TELKOM
NIKA
, Vol. 11, No. 8, August 2013, pp. 42
1
4
~4
221
e-ISSN: 2087
-278X
4214
Re
cei
v
ed
Jan
uary 28, 201
3
;
Revi
sed Ma
y 8, 2013; Accepte
d
May 1
6
, 2013
Harmonic Characteristic Analysis of Magnetically
Saturation Controlled Reactor
Tian Mingxin
g*, Yuan Do
ngshen
g
, Yan Hong
Schoo
l of Auto
mation & Electr
ical En
gin
eeri
n
g, Lanzh
ou Ji
a
o
tong U
n
iv
ersity
Lanz
ho
u, Gansu, 7300
70, Ch
i
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: tianmin
g
x
in
g
@
mail.lz
jtu.cn
A
b
st
r
a
ct
As
the oper
ation of
the ma
gnetic
ally
s
a
tu
rati
on c
ontro
lle
d reactor
(MSCR) is
base
d
on th
e
sa
tu
ra
ti
on
ch
ara
c
te
ri
sti
c
o
f
th
e
co
re
, so
the
h
a
r
m
o
n
i
c cha
r
a
c
te
ri
sti
c
o
f
th
e
re
a
c
to
r sho
u
l
d
b
e
val
ued.
Accordi
ng to th
e structural ch
aracteristic a
n
d
w
o
rking
pri
n
ci
ple, the
mathe
m
atic
al
mo
de
l of the reactor
w
a
s
deriv
ed. And t
he h
a
rmon
i
c c
o
mpo
nent of p
a
ra
meters
s
u
c
h
as curre
nt, voltag
e an
d
ma
gnetic fi
eld w
e
re
system
atic
ally
analy
z
ed by t
he functi
on
characteristic analysis algorit
hm
. Then, it c
oncluded that
the
reactor
’
s w
o
rki
ng curre
nt w
a
s an odd h
a
r
m
o
n
ic functi
o
n
, contain
i
ng fu
nda
me
ntal w
a
ve a
nd od
d har
mo
ni
c
compo
nents; control
l
ed curr
e
n
t and volt
ag
e w
e
re
even
har
mo
nic func
tions, contai
ni
ng DC a
nd e
v
e
n
har
mo
nic c
o
mpon
ents; the c
o
re flux
li
nka
g
e
, flux,
mag
net
ic fiel
d i
n
tens
ity and
ma
gneti
c
field
de
nsity
w
e
r
e
just co
ntain
i
n
g
DC
an
d fun
d
a
m
e
n
tal
co
mp
o
nents. T
h
e
res
u
lts of si
mul
a
ti
on w
i
th MAT
L
AB confir
med t
h
e
valid
ity of a
n
a
l
ytical
meth
ods
and c
onc
lusi
on
s. So the
pa
per
provi
d
e
d
a
r
e
f
e
renc
e to th
e p
r
opos
ition
of n
e
w
har
mo
nic sup
p
r
essio
n
metho
d
s and furth
e
r ana
lysis of
the
ma
gn
etical
ly saturatio
n
contr
o
lle
d reactor.
Ke
y
w
ords
: co
ntroll
ed reactor
,
mag
netica
lly
saturatio
n
, har
mo
nic ch
aracte
ristic, simu
latio
n
, MAT
L
AB
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
The controll
ed re
acto
r p
l
ays an im
p
o
rtant role i
n
gua
rante
e
i
ng the g
r
id’
s
safety,
reliability and efficiency, especi
ally to the EHV long distance
transmi
ssi
on.
T
here are many
kind
s of co
ntrolled re
acto
rs, literature [1] and
[2] have made a ge
n
e
ral an
d bran
-ne
w
su
mma
ry.
The
re
sea
r
ch
on
MSCR
h
a
s
bee
n
paid
clo
s
e
attenti
on a
n
d
man
y
achi
eveme
n
ts h
a
ve
bee
n
gotten, also t
he MSCR ha
s bee
n put in
to applic
ation
[3-4]. Ho
wev
e
r, the big
g
e
s
t disadvanta
ge
of MSCR is t
hat greater
h
a
rmo
n
ic
cu
rrent will b
e
b
r
ought to th
e
grid if n
o
me
asu
r
e
s
a
r
e ta
ken,
esp
e
ci
ally to the sin
g
le-ph
a
se
ope
rated
MSCR i
n
th
e ele
c
trified t
r
actio
n
railwa
y
powe
r
sup
p
ly
system [5]. So, the harm
o
nic cha
r
a
c
teri
stic of
MSCR
sh
ould be taken se
riou
sly,
the
existing
literatures a
r
e aimed
at studyi
ng the
law of op
erating current
distortio
n
with the wo
rki
n
g
con
d
ition and
the way to
sup
p
re
ss the
current harmonic [6-7], but the resea
r
ch o
n
harm
onic
comp
one
nt o
f
controlled
current, mag
n
e
tic field d
e
n
s
ity and flux i
s
little and
n
o
t very syste
m
ic,
so it is difficul
t
to understa
nd so
me rel
e
vant co
n
c
lu
si
ons, to ma
ke
further an
alysis a
nd p
r
opo
se
the new h
a
rm
onic
sup
p
re
ssion meth
od
s.
In this paper,
the mathematical mod
e
l of MS
CR is derived a
c
cording to the structu
r
a
l
cha
r
a
c
teri
stic and
working
prin
ciple.
The
harm
oni
c co
nstituent
s
of physi
cal para
m
eters su
ch as
curre
n
t, voltage and ma
gn
etic field are
analyzed by
function
cha
r
acteri
stic a
n
a
l
ysis algo
rith
m.
Later, the an
alysis a
nd co
nclu
sio
n
s a
r
e
verified and tested by the
simulatio
n
.
2. Rese
arch
Metho
d
2.1. Basic Structur
e and
Working Pri
n
ciple
A
s
Figu
re
1
sho
w
s in
sin
g
le f
o
rm,
MS
CR i
s
com
p
o
s
ed
by
t
w
o
c
o
re
s
wit
h
t
h
e
sam
e
stru
cture and
two side yoke (not illu
strated for the ignoration of t
he yoke reluctance) [7]. The tw
o
windi
ng
s with
sam
e
total n
u
mbe
r
of
A1
2
NN
N
turns a
r
e
wo
un
ded o
n
ea
ch
of the core
a
s
the uppe
r an
d lowe
r win
d
i
ng, and ea
ch
windin
g
has
a tap con
n
e
c
ted with the thyristo
rs
1
T
and
2
T
. The tap ratio
2A
NN
, the u
ppe
r
and l
o
we
r
wi
nding
wo
und
ed in
differe
nt magn
etic
co
re
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Harm
oni
c Ch
ara
c
teri
stic A
nalysi
s
of Magnetically Sat
u
ration
Cont
rolled Rea
c
tor (Tian Ming
xi
ng)
4215
are cro
s
s-co
nne
cted and parall
e
led
to the
gri
d
,
the freewheeli
ng diode
D
is con
n
e
ct
ed
a
c
ro
s
s
the intersecti
on of two wi
nding
s. The
DC
cont
rol currents
d
i
ca
n b
e
regul
ated b
y
switchi
ng the
trigge
r angle
(the ze
ro
-c
ro
ssi
ng time of
is the positive
zero
-cro
ssin
g time of
1
u
, its
rang
e is
0~
,
is zero whe
n
at full lo
ad
and
whe
n
at li
ght load
). Th
en, the
cap
a
city of re
acto
r can
be smo
o
thly adju
s
ted by regulatin
g
[7].
As Figu
re 1
shows, the e
q
u
ivalent mag
netic
circuit le
ngth of two i
r
on core
s a
r
e
equal to
l
, the eq
uivale
nt cro
s
s-secti
onal
are
a
i
s
A
.
A
R
is t
h
e
r
e
si
st
a
n
ce
of
windi
n
g
w
h
o
s
e t
u
rn
s i
s
A
N
,
similarly,
A
(1-
)
R
is
relative to
1
N
,
A
R
is
relative to
2
N
. The
workin
g voltage i
s
A
u
, work
ing
cur
r
e
n
t
is
A
i
, and
d
i
is the DC controlled
current. The fl
ux, magnetic potential, magneti
c
flux
den
sity and
magneti
c
fiel
d stre
ngth o
f
the first core a
r
e
re
sp
ectively
1
、
1
F
、
1
B
、
1
H
.
Relatively, the para
m
eters of the seco
n
d
core are re
spe
c
tively
2
、
2
F
、
2
B
、
2
H
.
1
T
1
N
2
N
2
T
A
i
A
u
D
1
N
2
N
1
N
2
N
1
N
2
N
A1
i
A2
i
d
i
1
2
Figure 1. Structural S
c
hem
atic of MSCR
2.2. Mathem
atical Model
of MSCR
Define:
1A
2A
1
uu
m
uu
(1)
1A
d
2
2d
2
2(
1
)
ii
m
i
im
i
(2)
Whe
r
e:
0,
0
1,
0,
1,
2
t
t
m
t
t
(
3
)
Then, we h
a
ve:
12
1A
1
A
()
dd
uR
i
N
dt
d
t
(4)
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 8, August 2013: 4214 –
4221
4216
2
12
2A
2
A
2
1
()
(
)
1
dd
m
uR
i
N
md
t
d
t
(5)
1A
1
A
2
FN
i
N
i
(6)
2A
1
A
2
FN
i
N
i
(7)
Also, the mag
netic prope
rti
e
s of satu
rate
d core ca
n be
written a
s
follow:
s
0s
,
=
0
=(
)
+,
>
0
BH
Bf
H
HB
H
(8)
Whe
r
e
s
B
rep
r
e
s
ent
s the
sa
turated m
a
g
netic
flux d
e
n
sity, the co
nstant
0
is the
magn
etic
perm
eability in the air. Th
e magn
etic p
r
ope
rty of
sat
u
rated i
r
on
core i
s
symm
etrical
about
the
origin. So, the mathemati
c
al model of M
S
CR
can be
descri
bed by
formula
s
(4
)
~ (8
) [8].
3. Results a
nd Simulation
3.1.
Curren
t
Harmonic Charac
teris
t
ic
s
As Figure 1 sho
w
s, the two iro
n
co
re
s and
wi
ndin
g
s of the re
actor a
r
e co
mpletely
symmetri
c
al, and
their wo
rking con
d
ition
are
mirro
r
sy
mmetrical in the po
sitive and neg
ative half
cycle. So, wh
en assum
e
:
A1
A1
()
ii
t
(9)
Then,
A2
A
1
()
ii
t
(10)
Whe
n
the Fo
urie
r se
rie
s
d
e
com
p
o
s
ition
is done to th
ese two form
ulas (9) a
nd (10), we
can g
e
t:
A1
0
m
m
22
1
si
n
(
)
s
i
n
(
)
kk
k
k
kn
kn
iI
I
k
t
I
k
t
(1
1
)
A2
0
m
m
22
1
si
n
(
)
s
i
n
(
)
kk
kk
kn
k
n
iI
I
k
t
I
k
t
(12
)
Whe
r
e
n
is t
he po
sitive in
teger,
0
I
is
the DC co
mpon
e
n
t,
m
k
I
and
k
are se
parately rep
r
ese
n
t
amplitude a
n
d
initial pha
se
of the
k
th-d
eg
ree ha
rmo
n
ics. From (11
)
and (1
2), we can g
e
t:
A1
A
2
d0
m
2
=s
i
n
(
)
2
kk
kn
ii
iI
I
k
t
(13)
AA
1
A
2
m
21
=+
2
s
i
n
(
)
kk
kn
ii
i
I
k
t
(14)
From
(13
)
a
nd (1
4),
we
kno
w
s that the controll
ed
curre
n
t
d
i
is a
n
even ha
rm
onic
function,
co
n
t
aining o
n
ly
DC an
d eve
n
ha
rmo
n
ic comp
one
nts;
wo
rki
ng cu
rrent
A
i
is
an
od
d
harm
oni
c fun
c
tion, co
ntaini
ng only funda
m
ental wave
and od
d harmonic
com
p
o
nents.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Harm
oni
c Ch
ara
c
teri
stic A
nalysi
s
of Magnetically Sat
u
ration
Cont
rolled Rea
c
tor (Tian Ming
xi
ng)
4217
Then, we
can
get:
dd
AA
()
(
)
()
(
)
it
it
it
it
(15
)
From formula
(3):
()
(
)
mt
m
t
(16
)
Namely
,
m
is an odd har
monic function.
Whe
n
formul
as (1
5) a
nd (16) a
r
e put in
to (2), we
can
get:
)
(
)
(
)
(
)
(
2
2
1
1
t
i
t
i
t
i
t
i
(17
)
So,
1
i
is o
d
d
harmoni
c fu
nction,
2
i
is a
n
even h
a
rm
o
n
ic fu
nction.
Then,
only
odd
harm
oni
c is containe
d in
1
i
; o
n
ly DC an
d e
v
en harm
oni
c compo
nent
s are contain
e
d
in
2
i
.
Actually, the
tap ratio
is al
ways range
d
from 0.0
1
5
to
0.05,
whic
h is
far from
1.0 [8],
so the
wo
rki
n
g cu
rrent
1
i
in equivalent
circuit can be
e
quale
d
to re
a
c
tor’
s op
erating current
A
i
,
and controlle
d cu
rre
nt
2
i
is twice the a
c
tu
al cont
rolled
curre
n
t, so th
e harm
oni
c compon
ents
of
1
i
is
s
a
me to
A
i
,and
2
i
is
s
a
me to
d
i
too.
3.2. Voltage Harmonic
Charac
teris
t
ic
s
Whe
n
formul
a (17
)
is put i
n
to (6) a
nd (7
), we can get:
)
(
)
(
2
1
t
F
t
F
(18)
So, we have (the magnetic field stren
g
th is
equal to the ef
fective length divided by
magneti
c
pot
ential).
)
(
)
(
2
1
t
H
t
H
(19)
Namely
,
1
F
and
2
F
are symmetrical in positiv
e and negative half
cycle on the
hori
z
ontal axi
s
, as well as
1
H
an
d
2
H
.
The magn
etic prope
rty of saturated iron
core
is symm
etrical a
bout the origi
n
, so we ca
n
kno
w
from fo
rmula
(8
) that
B-H
ch
ara
c
t
e
rist
i
c
in whi
c
h
B
a
s
a fu
n
c
tion of
H
i
s
an od
d fun
c
ti
on
whi
c
h can be
written a
s
follows:
()
(
)
f
Hf
H
(20)
Whe
n
put formula (1
9) into
(20), we hav
e:
12
()
(
)
Bt
B
t
(21)
Then,
we
ca
n get (m
agn
etic flux is e
qual to
the f
l
ux den
sity multip
lied by
ef
fective cross-
se
ctional a
r
e
a
)
)
(
)
(
2
1
t
t
(22)
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 8, August 2013: 4214 –
4221
4218
Namely
,
1
B
and
2
B
are
symmetri
c
al in
po
sitive
and
neg
ative half cy
cle o
n
the ho
rizonta
l
axis, as well as
1
,
2
.
Define the
worki
ng voltag
e
AA
m
sin
uU
t
, for
m
is an
odd ha
rmo
n
i
c
functio
n
, we
can kn
ow
th
a
t
2
u
is an
even h
a
rmo
n
ic fu
nct
i
on from th
e
seco
nd exp
r
e
s
sion
of formul
a (1
), and
it
can b
e
writte
n as:
1A
m
22
0
2
m
2
sin
sin(
)
kk
kn
uU
t
uU
U
k
t
(23)
Only the fun
damental
wa
ve contain
e
d
in
1
u
, DC an
d
even harm
onic
com
pon
ents
contai
ned in
2
u
.
3.3. Magneti
c Field Harm
onic Char
ac
teristics
Knowin
g fro
m
form
ula
(1
0)
and
(2
2), t
he
co
re flux
1
and
2
a
r
e mi
rror
symmetri
c
al in
positive an
d negative half
cycle, a
s
well
as
A1
i
and
A2
i
. By using the d
e
r
ivation whi
c
h
is sam
e
to formula (1
3) and
(14
)
, we can get:
12
0
m
2
22
s
i
n
(
)
kk
kn
kt
(24)
12
m
21
2s
i
n
(
)
kk
kn
kt
(25)
For
1
u
just contains fund
ame
n
tal wave,
1
i
contain
s
only odd ha
rmoni
c, so we
c
a
n k
n
o
w
fr
om
formula (4) th
at the odd EMF indu
ced b
y
12
(+
)
can be b
a
la
nce
d
by the resi
stan
ce
AA
Ri
.
Ho
wev
e
r,
AA
Ri
ca
n be negl
ect
ed wh
en com
pare
d
with
12
A
()
dd
N
dt
d
t
in formula (4),
so
12
(+
)
contain
s
only funda
mental wave
, both
2
u
and
2
i
contain
onl
y DC an
d e
v
en
harm
oni
c co
mpone
nts.
F
r
om
formula (5),
EMF gen
e
r
ated by
12
()
cont
ains a little
a
m
ount of
even harmoni
c whi
c
h
can b
e
negle
c
ted, t
hen only DC
comp
one
nt will be contai
ne
d in
12
()
.
So, we have:
10
1
m
20
1
m
co
s
co
s
t
t
(26)
Whe
r
e
Am
1m
A
2
U
N
, and
0
is the
DC flux
com
pon
ent. According t
o
the
relatio
n
shi
p
of flux
linka
ge, flux den
sity and
magneti
c
flux, the flux
linkag
e
an
d flu
x
density ca
n be
written
as
follows
:
10
1
m
20
1
m
co
s
co
s
t
t
(27)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Harm
oni
c Ch
ara
c
teri
stic A
nalysi
s
of Magnetically Sat
u
ration
Cont
rolled Rea
c
tor (Tian Ming
xi
ng)
4219
Whe
r
e
Am
1m
U
, and
0
is the DC flux comp
one
nt.
Also,
we can get:
10
1
m
20
1
m
cos
co
s
B
BB
t
B
BB
t
(28)
Whe
r
e
Am
1m
A
2
U
B
NS
, and
0
B
is the DC flux comp
one
nt.
It can
be
co
nclu
ded
from
formul
as (2
6)
~
(2
8) th
at iro
n
m
agn
etic field
p
a
rameters
contai
n only DC a
nd fund
amental com
pone
nts.
3.4. Simulation Bas
e
d on
MATL
AB
Acco
rdi
ng to the mathema
t
ical model, a
simulation m
odel of MSCR ba
sed o
n
MATLAB
is sh
own in Figure 2 [8].
Figure 2. Simulation Mod
e
l
of MSCR
The rel
a
ted p
a
ram
e
ters are given as foll
ows:
The rate
d ca
pacity
AN
6
0
.
044
M
V
A
S
, the rated voltage
AN
500
/
3
kV
U
, the frequ
en
cy
N
50
f
HZ, the windi
ng re
sista
n
ce
A
40
R
, and the tap ratio
=
0
.
0474
.
The
simulatio
n
wavefo
rm
s
sho
w
n
as
Fig
u
re
3 are got
ten wh
en the
trigge
r an
gle
is 13
5
degree
s. Cle
a
rly, Figure 3
(
a)
sh
o
w
s that the workin
g cu
rre
nt ju
st
contain
s
fun
damental
wa
ve
and od
d cu
rrent harm
oni
c compo
nent
s; Figure 3
(
b
)
sho
w
s that the controlled
curre
n
t conta
i
ns
only fundam
ental wave a
nd even
cu
rrent harmoni
c comp
one
nts; Figure
3(c) sho
w
s that
the
controlled
vol
t
age
ju
st cont
ains
DC and
even cu
rre
n
t harm
oni
c co
mpone
nts;
Fi
gure
3
(
d) sho
w
s
that the iron
flux contain
s
only DC a
n
d
f
undam
ental
com
pon
ents,
and
DC co
mpone
nt of iron
core
1 a
nd
core
2
are
eq
u
a
l in
magnitu
de b
u
t op
po
si
te in
sign. S
o
the
re
sults o
f
simul
a
tion
a
r
e
con
s
i
s
tent wit
h
the theo
reti
cal d
e
rivation
. What
shoul
d be n
o
ted is that
these si
mulation re
su
lts
are
gotten
u
nder the
con
d
ition that
th
e trig
ger a
n
g
l
e is 1
35
de
gree
s,
but it
is
su
re th
at t
h
e
harm
oni
c co
n
s
tituents a
r
e remain un
ch
a
nged
whe
n
the trigge
r angl
e cha
nge
d.
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 8, August 2013: 4214 –
4221
4220
(a) Steady waveform an
d amplitude
-fre
quen
cy
diagram of worki
ng current
(b) Steady waveform an
d amplitude
-
freque
ncy dia
g
ram of controlled current
d
i
(c) Steady wa
veform and a
m
plitude
-freq
uen
cy diagra
m
of controll
e
d
voltage
2
u
(d) Steady waveform an
d amplitude
-fre
quen
cy diag
ram of iron core1 flux
1
, c
o
re2 flux
2
Figure 3. Simulation Waveform
s
4. Conclusio
n
The pa
pe
r sy
stemati
c
ally a
nalyze
d
ha
rm
onic
co
nstituti
on of working
curre
n
t, cont
rolled
curre
n
t and
magneti
c
fiel
d paramete
r
s of MSCR, then
it con
c
lud
e
s that the worki
ng
current
is an
odd ha
rmoni
c function, con
t
aining funda
mental
wave
and odd h
a
rmonic; contro
lled cu
rre
nt and
voltage are
e
v
en harm
oni
c function, con
t
aining DC
a
nd even ha
rmonic
com
p
o
nents; core flux,
magneti
c
fiel
d inten
s
ity, magneti
c
fiel
d den
si
ty
are
just co
ntai
ning DC an
d
funda
ment
al
1.
9
8
1.
982
1.
984
1.
986
1.
98
8
1.
99
1.
9
9
2
1.
994
1.
996
1.
998
-5
0
0
50
Ti
m
e
(
s
)
iA
/
A
0
1
2
3
4
5
6
7
8
9
0
5
10
15
20
H
a
rm
oni
c
or
der
F
undam
en
t
a
l
(
50H
z
)
=
79
.
0
3 A
i
A
M
ag /
A
1.
9
8
1.
9
8
2
1.
984
1.
9
8
6
1.
9
8
8
1.
9
9
1.
99
2
1.
9
9
4
1.
9
9
6
1.
9
9
8
0
20
40
Ti
m
e
(
s
)
id
/
A
0
1
2
3
4
5
6
7
8
9
0
5
10
15
20
25
Ha
r
m
o
n
i
c
o
r
d
e
r
i
d
M
ag /
A
1.
98
1.
9
8
2
1.
98
4
1.
9
8
6
1.
98
8
1.
9
9
1.
992
1
.
994
1.
996
1.
9
9
8
0
5000
10000
Ti
m
e
(
s
)
u2
/
V
0
1
2
3
4
5
6
7
8
9
0
1000
2000
3000
H
a
r
m
oni
c
or
d
e
r
u2 M
ag /
V
1.
98
1.
982
1
.
984
1.
986
1.
988
1.
9
9
1.
992
1.
9
9
4
1.
996
1.
9
9
8
0
500
1000
Ti
m
e
(
s
)
fa
1
/
V
s
0
1
2
3
4
5
6
7
8
9
0
10
0
20
0
30
0
40
0
H
a
r
m
oni
c
or
der
F
undam
ent
al
(
50H
z
)
=
649.
7
V
s
f
a1 Mag
/
V
s
1.
98
1.
98
2
1.
984
1.
986
1.
988
1.
99
1.
992
1.
994
1.
996
1.
99
8
-
1000
-
500
0
Ti
m
e
(
s
)
fa
2
/
V
s
0
1
2
3
4
5
6
7
8
9
0
100
200
300
400
H
a
r
m
o
n
i
c
or
de
r
F
undam
ent
al
(
50Hz
)
=
649.
8 V
s
f
a
1 M
a
g /
V
s
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Harm
oni
c Ch
ara
c
teri
stic A
nalysi
s
of Magnetically Sat
u
ration
Cont
rolled Rea
c
tor (Tian Ming
xi
ng)
4221
comp
one
nts.
The the
o
re
tical an
alysi
s
and
con
c
lu
sion
s a
r
e v
e
rified to
be
co
rre
ct by
the
simulatio
n
ba
sed o
n
MATL
AB.
Ackn
o
w
l
e
dg
ment
This pap
er
wa
s
sup
port
ed by th
e
Nation
al
Nat
u
ral S
c
ie
nce
Fou
ndation
of China
(No.5
116
700
9).
Referen
ces
[1]
W
e
n
y
e Liu, Lo
ngfu Luo, Shu
ada Do
ng, et
al. Ov
ervie
w
o
f
Po
w
e
r Contr
o
lle
d Reactor T
e
chnolog
y.
Energy Proc
ed
ia
. 201
2, 17(Pa
rt A): 483-491.
[2]
Gu Shen
gji
e
, Ren En
en, T
i
an Ming
xing. Over
vie
w
of Co
ntroll
ed Re
actor of T
r
ansformer T
y
pe.
Hi
g
h
Voltag
e App
a
r
a
tus
. (It has been hir
ed)
[3]
Bely
aev
AN
,
Smolovik SV
.
Steady-state
and trans
ie
nt stab
ility of
500kV l
ong-
distanc
e
A
C
transmissio
n
li
nes w
i
th magn
etic
ally c
ontro
ll
ed sh
unt react
o
rs.
IEEE Pow
e
r
T
e
ch Confer
ence, Russia.
200
5.
[4]
Den
g
Z
hanfe
n
g
, W
ang
Xuan,
Z
hou F
e
i, et a
l
.
Model
in
g of Extra-hig
h
V
o
lt
age M
agn
etica
lly Co
ntroll
e
d
Shunt Re
actor
.
Proceed
in
gs o
f
the CSEE. 2008; 28(3
6
): 108
-1
13.
[5]
RR Kar
y
mov
,
M Ebadi
an.
Comp
ariso
n
o
f
m
agnetic
all
y
controll
ed r
e
actor (MCR)
and th
yr
istor
control
l
ed reac
tor (T
CR) from harmonics po
i
n
t of vie
w
.
Int.
J. Elect.
Power Energy Syst
. 200
7;
29(3):
191-
198.
[6]
Xu
xua
n
Chen,
Baichao Ch
e
n
, Cuihu
a
T
i
an. Modeli
ng a
nd Harmo
nic Optimizatio
n
of a
T
w
o-Stag
e
Saturab
l
e Ma
gnetic
all
y
C
o
n
t
rolle
d React
o
r for an
Arc Suppr
essio
n
Coil.
IEEE T
r
ansactions On
Industria
l Elect
r
onics
. 20
12; 5
9
(7): 281
4-2
8
3
1
.
[7]
CHEN Baic
ha
o.
T
he theor
y
and ap
pl
icatio
n of t
he ne
w
control
l
ab
le sa
turabl
e reactor
.
W
uhan:
T
he
W
uha
n h
y
dro
p
o
w
e
r u
n
ivers
i
t
y
press. 1999.
[8]
T
i
an Mingxin
g, Li Qingfu. An Equival
ent Ci
rcui
t and Simu
latio
n
Anal
ys
is
of Magnetica
l
l
y
-S
aturate
d
Contro
lla
ble R
eactors.
T
r
ans
actions Of Chi
na Electrotec
h
n
ical S
o
ciety
.
200
3; 18(6): 64
-67.
Evaluation Warning : The document was created with Spire.PDF for Python.