pr
edictiv
e Dir
ect Po
w
e
r
Control
Strategy
for Offshore Wind
Po
w
e
r VSC-
H
VDC Converter
.
T
r
ansactions
of Chin
a Electr
otechn
ical S
o
ci
ety
. 2013; 02:
264-
270.
[8]
Xi
ao L, Hu
ang
S, Lu K. DC-bus voltag
e con
t
rol of
grid-co
n
nected vo
ltag
e
source conv
er
ter b
y
usi
n
g
space vect
or modu
late
d direct
po
w
e
r co
ntrol
und
er un
bal
an
ced net
w
o
rk co
nditi
ons.
Pow
e
r Electronic
s
IET
. May
2
013;
6:5.
[9]
Alons
o-Martin
e
z
J, Elo
y
-Garci
a J, Sa
ntos-M
arti
n D, Ar
na
ltes S. A N
e
w
Varia
b
le-F
re
qu
enc
y Optim
a
l
Direct P
o
w
e
r
Contro
l Al
gor
ithm.
IEEE Transactions
on
Industrial Electronics
. Ap
ri
l
2
013
; 6
0
(
4
)
: 14
42
,
145
1.
[10]
Yongc
ha
ng Z
h
ang, Z
h
e
n
g
x
i L
i
, Yingc
ha
o Z
h
ang, W
e
i
Xie,
Z
heng
gu
o Pia
o
,
Chan
gbi
n H
u
. Performanc
e
Improveme
n
t of Direct Po
w
e
r
Control of PW
M Rectifier With Simple C
a
lcul
atio
n.
IEEE Transactions
on Pow
e
r Elect
r
onics
. 20
13; 2
8
(7): 342
8, 343
7.
[11]
Che
n
Hai-r
o
n
g
,
Z
hang Jin
g
, Pan W
u
-lu
e
. St
art-up Contro
l
of VSC Base
d on HVD
C
S
y
stem.
Hi
gh
Voltag
e Eng
i
ne
erin
g.
200
9; 05
: 1164-1
1
6
9
.
[12]
W
A
NG Jiu-he, LI
Hua-de, W
A
NG Li-ming.
Rese
arch on d
i
rect pow
er co
ntrol for three
phas
e bo
ost-
type pw
m rectif
ier.
Procee
din
g
s
of the CSEE, 2006; 1
8
:54-6
0
.
[13]
Xi
e L
e
i,
Xie
Da
, Z
hang Ya
nch
i
, Ai Qian,
W
a
n
g
Z
h
i
x
i
n
. VSC-
H
VDC S
y
stem
Based
on VF
-
D
PC.
Electric
Pow
e
r Science
and Eng
i
n
eeri
ng.
200
9; 01: 1
4
-18.
[14]
Z
H
AO Huan,
W
A
NG Hong-
mei.
Nov
e
l Mo
dul
ation
Strate
g
y
of Dir
ec
t Po
w
e
r C
ontrol
of
PW
M Rectifier
Ba
se
d
on
Vi
rtua
l
Fl
ux
.
Industr
y and Min
e
Aut
o
matio
n
. 200
9; 01: 14-18.
[15]
Z
H
AI Li-li, BU
W
en-shao,
W
A
NG Shao-j
i
e.
F
i
xe
d F
r
equ
e
n
c
y
VF
-DP
C
o
f
T
h
ree-ph
ase
Voltag
e-t
y
pe
PWM Rectifier.
Electrical Me
a
s
ure
m
e
n
t & Instrume
ntatio
n
. 2
012; 05:
25-2
8
.
[16]
LU Jian-k
a
n
g
, XING Yi-
x
un. Im
prove
d
Direct
Po
w
e
r Contr
o
l
Strateg
y
for T
h
ree - ph
ase P
W
M Rectifier.
Co
mp
uter Si
mulati
on
. 20
12; 08: 291-
29
5.
[17]
HU Xue-
gan
g, DAI Xu
n-ji
an
g.
Direct Po
w
e
r C
ontrol of Grid-
C
on
necte
d Inverters Based
o
n
Virtual F
l
u
x
.
Pow
e
r System
and C
l
ea
n Ene
r
gy
. 2012; 1
0
: 87-9
1
.
[18]
W
A
NG Yun-lia
ng, Z
H
AO Yong-l
e
. Researc
h
of improved
virtual-f
lu
x-b
a
s
ed
direct
po
w
e
r c
ontrol
.
Chin
ese Jo
urn
a
l of Pow
e
r Sources
. 201
3; 0
4
: 668-6
71.
[19]
Lie
Xu, D
a
w
e
i Z
h
i,
Lia
ngz
h
ong
Ya
o.
Dir
e
c
t Pow
e
r Co
n
t
rol of Gri
d
C
onn
ected
Volt
age
So
urce
Conv
erters.
Pow
e
r Eng
i
ne
eri
n
g Societ
y Gen
e
ral Me
eting. 2
007.
[20]
SHI Jian-
xin,
JIAO Z
hen-ho
ng,
DONG Ji
n
-
bao,
LI Li
n-ji
e
.
Resear
c
h
o
n
PW
M Rectifie
r
w
i
th D
i
rect
Po
w
e
r C
ontro
l
base
d
o
n
Spac
e-Vector Mo
dul
ation.
S
m
a
ll &
Speci
a
l El
ectri
c
al Mac
h
in
es
. 201
0; 07: 6
0
-
62.
[21]
SONG Shu-zh
ong, SHA
N
D
ong-
lia
ng, MA
Jian-
w
e
i, W
A
NG Xi
an-b
o
. Direct po
w
e
r
control
w
i
t
h
constant s
w
itc
h
in
g frequ
enc
y for PWM
rectifier.
Chin
ese J
ourn
a
l of Pow
e
r Sources
. 20
11; 02: 21
5-
217.
Evaluation Warning : The document was created with Spire.PDF for Python.