TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.6, Jun
e
201
4, pp. 4654 ~ 4
6
6
3
DOI: 10.115
9
1
/telkomni
ka.
v
12i6.544
8
4654
Re
cei
v
ed
De
cem
ber 2
9
, 2013; Re
vi
sed
March 3, 201
4; Acce
pted
March 19, 20
14
Resear
ch of a New Non-Layer Protocol Architecture for
Satellite Network
Lixiang Liu*, Dapen
g
Wa
ng, Lu
w
a
ng
Scienc
e an
d T
e
chn
o
lo
g
y
on I
n
tegrate
d
Infor
m
ation S
y
stem
Labor
ator
y
,
Institute of Softw
a
r
e, Ch
ines
e Ac
adem
y of Sc
ienc
e, Beiji
ng 1
001
90
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: liul
x
df@
1
6
3
.com
A
b
st
r
a
ct
T
he
traditi
on
al hier
archic
al ne
tw
ork
architecture
h
a
s the
de
fect of redu
nd
a
n
cy an
d n
o
i
n
teractio
n
betw
een the l
a
yers. T
hese defects have ba
d impact
on QoS and n
e
tw
ork security. Hie
rarchica
l netw
o
r
k
protoco
l
s are
difficult to b
e
used to s
a
tell
ite netw
o
rk
. T
h
i
s
pap
er an
alys
is the differ
ent
netw
o
rk proto
c
ol
architectur
e
a
nd pro
pos
e a
new
net
w
o
rk protocol
archi
t
ecture for satellite-
Co
mpon
e
n
t-base
d
netw
o
rk
architectur
e
, this architectur
e
is prop
osed f
o
r eli
m
i
nati
ng
of hierarc
h
ic
al
netw
o
rk desig
n flaw
s. Networ
k
protoco
l
s w
ill
be
divi
de
d acc
o
rdi
ng to
the
functio
n
fo
r f
o
rmi
ng
of l
o
w
coup
lin
g fu
nctio
nal
co
mp
on
ent
s. It
provi
des hi
gh q
uality serv
ices
to t
he app
licati
on usi
ng co
mbi
ned co
mpo
nen
ts.
Ke
y
w
ords
: pro
t
ocol, non-
lay
e
r netw
o
rk, compon
ent
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Since
Jet P
r
opul
sion
Lab
orato
r
y (JPL) start i
n
terpl
anetary Inte
rnet re
se
arch
in 19
98
whi
c
h was fu
nded by the
U.S. Defen
s
e
Advance
d
Rese
arch Projects Ag
en
cy (DA
R
PA), the
con
c
e
p
t of the gro
und Inte
rnet ha
s be
e
n
ext
ended t
o
the spa
c
e.
The internati
onal commu
n
i
ty
has ma
de
up som
e
st
anda
rd
s or reco
mmen
d
a
tions on t
he sp
ace n
e
twork an
d
th
e
interconn
ecti
on of the
gro
und a
nd
sp
ace technolo
g
y. Ho
weve
r, be
cau
s
e t
he
sat
e
llite network is
different from
the
wire
d n
e
twork, eve
n
di
fferent
fro
m
t
he g
ene
ral
wi
rele
ss net
wo
rk, which ma
kes
the typical n
e
twork p
r
oto
c
ol
s in
cludin
g
the hi
e
r
a
r
chical proto
c
ol
and
impl
em
entation can not
apply to the satellite netwo
rk.
Satellite network need to face
with l
a
rge latency, high-b
andwidth network
environment,
besi
d
e
s
the
netwo
rk topo
logy spa
c
e
often o
c
cur
dynamical
chang
e, to a
dapt the
sp
ace
environ
ment,
saving on
-b
oard
pro
c
e
ssing and tran
smissi
on reso
urces,
we ne
ed more sim
p
le
and
relia
ble
n
e
tworkin
g
p
r
o
t
ocol. Be
ca
use of the
lon
g
delay a
nd
co
de e
r
ror on
in
ter-satellite
a
nd
satellite–ground link, space netwo
rk
can
not use the network
protocol of the ground.
The architect
u
re
of the hierarchi
c
al
net
work
still exist some
probl
ems. Layered network
architectu
re h
a
ve many co
ntrol re
dun
da
ncy betw
een
the layers, for example the
transpo
rt layer,
link l
a
yer
wi
ll use e
r
ror co
ntrol. An
other
pr
oble
m
of the
la
yered
netwo
rk archite
c
tu
re
encounte
r
ed
wa
s the origi
nal desi
gn d
oes not s
upp
ort QoS and
netwo
rk
se
cu
rity. In order to
s
u
pport QoS,
there develops
many
protoc
ols
,
such as
RSVP, RTP, RTCP, etc., but they c
an
only ensure the QoS of e
nd to end, a
nd usele
ss f
o
r the inte
rm
ediate no
de
s on the network,
resulting wast
e of resource
s.
2. Backg
rou
nd
Current classical net
work
protocol i
s
T
C
P/IP
, the entire network
will be divided into five
layers: th
e a
pplication lay
e
r, tra
n
sport
layer,
net
wo
rk laye
r, data
link laye
r
an
d phy
sical
la
yer.
With the
con
t
inuou
s devel
opment of
space te
chnol
ogy, CCS
DS
(Consultative Com
m
ittee
for
Space
Data
System) de
veloped
a
serie
s
of
crite
r
ia a
pplie
d t
o
spatial
dat
a sy
stem
s a
n
d
recomme
ndat
ions, the
sam
e
network is
divided into
fi
ve layers: the
appli
c
ation l
a
yer, tran
sp
o
r
t
layer, net
work laye
r, data
link l
a
yer
a
nd phy
sical l
a
yer. In o
r
de
r to
conn
ect
with the
gro
u
nd
netwo
rk,
peo
ple be
gan t
o
study a
n
d
desi
gn inte
gr
ated
hie
r
archi
c
al n
e
two
r
k
archite
c
tu
re
protoc
ol, s
u
ch as
IP OVER CCSDS, it pr
oto
c
ol a
r
chi
t
ecture
sho
w
n in Figure 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Research of a New No
n-Layer Protocol
Architecture
fo
r Satellite Network (Lixi
a
ng Liu)
4655
App
l
i
c
a
t
i
o
n Da
ta
(A
p
p
lic
ation
la
y
e
r
)
Protocol A
(
t
ra
ns
p
o
rt
l
a
y
e
r
)
Proto
c
o
l
B
(n
etwork
l
a
yer)
Protocol C
(l
in
k layer)
Pr
o
t
ocol D
(phy
s
i
ca
l
l
a
yer
)
App
l
i
c
a
t
i
o
n Da
ta
(Ap
p
li
cation
layer)
Protocol A
(
t
r
a
ns
po
rt l
a
yer
)
Protocol B
(n
etwor
k
layer)
Protocol C
(l
in
k layer)
Pr
ot
o
c
o
l
D
(p
h
y
sica
l layer)
sa
tellite-
to-
satell
ite
a
n
d
s
a
telli
te-to-grou
nd
ro
uter
an
d
ga
te
w
a
y
Satelli
te n
e
tw
o
r
k
T
e
rrestr
i
al
netw
or
k
Figure 1. Space Hi
era
r
chi
c
al Ne
twork Protocol Archite
c
ture
In this archite
c
ture, in orde
r to achieve the
req
u
ire
d
service
s
, som
e
of the layers contai
n
irrel
e
vant im
plementatio
n
mec
hani
sm
s, or la
ck th
e ne
ce
ssary
impleme
n
tation me
ch
ani
sm
s.
Also, the
sam
e
functio
n
ma
y occur i
n
a n
u
mbe
r
of laye
rs,
su
ch a
s
fl
ow a
nd e
r
ror
control o
c
cur
in
the date lin
k layer an
d in
the tran
sp
ort layer al
so.
In orde
r to o
v
erco
me the
existing laye
red
proto
c
ol sta
c
k irrelevant feature
s
, functionalit
y deletions an
d du
plicatio
ns an
d other defe
c
ts,
peopl
e bega
n
to study high
-pe
r
form
an
ce
network a
r
ch
itecture.
In 199
0, Cl
ark a
nd T
e
n
nenh
ou
se
propo
sed
ap
pli
c
ation
-
level
netwo
rk a
r
ch
itecture
framing
theo
ry [1]. The th
eory a
ttem
p
ts to
optimize
network p
r
ot
ocol
pe
rform
ance, re
du
ce
the
proto
c
ol defe
c
ts cau
s
ed b
y
excessive levels of
the OSI model protocol. The
study is based
on
the traditio
n
a
l
hiera
r
chi
c
al
netwo
rk, the
netwo
rk
pe
rforman
c
e
ca
use
d
by excessive level
s
of
proto
c
ol
defe
c
ts. T
he
stud
y is ba
se
d o
n
the tradi
tio
nal hie
r
a
r
chical net
work, o
p
timize
network
perfo
rman
ce,
but did not re
solve it’s o
w
n
proble
m
s of
hiera
r
chi
c
al n
e
twork.
Boecking
propo
sed M
C
S
(Modul
ar
Communi
cati
o
n
System) a
r
chite
c
tu
re [2
-4] is a
typical o
b
je
ct-ori
ented
net
work
archite
c
ture, whic
h a
ttempts to m
eet eme
r
gi
ng
appli
c
ation
s
on
netwo
rk p
e
rfo
r
man
c
e a
nd q
uality of service to different
requi
reme
nts .
The objec
t,the bas
ic
elements
of
Objec
t
-Oriented Network
Ar
chitec
ture module, is
decompo
se
d
into a set of netwo
rk
service
of
layers
and
su
rf
ace
s
. On th
e sam
e
laye
r,the
netwo
rk
archi
t
ecture i
s
si
milar. The
se
rvice
s
of the
object i
s
fulfilled usi
ng its adjacent lo
wer
obje
c
t se
rvice
s
; Furth
e
r, a
hori
z
ontal
su
rface i
s
def
in
e
d
outsi
de of t
he lon
g
itudin
a
l dire
ction. T
he
obje
c
t at diffe
rent l
e
vels bu
t the
same
si
de
can
com
p
lete
colla
boratly som
e
n
e
twork fun
c
tion
s,
so it
ca
n g
u
id
e the l
a
yer service
s
t
o
the
sp
ecifi
c
a
s
p
e
cts such a
s
comm
uni
cati
on ma
nag
em
ent,
assembly, acce
ss, control and tran
smi
s
sion. Its
archi
t
ecture m
odel
sho
w
n in Fig
u
re 2.
Figure 2. Obj
e
ct-Orie
n
ted
Network Arch
itecture m
odu
le
As an
attem
p
t to improve
the pe
rform
ance of
hie
r
a
r
chi
c
al
net
wo
rk
archite
c
ture, MCS
doe
s not
see
m
to be resp
ected
by prof
ession
al, fr
o
m
its birth to t
he present, in
addition to
small-
scale
modeli
ng
re
sea
r
ch, no
othe
r p
u
b
licatio
n of
MCS u
s
a
ge.
it’s
refo
rm o
f
the hi
era
r
chica
l
netwo
rk arch
itecture
is no
t t
horou
gh. B
e
twee
n the
o
b
ject d
o
e
s
n
o
t have a
n
y
mech
ani
sm t
o
ensure the
r
e is no fu
nction
al red
unda
ncy; hi
era
r
chy rese
rved is limit
ed the function
coo
perationfo
the
part
of th
e net
wo
rk, th
e pai
d to
e
s
ta
blish
an
ind
e
pend
ent
su
rfacei
s l
age
r th
an
Service object
Side A
Side B
Side C
layer
()
N+
1
layer
()
N
layer
(
N-
1
)
Service object
Service object
Service object
Service object
Service object
Service object
Service object
Service object
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4654 – 4
663
4656
destroying
di
rectly th
e in
d
epen
den
ce
o
f
the hie
r
a
r
chy for
ea
ch
one to
comp
lete cro
s
s-lay
e
r
netwo
rk fun
c
t
i
ons.
Ac
tive Network
(A
N: Ac
tive Network
)
t
e
c
h
nol
o
g
y is a new net
work
archite
c
ture, it is
prop
osed by
the U.S. Def
ense
Advan
c
ed Re
se
arch
Proje
c
ts Adm
i
nistratio
n
De
fense
(DA
R
P
A
)
in 1995, allo
wing u
s
e
r
s to define their
need
s for the
i
r
sp
ecifi
c
ap
plicatio
n or th
e spe
c
ific typ
e
of
busi
n
e
ss of current network co
ndition
s. The a
c
ti
ve ne
twork can a
c
hieve
real
-tim
e cu
stomi
z
ation
servi
c
e
s
a
n
d
se
rvice
de
pl
oyment, grea
tly redu
ci
ng
the vari
ety of
active
netwo
rk develo
p
m
ent
and de
ploym
ent of new se
rvice
s
witho
u
t having
to go throug
h lengt
hy standa
rdi
z
ation pro
c
e
ss.
Ac
tive
Ne
tw
or
k us
es
s
t
o
r
e-
a
n
d
-
f
o
r
w
a
r
d
s
t
r
u
c
t
ure, con
s
istin
g
of
a g
r
oup
of nod
e
s
calle
d
the a
c
tive no
de n
e
two
r
k n
ode
s. Active
netwo
rk is
a new
net
work comp
uting m
odel different from
the tradition
a
l
passive dat
a tran
sferm
model a
nd th
e gro
up of a
c
tive node
s t
hat perfo
rm t
h
e
approp
riate operation of
the pro
g
ra
m.
Active
Network ha
s t
w
o
mea
n
ing
s
. On
e i
s
called
interme
d
iate
node
s
(such as ro
uters, switche
s
),
not only to
com
p
lete
store-and
-forward
function
s of
netwo
rk-level
stor
a
ge, an
d can p
r
o
a
ctive compute
using the
so-called a
c
ti
ve
packet
s
cont
aining data
and co
de; the other is
to
perform the
s
e co
mputin
gs acco
rdi
n
g
to
netwo
rk ap
pli
c
ation
s
a
nd
servi
c
e
s
requ
est. Thu
s
, by
pro
g
ra
mmin
g
the n
e
two
r
k, ne
w
se
rvices
can
qui
ckly
acce
ss to
th
e network. F
o
r u
s
e
r
s,
A
c
tive
Network can dynami
c
ally
cha
nge
t
he
servi
c
e
and i
n
acco
rda
n
ce with
spe
c
i
a
l appli
c
ati
o
n
s
for
se
rvice
optimization.
Its archite
c
ture
model sho
w
n
in Figure 3.
Figure 3. Active Netwo
r
k
(AN) Arc
h
itec
ture Module
Dissati
s
factio
n with the hi
era
r
chical net
work
a
r
chitecture, the U.S
.
Defense Ad
vance
d
Re
sea
r
ch Project
s
Admin
i
stration
Defense
DA
RP
A establi
s
h
e
d
a
spe
c
ial
fund of the
new
netwo
rk a
r
chi
t
ecture.
Un
d
e
r the
aidi
ng
of the fu
nd,
three
unit
s
of Massa
c
h
u
s
etts In
stitute
o
f
Tech
nolo
g
y (MIT), the Internatio
nal
Comp
uter
S
c
ienc
e Ins
t
it
ute (ICSI), USC Information
Scien
c
e
s
Institute comput
er branch b
egan to st
ud
y non- hiera
r
chi
c
al role
-b
ase
d
com
put
er
netwo
rk a
r
ch
itecture
toget
her. In
O
c
t
2002, i
n
o
r
d
e
r to
solve
the p
r
obl
em
s of hie
r
a
r
chi
c
al
netwo
rk
archi
t
ecture i
n
terl
a
y
er interactio
ns a
nd difficu
lt to expand i
n
to ne
w se
rvi
c
e, Bra
den a
nd
other pe
ople
prop
ose a no
n-hie
r
a
r
chical
role-ba
s
ed n
e
twork a
r
chitecture. This
structu
r
e requi
res
a la
rge
r
p
r
oto
c
ol
(su
c
h
as IP or
TCP
)
m
odula
r
reo
r
ga
nizatio
n
, ma
king it into
sm
aller
units wit
h
a
variety of spe
c
ific tasks to corre
s
p
ond.
As a
no
n-hi
erarchical n
e
twork a
r
chitectu
re, ro
le
-ba
s
e
d
net
work architecture
call
ed a
role
to form th
e
eleme
n
ts
o
f
the comm
unication
sy
stem. Be
cau
s
e th
e
role
is n
o
t o
r
gan
ized
hiera
r
chi
c
ally, so the interactio
ns b
e
twee
n t
he rol
e
s are much rich
er tha
n
the traditional
hiera
r
chi
c
al
proto
c
ol
Rol
e
-ba
s
ed
net
work a
r
chitect
u
re i
s
a g
r
o
up of the
rol
e
an
d u
s
e
of the
proto
c
ol
stack, role
map
p
i
ng a
spe
c
if
ic
net
wo
rk t
r
an
sa
ct
ion
s
.
Net
w
ork d
a
ta p
r
oce
s
sing
by the
variou
s
role
s
may u
s
e m
u
ltiple n
e
two
r
k
proto
c
ol
s,
an
d the
use of
proto
c
ol
se
qu
ence i
s
al
so
not
A
ct
i
ve
a
pp
lication
1
E
xec
u
t
i
ve
envi
r
p
nm
ent
1
har
d
ware
M
e
m
pool
Files
Threa
d
po
ol
Pip
e
lin
e
Activ
e
ap
p
lication
Exec
utive
envi
ro
nm
ent
N
o
d
e
op
er
ation
E
xec
u
t
i
ve
envi
r
p
nm
ent
2
E
xec
u
t
i
ve
envi
r
p
nm
ent
n
A
ct
i
ve
a
pp
lication
2
A
ct
i
ve
a
pp
lication
n
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Research of a New No
n-Layer Protocol
Architecture
fo
r Satellite Network (Lixi
a
ng Liu)
4657
stri
ctly limited as hie
r
archi
c
al
netwo
rk
archite
c
ture, b
u
t
can be
com
b
ined flexibly
depen
ding o
n
the ci
rcum
stances,
whi
c
h
ca
n m
eet
a
variety
of
d
i
fferent a
ppli
c
ation
s
dem
and
and
i
s
t
he
different of the hiera
r
chy protocol
stack.
In role-b
ased
network architecture, the net
work fun
c
tion is comp
leted togethe
r by the
role
s di
strib
u
tion on
differe
nt node
s. Th
e data tran
smitted over t
he net
wo
rk
p
a
cket contain
s
the
role
and
fun
c
tion of
hea
d (RSH:
Role
-sp
e
cific he
ade
r)
of the
pa
cket indi
cate
s the
type of
role
fo
r
pro
c
e
ssi
ng a
nd location
of the pro
c
e
ss a
nd al
so
includ
es th
e origin
al d
a
ta is re
quired.
Role a
nd rel
a
tionshi
p between the pa
cket is sho
w
n in
Figure 4.
Figure 4. Rol
e
and Relatio
n
shi
p
betwee
n
the Packet
Role
-ba
s
e
d
netwo
rk a
r
chi
t
ecture
can
effectively remove the re
dund
an
cy function
s of
each layer, the intera
ction
betwe
en the
different
rol
e
s coop
eratio
n is not limited
betwe
en laye
rs,
easy to
de
si
gn an
d impl
e
m
entation
of
new rol
e
s
to
meet the
nee
ds
of ne
w a
p
p
licatio
ns, a
n
d
good
scalabili
ty, is curre
ntly a strong
co
ntende
r of
the hiera
r
chi
c
al
network a
r
ch
itecture
With the co
ntinuou
s develo
p
ment of net
work technol
ogy and hum
an increa
sin
g
deman
d
on the net
work, the n
e
twork n
eed t
o
quickly ad
apt to cha
n
ge is b
e
com
i
ng incre
a
sin
g
ly
importa
nt, future net
work will inevita
b
ly requi
re n
e
twork eq
uip
m
ent and ne
twork archite
c
ture
with the overall scal
ability. Acti
ve
Network's idea i
s
to accommo
date future
network flexibi
lity
and dyna
mi
c scal
ability requi
rme
n
ts, whil
e
the system
perfo
rman
ce,
se
curity a
n
d
interoperability, etc. to meet or exceed the leve
l of the existing net
work.
How to fell the research
achii
e
vement
s togeth
e
r
an
d to u
s
e o
n
t
he Interne
t, e
s
pe
cially in t
he military fie
l
d appli
c
atio
n
s
,
are still a problem to break.
3. A Ne
w
Co
mponent-ba
sed Proto
c
ol
Frame
w
o
r
k
Figure 5. Co
mpone
nt-b
ased Integrate
d
S
pace Network P
r
oto
c
ol Archite
c
ture
Ro
le 1
Ro
le 2
Ro
le n
Valid
d
a
ta
RSH
1
RSH
2
RSHn
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4654 – 4
663
4658
In acco
rd
an
ce with
the
re
quire
ment
s f
o
r
network in
formation
tra
n
smi
ssi
on
fu
nction
of
integratio
n of
sp
ace-g
r
o
u
n
d
, com
pon
ent
-ba
s
ed
net
wo
rk
protocol di
vided the
wh
ole p
r
oto
c
ol i
n
to
different co
m
pone
nt modu
les. Com
pon
ent-ba
s
e
d
pr
otocol is
sho
w
n in Figu
re
5. Accordi
n
g to
netwo
rk
appli
ance feathe
rs, the invo
kin
g
relati
o
n
ship
betwe
en so
me pa
rts of t
he compo
n
e
n
ts
are relatively fixed(su
ch a
s
the data d
e
liver
and
re
ceiver p
a
rt),h
o
weve
r, each comp
one
nt is
loose couplin
g, so
we
can
make
up dif
f
erent
comp
o
nents flexibly
by adapte
r
on the b
a
si
s
of
applia
nce
req
u
irem
ent to provide net
wo
rk se
rvice
s
to
spe
c
ific a
ppli
ance.
Comp
one
nt based de
sig
n
, aiming at
the chan
ge
s of appli
c
at
ion req
u
irem
ent, can
con
d
u
c
t co
m
pone
nt exten
s
ion f
o
r
route
r
s, Q
o
S, net
work
safety,
etc. Fa
cing
to ne
w a
ppli
c
ation
that might o
c
cur in the fut
u
re,
comp
on
ent-de
s
ig
n
is
no lon
ger
ke
e
p
Patchin
g
when
come
across
new re
qui
re
ments an
d n
e
w fu
nctio
n
s
like l
a
yere
d n
e
tworks. In
stead, it
woul
d
be
more flex
ible
we
add i
n
n
e
w fu
nctio
nal
com
pon
ents and
ne
w
d
e
s
ign
idea
s
u
nder the
req
u
irem
ent of
new
applia
nce
(order bet
wee
n
comp
one
nts, etc).
4. Compone
nt-b
ase
d Protocol Model
On the basi
s of comp
onent-based network
architecture
, the followi
ng will be
described
comp
one
nts i
n
detail.
Comp
one
nt-b
ase
d
proto
c
ol divided in
to three mai
n
parts: the
compo
nent
library,
comp
one
nt repo
sitory a
n
d
compo
nent
ada
pters.
All com
pon
ent
inform
ation
is
store
d
in
the
comp
one
nt repo
sitory; co
mpone
nt library an
d com
pone
nt re
po
sitory are
ma
nage
d un
de
r the
comp
one
nt a
dapter’
s
.
Wh
en the n
e
twork fun
c
tion
module i
s
u
s
ed, d
a
ta ge
nerate
d
by t
h
e
appli
c
ation di
rectly intera
ct
with compo
nent adapt
e
r
s. Applicatio
n
s
do not nee
d to care ab
out
how to
sele
ct a comp
one
nt, but only spe
c
ify co
nf
iguratio
n prop
erties i
n
the
list acco
rdin
g
to
comp
one
nt a
dapters, fill o
u
t a configu
r
ation p
r
op
erti
es li
st called
Com
pon
ent
Call T
able, a
nd
submit it to th
e co
mpo
nent
adapte
r
; after re
ceiv
ing th
e
config
uration
list, the com
pone
nt ada
pter
analyze eve
r
y spe
c
ific
co
nfiguratio
n p
r
operty val
u
e
s
su
bmitted
b
y
the a
pplications,
and
sel
e
ct
different co
m
pone
nts from
the compo
n
ent libra
ry
au
tomatically to form a se
rvice to meet the
appli
c
ation re
quire
ment
s for the appli
c
at
i
on to provide
netwo
rk
se
rvice
s
.
4.1. Compon
ent Library
Comp
one
nt l
i
bra
r
y is the
sp
ecifi
c
im
pl
ementatio
n
of vari
ou
s
comp
one
nts
divided
according
to the
network cap
abilities, each
of
whi
c
h co
ntains
di
fferent imple
m
entation m
odel,
and
ea
ch im
plementatio
n
model i
s
divided i
n
to
con
s
tructo
r fun
c
ti
ons an
d inte
rpreted
fun
c
tions.
The con
s
tru
c
tor functio
n
severs fo
r the
sen
der
whil
e
the interp
ret
ed fun
c
tion f
o
r the
re
cipie
n
t.
Different im
pl
ementation
s
of each
com
pone
nt co
mp
l
y
with a u
n
ifo
r
m inte
rface.
For
example,
a
stand
ard inte
rface i
s
esta
b
lishe
d for rou
t
ing se
rvi
c
e compon
ents a
c
cordi
ng to its functio
n
, then
the routin
g service
com
p
o
nent 1, co
mp
onent 2 a
nd
comp
one
nt 3
are different
from algo
rith
m,
the interfa
c
e i
s
identi
c
al. T
hese unified i
n
terfac
e indi
cate the input,
output and th
e mea
s
ureme
n
t
indexe
s
of variou
s comp
onent
s, as well as t
he
interde
pen
dent relation
shi
p
s betwe
en
vari
ous
comp
one
nts.
Unifie
d inte
rface
ma
ke
s the i
n
tern
al
structu
r
e
of
the
com
pon
ent lib
rary
m
o
re
flexible and standardized. All compo
nen
ts are
store
d
in the comp
on
ent libra
ry for future use. It’s
very conve
n
i
ence to add,
unin
s
tall, upd
ate and ma
i
n
tenan
ce the
compon
ent library acco
rdin
g
to
the crite
r
ion p
r
ovided by a
uniform inte
rface, wh
ich en
sures ove
r
all
con
s
i
s
ten
c
y of compon
ents.
4.2. Compon
ent Inform
ati
on Da
taba
se
Comp
one
nt repo
sito
ry is mainly to
im
prove the
compo
nent
adapter’
s
ability of
comp
one
nt retrieval. Th
e
sp
ecifi
c
impl
ement
ation
o
f
each
comp
onent i
n
cl
ud
es
a
comp
on
ent
head, whi
c
h
con
s
i
s
ts of the comp
one
nt’s versi
on
nu
mber, cl
assifi
cation, effect
and indicato
rs.
Colle
ction
of all com
pon
ent hea
ds f
o
rm
s co
mpo
nent informa
t
ion datab
ase. Whe
n
on
e
comp
one
nt complem
entati
on is
add
ed,
a co
rr
espon
ding compo
nen
t head
will be
simultan
eou
sly
adde
d to
the
comp
one
nt in
formation
dat
aba
se. A
s
fo
r unin
s
tallin
g
a comp
one
nt, you ju
st n
e
ed
to rem
o
ve th
e co
mpo
nent
impleme
n
tation first, and
then the
co
mpone
nt ad
a
p
ter d
e
lete t
h
e
corre
s
p
ondin
g
comp
one
n
t
head from
the compo
nent informa
t
ion databa
se. Compo
n
e
n
t’s
update
requi
res th
e
com
p
onent
ada
pte
r
o
perates
in
the com
pon
ent
lib
rary a
nd com
pone
nt
informatio
n d
a
taba
se sim
u
ltaneou
sly.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Research of a New No
n-Layer Protocol
Architecture
fo
r Satellite Network (Lixi
a
ng Liu)
4659
4.3. Compon
ent Adap
ter
Comp
one
nt adapte
r
is the dispatch cente
r
of the whol
e net
work p
r
oto
c
o
l
, which
con
n
e
c
ts
co
mpone
nt libra
ry and
com
p
o
nent inform
ati
on data
b
a
s
e,
and a
s
sume
the functio
n
s
of
comp
one
nt sche
duling, u
p
dating an
d maintena
nce.
Comp
one
nt a
dapters retrie
ve comp
one
n
t
in
formation
databa
se b
a
sed on the
property
configuration submitted
by app
lications,
determine network capa
bilities on-and-offs, and then
cho
o
se the specifi
c
com
p
onent
s of the sele
cted fu
n
c
tion to provi
de se
rvice
s
for the appli
c
ation
data.
Acco
rdi
ng to
the functio
n
s,
com
pon
ent
adapte
r
can
be divide
d int
o
co
nst
r
u
c
tor se
ction
and inte
rpreter sectio
n. Th
e con
s
tructo
r
is the
spe
c
ific implementati
on
of the com
pone
nt adapt
er
on the
se
ndi
ng en
d. It provides
a fine
sen
d
ing
se
rvice inte
rface
for a
pplication data,
anal
yses
and p
r
o
c
e
s
ses the attri
b
ute inform
ation submi
tted
by application data, an
d then retrie
ve
comp
one
nt i
n
formatio
n d
a
taba
se to
g
e
t functio
nal
co
mpon
ent
informatio
n a
c
cordi
ng to
t
he
results of the
analy
s
is,
an
d call the
sp
ecific co
mpo
nent from
co
mpone
nt lib
rary to im
ple
m
ent
function
al se
rvices in the e
nd. The interprete
r
is the
spe
c
ific impl
e
m
entation of
the comp
one
nt
adapte
r
on the re
ceiving
end. It reads data from t
he netwo
rk int
e
rface by cal
ling the frami
ng
comp
one
nt and link man
a
gement com
pone
nt, and then interpret
s
the re
ceive
d
packet hea
der,
cre
a
tes
a list
of invokin
g
interp
reter
co
m
pone
nts a
c
co
rding to th
e h
eade
r info
rm
ation, and
ba
sed
on the list, qu
erie
s the co
m
pone
nt libra
ry, calls the inte
rpreter fun
c
tion to compl
e
te the se
rvice.
4.4. Sy
stem
Opera
t
ing M
odel
Based o
n
service q
ualit
y requireme
nts, the ope
rating mo
de
of compon
ent-ba
s
e
d
proto
c
ol
syst
em is th
at different type
s of
se
rv
ice
s
can
config
ure
an
d invoke the f
unctio
n
mod
u
l
e
comp
one
nts.
Sho
w
n i
n
Figure 6,
th
e spe
c
ific service
fun
c
ti
ons a
r
e
all
impleme
n
ted
by
con
s
tru
c
to
r calling re
qui
re
d com
pone
nts. In the
pro
c
ess of busi
n
e
ss d
a
ta addi
n
g
head
ers, e
a
ch
operation tha
t
requi
re
s sen
d
ing d
a
ta pa
cket mu
st
que
ry the invokin
g
com
pon
ent
list and
relate
d
comp
one
nts’
information
via the constru
c
to
r, an
d then invo
ke corre
s
po
nding
comp
o
nent
con
s
tru
c
to
rs f
r
om co
mpo
n
ent library in seq
uen
ce
to fill the required com
pon
en
ts information
in
packet he
ade
r.
The interpret
a
tion pro
c
e
ss of the packet heade
r is the other wa
y around. Th
e node
s
receive a p
a
cket, su
bmit it to the interp
reter for
uniformly pro
c
e
ssi
n
g
. The inte
rpreter do
n’t ne
ed
to so
rt com
p
o
nent invo
king
list he
re, be
cause at
this ti
me the p
a
cke
t
heade
rs are
alrea
d
y pla
c
ed
in sequ
en
ce.
All it needs
to do is to seque
ntia
lly re
ads the com
pone
nt
identification of ea
ch
packet h
ead
er, an
d then
call
s the
co
rre
sp
ondi
ng
proto
c
ol
com
pone
nt from
the co
mpo
n
ent
libra
ry
.
Figure 6. System Workin
g Model
4.5. The Da
ta Packag
e Format of
Co
mponent-ba
sed Proto
c
ol
Becau
s
e
of the re
co
nfigurable an
d cho
o
sa
b
ility of the modul
e. the data pa
cka
ge isn’t
simila
r to the static head
pack form of traditional
T
C
P/IP protocol
stack. The n
e
w format m
u
st
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4654 – 4
663
4660
accomm
odat
e ne
wly-ad
d
head
pa
ck in
any time, but also
su
ppo
rt free d
e
finition
to head
pa
ck
to
offer nice ext
ensi
b
ility. The definition of
head p
a
ck format as shown in Figure 7.
Figure 7. Packet Format
The de
scripti
on of each pa
rt of t
he head
pack as
sho
w
n in Chart 1
.
Cha
r
t 1. Introductio
n
of the Head of Packet
5. Module Di
v
i
sion and Scheduling S
e
quen
c
e
Figure 8. Module
s
Callin
g Relatio
n
ships
N
etwo
rk
in
terf
P
r
i
or
i
ty
p
ro
ce
i
reso
u
rce
rese
r
i
S
am
e
as
RTP
i
E
rr
or
cont
r
ol
i
C
on
n
ectio
n
C
on
ne
ct
i
on
receiv
C
on
n
ectio
n
bl
C
on
ne
ct
i
on
releas
C
on
n
ectio
nless
i
ro
ut
i
ng
servi
conn
ectio
nless
S
ecur
i
ty
servic
aut
h
e
nticat
i
on
i
Serv
ice u
n
its
man
a
g
eme
n
t
Co
nfigu
r
e
file
In
p
u
t
m
odul
e
out
put
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Research of a New No
n-Layer Protocol
Architecture
fo
r Satellite Network (Lixi
a
ng Liu)
4661
After the anal
ysis of the tra
d
itional T
C
P/IP
refere
nce
model a
nd ISLs e
n
vironm
e
n
tal, the
functio
s
n
s
wi
ll be divided
into the followin
g seve
ra
l network mo
dule
s
: erro
r
control modu
le,
routing m
odul
e, the servi
c
e
queue ma
na
gement mo
du
le, fragmentat
ion and rea
s
sembly functio
n
module
s
, fra
m
ing mo
dule
,
cha
nnel
all
o
catio
n
fun
c
tion mo
dule
s
,
netwo
rk ma
nagem
ent a
n
d
se
curity mod
u
le, transmission
control module a
nd li
nk man
age
m
ent module.
In
the
traditional hierarch
ical proto
c
ol
arch
itectu
re,
each of th
e
seq
uen
ce
of
function
call
s is already implicit in the relationship bet
we
e
n
the layers, th
at is to
say,
the upp
er l
a
yer
function
is
ca
lled first, but i
n
the n
o
n
-
hie
r
archi
c
al
stru
cture, it i
s
o
b
vious fo
r n
e
w mechani
sm
s to
determi
ne
s the orde
r mod
u
l
e call
s. Some module
s
ca
lls nee
d se
qu
ence, and the
orde
r of som
e
module
s
are interchan
gea
ble.
Each sy
stem
m
u
st
m
a
intain a
mo
dule call
ed seque
nce
tabl
e
to
determi
ne th
e mod
u
le
cal
ling sequ
en
ce, different i
m
pleme
n
tatio
n
s of th
e sa
me fun
c
tion
s with
the sa
me p
r
i
o
rity, in order to en
su
re th
e re
alizat
ion
of the same f
unctio
n
mo
du
le is
call
ed o
n
ly
once, as lo
ng
as the n
e
wly
added m
odul
es have
a re
a
s
on
able o
r
d
e
r of arra
ngem
ent, there h
a
ve
not the disorder p
r
obl
em
s, the application layer te
ll t
he syste
m
that it needs to
call the mo
d
u
le,
the call
er
call
the mdul
e a
c
cordi
ng to th
e calli
ng form
. Module
s
cal
ling rel
a
tion
ships
se
e Figu
re
8.
5.1. Require
Sequen
t
ial Descriptio
n
of the Calling
Module
1)
Cha
nnel
allo
cation mo
dule
must b
e
the l
a
st on
e
calle
d, and it
s fun
c
tion i
s
to d
e
c
ide
on the ch
ann
el comp
etition mode
s of each n
ode;
2)
Framin
g mo
d
u
le, ch
angi
ng
the pa
cket in
to
frame, cou
p
led
with the
frame b
oun
d
a
ry
,
the module
should
call bef
ore the
chan
n
e
l allocation
module;
3)
The framin
g error control module
sho
u
l
d
be calle
d after the modul
e becau
se we try
to che
c
kout a
ll bits of the packet;
4)
Routin
g mod
u
le shoul
d try to put to t
he re
ar, b
e
cause ea
ch i
n
termedi
ate ro
uting
node fo
r ea
ch packet e
rro
r dete
c
tion proce
s
s are fi
rst, then find the route, so th
e routin
g mo
dule
on error d
e
te
ction mod
u
le
can
spe
ed up
the pro
c
ess;
5)
Service
qu
eu
e ma
nage
me
nt mod
u
le, d
e
pendi
ng
on th
e ne
ed
s a
nd
provide
different
serv
i
c
e
s
;
6)
Fragm
entatio
n modul
es, fragm
entation
s
houl
d be o
ne-time, be
cause bu
sine
sse
s
need to call t
he modul
e is predi
ctabl
e, fragmentatio
n module
can b
e
put to the top, and be
ca
use
each frag
me
ntation for th
e route, the
servi
c
e p
r
ovi
der
sho
u
ld b
e
indep
end
e
n
t carrie
d ou
t, it
sho
u
ld be p
u
t to the top of these modul
e
s
.
5.2. Some other Non
-
e
s
s
e
ntial Orde
r of Modules c
a
n be Ra
ndo
m
1)
Secu
rity module, locatio
n
uncertain, de
pendi
ng on t
he data to be
prote
c
ted, if only
to prote
c
t the
actual
data l
o
ad
can
be p
u
t to the
top, F
o
r p
r
ote
c
tion
routing
ad
dre
ss, yo
u can
a
d
d
before the
ro
uting modul
e;
2)
Authenticatio
n modul
e, a p
a
ckag
e may
after
ce
rtificat
ion is
con
s
id
e
r
ed to b
e
safe or
to meet certai
n requi
rem
e
n
t
s, there will b
e
a se
curity a
u
thentication
head
er, su
ch
module
s
in th
e
orde
r is n
o
t importa
nt, and not have to be pro
c
e
s
sed
;
3)
Chai
n togeth
e
r with th
e ch
ain is diffe
ren
t
implementat
ions
of the sa
me functio
n
they
have the sam
e
priority number, the mi
ddle leave so
me blank seri
al number
in order to facilitate
the future a
ddition of n
e
w mo
dule
s
,
the calle
r
can u
s
e
Rol
e
ID and Su
bID to find
the
corre
s
p
ondin
g
entrie
s
de
pe
nding o
n
the module q
u
ickl
y
6. Ke
y
Ser
v
ice Compo
n
e
n
ts Fun
ction
a
l Design
Thro
ugh the
existing hie
r
archi
c
al n
e
twork fun
c
tio
n
s an
alysi
s
and satellite
wirel
e
ss
netwo
rk
appli
c
ation
s
d
e
ma
nd an
alysis, t
he ba
si
c fun
c
tions of the
n
e
twork divi
sio
n
are
define
d
as
function
al co
mpone
nts.
6.1. Groupin
g
/reass
embly
Component
The fun
c
tion
of gro
upin
g
/rea
ssembly
i
ng compo
n
ent is to di
vide a lon
g
packet
fragme
n
tation
into sh
ot uni
t so that the
frame le
ngth
can m
eet the
maximum all
o
wa
ble on
th
e
link data.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4654 – 4
663
4662
6.2. Queue
Manag
e
ment Componen
t
Usi
ng a
c
tive
queu
e man
a
gement
strat
egy ba
sed
on
traffic. To en
sure different
types of
appli
c
ation
s
and Q
o
S in t
he satellite n
e
twork, e
a
ch
traffic st
ream
is in the
tran
smit, receive,
and
the interme
d
i
a
te node mai
n
tains a
sep
a
r
ate que
ue.
6.3. Routing
Serv
ice Componen
t
Routin
g com
pone
nt maint
a
in ne
ce
ssary routi
ng
and
link
state inf
o
rmatio
n an
d
sen
d
the
sou
r
ce-sid
e d
a
ta pa
cket vi
a the
co
rrect
path to th
e d
e
stinatio
n. Th
e forwa
r
de
d
packet
ch
eck the
routing tabl
e to determine
the next hop node, and a
c
cording to the link and lo
ad status
sel
e
ct
the best path.
Routin
g com
pone
nt head
e
r
informatio
n Comp
Data F
o
rmat Desi
gn
:
| Source Ad
dress | Destin
at
ion Address | jump add
re
ss | next hop addre
ss | Hop L
i
mit |
6.4. Transmission Con
t
r
o
l Compone
nt
Considering t
he
characteri
stic
s of the
satellite net
work environment, aiming at im
proving
the informati
on tran
smi
ssi
on efficien
cy
and relia
b
ility, the point to-poi
nt tran
smissi
on control
mech
ani
sm i
s
p
r
op
osed,
its charact
e
risti
c
i
s
the
feedba
ck b
e
twee
n two
points, a
nd
the
interme
d
iate
node
ca
n al
se be i
n
volved in the t
r
an
smissio
n
con
t
rol
process. This ca
n
en
sure
fairne
ss b
e
tween appli
c
ati
ons, adju
s
t the cong
esti
o
n
immediately and avoid the
influence of the
different strea
m
s.
6.5. Error Co
ntrol Compo
n
ent
Error control
comp
onents
ensure the correc
tness and reliability us
ing error
control and
recovery retransmi
ssion. The comp
on
ent
sel
e
ct
s t
he ap
propri
a
te error
dete
c
tion/corre
c
tion
strategy and
retransmi
s
sion reco
very
strategy according to sa
tellit
e network environment. As a
result of re
ceiving feed
b
a
ck info
rmati
on poi
nt
to point tra
n
smi
ssi
on inte
rval
time is g
r
e
a
tly
redu
ce
d, so
retran
smi
ssi
o
n
re
covery
strategy
can
be
sele
cted d
e
p
endin
g
on the
application a
n
d
link qu
ality ACK confi
r
mati
on, conf
irmati
on or ne
gative confirmatio
n
.
6.6. Net
w
o
r
k
Manageme
n
t
and Securi
ty
Components
Becau
s
e
of the satellite n
e
twork lin
k o
penn
ess,
sp
a
t
ial informatio
n tran
sfer fa
ces mo
re
se
curity thre
ats. Almost
all authenti
c
ation
te
ch
n
o
logy or
pri
v
acy data transmi
ssion
are
depe
ndent
o
n
the
ap
plication laye
r
encryption
te
chn
o
logy. if we implem
ent the internal
cryptog
r
a
phi
c se
curity in p
r
otocol
suite, the appl
i
c
atio
n can im
plem
ent se
cu
rity policie
s an
d sa
ve
co
sts mo
re flexible. System admini
s
trat
ors
can
a
pply
the security mech
ani
sm
s uniformly for
the
external com
m
unication
s.
6.7. Framing Componen
t
Dynami
c
al f
r
ame fo
rmat i
s
n
eed
ed fo
r co
mpat
ing
wit
h
dif
f
e
rent
t
r
an
smi
ssi
on
sy
st
e
m
s
and lin
k
proto
c
ol. In the
sid
e
of tra
n
sfe
r
,
the
frame
co
mpone
nt will
pack d
a
ta p
a
c
ket containi
ng
sufficie
n
t data servi
c
e
s
into the desi
r
ed
frame form
at and frami
ng with a sp
ecifi
c
strin
g
to ide
n
tify
the beginni
n
g
and endi
ng
of frame; At the rece
ivin
g side of the
compo
nent, the received bit
strea
m
can
b
e
interprete
d
as d
a
ta fra
m
es a
nd th
e d
a
ta hea
de
r in
formation
will
be
sent to t
h
e
comp
one
nt adapter.
6.8. Link Managemen
t
Componen
t
Link m
ana
ge
ment co
mpo
nent co
mplet
e
s bit
s
trea
m transmit and
receive fun
c
tions a
n
d
collect the link info
rmation that will be transmitted to t
he framing
components.
It also manages
the physi
cal link an
d determin
e
s the
allocati
on wa
y of the common chan
n
e
l resou
r
ce and
access way
of each
nod
e, so that the data fram
es
will
be transmi
ssed effictively via the
transmissio
n cha
nnel.
7. The Integr
ation of o
t
he
r Net
w
o
r
k Sy
stems
Comp
one
nt-b
ase
d
netwo
rk archite
c
ture aim
ed at curre
n
t TCP/IP network tran
spo
r
t
layer a
nd n
e
twork l
a
yer. B
y
defining
a
new
pr
otocol
suite, we ca
n ena
ble
co
mpone
nt-b
ased
softwa
r
e a
nd
netwo
rk
proto
c
ol T
C
P/IP protocol
, SCPS
(Space Com
m
unication
s some sta
nda
rd
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Research of a New No
n-Layer Protocol
Architecture
fo
r Satellite Network (Lixi
a
ng Liu)
4663
system com
p
atible,
whi
c
h can be use
d
in
exis
ting
ne
twork p
r
og
ra
mming e
n
viro
nment. Existing
netwo
rk ap
plication
s
can
be u
s
e
d
in
com
pon
ent-based n
e
two
r
k
enviro
n
me
nt with a
small
amount
of re
writing. At th
e lin
k laye
r
of t
he p
r
oto
c
ol, you can
add
new con
t
ent, or u
s
e
an
existing lin
k
proto
c
ol, an
d
it is ne
ce
ssary to
obtai
n the lin
k la
yer informati
on only
whe
n
comp
one
nt-b
ase
d
re
sou
r
ce manag
eme
n
t proto
c
ol.
8. Conclusio
n
Aimed at the satellite ch
a
r
acte
rs, a ne
w
network p
r
otocol archit
ecture, com
p
onent-
based p
r
oto
c
ol, is p
r
op
osed, this
archi
t
ecture
broke
the net
work
proto
c
ol l
e
vel con
c
e
p
t, whi
c
h
make
the
net
work protocol
de
sign
an
d
develop
mo
re
flexible.
Ai
med at
ne
w servi
c
e
s
and
new
deman
ds, u
s
ers
only nee
d to add fun
c
tional
com
p
onent
s and
o
r
gani
ze th
e compon
ent ba
sed
appli
c
ation
s
requi
re
d. the
r
e i
s
n
o
lev
e
l con
c
ept, t
he p
r
obl
ems of re
dun
da
ncy, po
orle
ss of
intera
ction
are not exi
s
t. Users
ca
n focu
s its
ene
rgy
o
n
allo
cating
a
ll of the net
work re
so
urce
s to
obtain hig
h
q
uality of service
s
.
Referen
ces
[1]
Clark D, T
enn
enh
ous
e D.
Architectura
l Co
n
s
ider
ations fo
r
a New
Gener
ation
of Protoc
ols
. Proc. of
Sigcomm 9
0
. 1990: 20
0-2
08.
[2]
Boecki
ng S,
et al.
A R
un-T
i
me Syste
m
for
Multi
m
ed
ia Pr
o
t
ocols.
F
ourth I
n
ternati
o
n
a
l C
onfere
n
ce
o
n
Comp
uter Com
m
unic
a
tions a
n
d
Net
w
orks (IC
CCN’
19
95).19
95.
[3]
Boecki
ng S, Si
emens AG.
Pe
rforma
nce a
n
d
Softw
are Evaluatio
n
of the
Modu
lar T
I
P Communic
a
tio
n
System
.
Glob
al
T
e
lecommu
nic
a
tions C
onfer
e
n
ce
GLOBEC
OM’96, Lon
do
n. 1996; 7
3
-77.
[4]
Boecki
ng S. Object ori
ente
d
net
w
o
rk pr
otoc
ol. Beij
ing: Mac
h
in
er
y
In
dustri
a
l Press. 200
0.
[5]
Z
eng J,
Xu J,
W
u
Y, Li Y.
Service U
n
it
base
d
Netw
or
k Architecture.
Procee
din
g
o
f
the fourth
Internatio
na
l C
onfere
n
ce o
n
Parall
el a
nd
Dist
r
ibute
d
Comp
u
t
ing, PDCAT
.
2
003: 12-
16.
[6]
T
ennonh
ouse
D, W
e
thera
ll
D. T
o
w
a
rds
a
n
Active
Net
w
ork Archit
ectur
e
.
Co
mputer Co
mmun
icati
o
n
Review.
199
6; 26(2).
[7] Lazar
A.
Pro
g
r
a
mming
T
e
l
e
c
o
mmunic
a
tio
n
Netw
orks
. Proc.5th International
W
o
rksho
p
on
Qu
alit
y of
Service, USA. 199
7; 3-24.
[8]
Brade
n B, F
aber T
,
Handl
e
y
M. F
r
om Protocol
Stack to Protocol H
e
ap: Rol
e
-Base
d
Architecture.
Co
mp
uter Co
mmu
n
ic
ation R
e
view
. 2003; 33(
1):17-2
2
.
[9]
Veriko
ukis
C, et a
l
. Cr
oss
-
la
yer
optim
iz
at
ion
for
w
i
re
l
e
ss s
y
stems
an E
u
ro
pea
n
researc
h
ke
y
chall
e
n
ge.
IEEE Commun. Mag
, 200
5; 43(7)
: 1-3.
[10]
Djama I, Ahme
d T
.
A cross-layer
inter
w
o
r
kin
g
of DVB-T
and W
L
AN for mobil
e
IPT
V
service de
liver
y.
IEEE Trans. Broadc
ast
. 2007;
53(1): 382-
39
0.
[11]
Mussab
b
ir QB,
Yao W, Ni
u Z, et al. Optim
i
z
ed FMIPv6 Us
i
ng IEEE
802.2
1
MIH Serv
ies
in Ve
hic
u
la
r
Net
w
orks.
IEEE Transactions
on Vehic
u
lar technology
. 200
7; 56(6): 33
97-
340
7.
Evaluation Warning : The document was created with Spire.PDF for Python.