TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 79
8
7
~ 799
5
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.66
75
7987
Re
cei
v
ed
Jul
y
13, 201
4; Revi
sed Septe
m
ber
22, 201
4; Acce
pted
Octob
e
r 15, 2
014
Improving the Dielectric Properties of High Density
Polyethylene by Incorporating Clay-Nanofiller
Ossama E. Gouda*
1
, So
hair F. Mahmoud
2
, Ahm
e
d A. El-Gen
dy
3
, Ahmed S. Haiba
2
1
Cairo Un
iversi
t
y
, F
a
cult
y
of Engi
neer
in
g, Ele
c
trical De
partm
ent,
Giza, Eg
ypt, Ph./F
ax:+
202-
35
702
19
3/357
23
486
2
Nation
al Institute of Standar
ds (N
IS), High
Voltag
e Metrol
og
y La
b.,
T
e
rsa street, El
-Haram, Giza, Eg
ypt, Ph./F
ax:+
202-33
88
976
0/338
67
451
3
Nation
al Institute of Standar
ds (NIS),
Nano
techno
lo
g
y
and
Nanom
etrolo
g
y
L
ab.,
T
e
rsa street, El
-Haram, Giza, Eg
ypt, Ph./F
ax:+
202-33
88
976
0/338
67
451
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: prof_ossam
a
11@
ya
ho
o.co
m
A
b
st
r
a
ct
Polymer Nano composites have been used for vari
ous important industr
ial applications. T
he
preparation
of high density polye
thylene composed
w
i
th Na-montmorillonite nanofiller using melt
compounding method for
different concentrations of
clay-nanofiller of 0%,
2%, 6%, 10%,
and 15%
has
been successfully done. T
he morphology
of the obtained samples w
a
s
optimiz
ed and characteriz
ed
by
scanning electron microscope show
ing
the formation of the polymer nanoc
omposites. The t
hermal stability
and dielectric properties w
e
re measured for the pr
epared samples. T
hermal gravimetric analysis results
show
that thermal stabilit
y
in polymer nanocomposites
is more t
han that
in the base
polymer. It has
been
show
n that
the polymer
nanoc
omposites exhibit
some very differ
ent
dielectric characteristics w
hen
compared to the base
polymer. T
he dielectric br
eakdow
n
strength is enhanced by
the addition of
clay-
nanofiller. The dielec
tric constant
(
ε
r
) and
dissipation factor
(T
an
δ
) have
been studied
in the
frequency
range
200 Hz
to 2 MHz
at room temperature
indicating that enhancements
have been occurred in
ε
r
and
T
an
δ
by the addition
of clay-nanofiller
in
the
polymer material w
hen
compared w
i
th
the
pure
material.
Ke
y
w
ords
:
polymer nanocomposites,
high density
polyethylene, dielectric
break
dow
n, dielectric
constant,
dissipation factor.
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Polymers play
an i
m
porta
nt rol
e
for m
any
a
p
p
licatio
ns du
e to thei
r u
n
i
que
pro
pertie
s
whi
c
h ca
n be
classified a
s
heat sen
s
itive, flexible
, electri
c
ally insu
lating, amorp
hou
s, or sem
i
-
cry
s
talline m
a
terial
s. For that reason
, polym
ers
are the mo
st commonly
use
d
diele
c
trics
because
of t
heir reli
ability, ava
ilability, ease of
fabri
c
ations, an
d low
cost. The sel
e
ction of
the
prop
er di
ele
c
tric polyme
r
for a de
si
red
appli
c
ation d
epen
ds o
n
the req
u
ire
m
en
ts and o
perating
con
d
ition
s
of
the appli
ed
system [1]. Th
e ele
c
tri
c
al p
r
opertie
s
of
p
o
lymers can
be imp
r
oved
b
y
the ad
dition
of inorgani
c
nano
-fillers t
o
the p
o
lym
e
rs formi
ng
new mate
rial
s
called
poly
m
er
nano
com
p
o
s
i
t
es (P
NC). P
o
lymer n
ano
compo
s
ites are compo
s
ite
material
s h
a
ving
several wt%
of inorgani
c
particl
es of n
anomete
r
di
mensi
o
n
s
h
o
m
ogen
eou
sly
disperse
d in
to their
poly
m
er
matrix. PNC
with b
e
tter di
electri
c
and
electri
c
al
in
sulation p
r
o
p
e
r
ties
are sl
o
w
ly eme
r
gin
g
as
excelle
nt fun
c
tional m
a
teri
als for diele
c
trics and
ele
c
tri
c
al in
sulat
i
on ap
plicatio
n and th
e term
“nan
odiel
ectri
c
s” for
su
ch
material
s is i
n
crea
singly b
e
comi
ng p
o
p
u
lar. Althoug
h the tech
nol
ogy
of addition of
fillers to poly
m
ers to enh
a
n
ce a
par
ti
cul
a
r diel
ectri
c
p
r
ope
rty has
b
een in exist
e
nce
for several
de
cad
e
s [2
-4], the effect of fil
l
er si
ze
on th
e diele
c
tri
c
of
the polyme
r
comp
osite
s
h
a
s
not bee
n und
ersto
od fully. It is with the
advent
of na
notechnol
ogy
leading to th
e availability and
comm
erciali
z
ation of n
a
n
oparti
cle
s
th
at polyme
r
n
ano
comp
osit
e technolo
g
y starte
d to
gain
momentum. Polymer
na
n
o
com
p
o
s
ites have
be
en
fo
und to exhi
bi
t enhan
ce
d p
h
ysical, thermal,
mech
ani
cal, and diele
c
tri
c
prope
rties
when compa
r
e
d
to the traditional polyme
r
material
s a
nd
that too at l
o
w
nano
-fille
r con
c
ent
rati
ons [1-1
0%]
[5-7]. Ho
wev
e
r it i
s
o
n
ly recently that
the
diele
c
tric
pro
pertie
s
of su
ch polym
er n
ano
comp
osit
es were loo
k
ed into an
d limited, resea
r
ch
results de
mo
nstrate ve
ry encouragin
g
diele
c
tric p
r
o
pertie
s
for these mate
rial
s. Irresp
ective
of
the type
of b
a
se
polym
er
material
(th
e
rmopla
s
ti
c or
thermo
set),
significa
nt en
h
ancement
s i
n
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 7987 – 79
95
7988
several physical
properti
es, like therm
a
l conductivi
ty (with
conducting fillers
) or diel
ect
r
ic
prop
ertie
s
li
ke re
sistivity, permittivity, dissi
pati
on fa
ctor, diele
c
tri
c
stre
ngth, tra
cki
ng a
nd p
a
rtia
l
discha
rge
re
sista
n
t
cha
r
acteri
stics
(with insula
ting
fillers) we
re
ob
serve
d
when com
pare
d
to
simila
r prope
rties in traditio
nal ne
at poly
m
ers [8-
10]. These ob
se
rv
ations
we
re
mainly attribu
t
ed
to the uniq
ue pro
p
e
r
tie
s
of nano
p
a
rticle
s an
d
the large
interfaci
a
l area in
pol
ymer
nano
com
p
o
s
i
t
es [11-13].
The
pre
s
ent
work
fo
cu
se
s
o
n
the
diele
c
tri
c
p
r
op
erti
es
of
PE
nano
com
p
o
s
i
t
es.
Polyethylene is
o
ne of
the
thermo
pla
s
tic
polyolefin
which
is tra
d
itionally o
ne
of the m
o
st
wid
e
ly
use
d
polym
er cla
s
ses with
appli
c
ation
s
i
n
structu
r
al, t
e
xtile, and p
a
c
kagin
g
ind
u
s
trie
s, an
d th
eir
nano
com
p
o
s
i
t
es have fou
nd multiple a
pplication
s
for the sam
e
use
s
. Thi
s
p
aper
sho
w
s the
prep
aration and cha
r
a
c
t
e
rization of
high den
sity
polyethylene com
p
o
s
ed with Na-
montmorill
oni
te clay-nanofiller (H
DPE/clay) with
different
concen
trations
of clay-nanofiller as
0%, 2%, 6%, 10% and 15%. Then t
he diele
c
tri
c
prop
ertie
s
, su
ch a
s
diel
ectri
c
con
s
ta
nt,
dissipatio
n factor, diel
ectri
c
brea
kdo
w
n,
and in
su
latio
n
re
sista
n
ce, of the prep
ared sa
mple
s
will
be discu
s
sed
and compa
r
e
d
to the base
polymer mate
rial.
2. Experimenta
l
Details
2.1. Material
s
HDPE
with
melt flow rat
e
of
7.5 g/1
0
m
in a
nd
den
sity of 9
60
kg/m
3
is
ch
osen a
s
th
e
base polymer material for the cu
rrent st
udy. It
was manufa
c
ture
d by the International Co
mp
any
for Man
u
fact
uring Pla
s
tic
Produ
cts. So
dium mo
nt
mo
rillonite clay K10
(MMT
) was
a
c
q
u
ire
d
from
fluka chemi
k
a
co
mpany.
Hexad
e
cyl T
r
imethyl Am
monium B
r
o
m
ide, modifi
er o
r
surfa
c
t
ant
material, was obtained fro
m
Merck KGa
A
, Darm
stadt, Germa
n
y.
2.2. Modifica
tion
of Cla
y
The prepa
rati
on of polyme
r
/clay na
no
co
mposite
s
with good di
sp
e
r
sio
n
of clay
layers
within the
pol
ymer matrix i
s
not
po
ssi
ble by phy
sical
mixing of po
lymer an
d
cla
y
particl
es. It i
s
not ea
sy to
di
spe
r
se
nan
olayers in
mo
st
polyme
r
s d
u
e
to th
e hi
gh
face
to fa
ce
st
acking
of l
a
ye
rs
in agglom
era
t
ed tactoids
and their intri
n
si
c hydro
phi
lisity which
make them i
n
com
patible
with
hydrop
hobi
c
polymers. Th
e intrin
si
c in
compatibility
o
f
hydrop
hilic
clay laye
rs with hydro
pho
bic
polymer
ch
ai
ns p
r
event
s t
he di
spe
r
si
on
of clay
n
anol
ayers within
polymer
matri
x
and cau
s
e
s
to
the wea
k
in
terfacial
inte
raction
s
. M
o
d
i
ficati
on
of clay layers
with hydropho
bic
age
nts i
s
necessa
ry in orde
r to re
nd
er the cl
ay la
yers mo
re co
mpatible with
polymer chai
ns,
and re
sult
in
a larg
er inte
rlayer spa
c
ing
,
in addition
impr
ovin
g the stre
ngth of
t
he interface betwe
en the
inorg
ani
c an
d the polymer matrix. So, Na-MM
T
clay is modif
i
ed with the
compatibli
ze
r of
Hexad
e
cyl Tri
m
ethyl Ammonium Bromi
d
e [14].
100g of
clay
wa
s dispe
r
se
d into 100
0
ml of
methan
ol solvent a
n
d
placed o
n
hot plate
with ma
gneti
c
stirrer to
allow continu
ous st
i
rrin
g
f
o
r
2hou
rs.
On the
othe
r h
and,
100
g of
hexade
cyl tri
m
ethyl ammo
nium b
r
omid
e
wa
s di
ssol
ve
d in 50
0 ml of
methan
ol. Then the
sol
u
tion
wa
s ad
ded to
clay di
spe
r
si
on. T
he
stirri
ng continu
e
d
for 72
hou
rs.
After that, the modified
cl
ay
wa
s filtere
d
a
nd
colle
cted.
Finally the filt
rate
wa
s d
r
ie
d in
a va
cuu
m
oven
at 70
°C for 6
hou
rs
[15].
2.3.
Prepara
t
ion
of HDPE/Cla
y
Composites
The
con
c
e
n
trations of mo
dified
clay-n
a
nof
iller
we
re
adde
d a
s
0%, 2%, 6%, 10
%, and
15% into the
base p
o
lym
e
r mate
rial. HDPE/cl
ay
Nano compo
s
i
t
es we
re p
r
e
pare
d
by me
lt
comp
oun
ding
method
(m
aster bat
ch
method
) u
s
i
ng twin
scre
w extru
der (TSE) at zon
e
s
temperature
163°
C
167°
C, and 1
67°
C,
for zone
1,
zone
2, and
zone
3 respe
c
tively. The screw
spe
ed was
maintaine
d
3
0
rpm. After extrusion, t
he drie
d pell
e
ts of nano
compo
s
ites
were
preh
eated u
s
i
ng Morgan P
r
ess Inje
ction
unit at
160 °
C
for 30 min
and inje
cted t
o
pro
duce te
st
sampl
e
s with
dimen
s
io
ns
7.5 cm
*7.5
cm *
0
.25
cm
for di
ele
c
tri
c
me
asurem
ents [1
5]. Th
e
prep
ared
sa
mples a
r
e
ref
e
rred to
in
thi
s
p
ape
r
as HDPE 0%
(pu
r
e mate
rial
), HDPE 2%,
HDPE
6%, HDPE 10%, and HDP
E 15%.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
proving the
Diele
c
tric Propertie
s
of Hi
gh
De
nsit
y Polyeth
y
le
ne b
y
… (Ossam
a E. Gouda)
7989
3.
Char
acteriza
t
ion of HDPE
/Cla
y
The prepa
re
d
sampl
e
s
we
re cha
r
a
c
teri
zed by
the sca
nning el
ect
r
o
n
microsco
pe
(SEM).
SEM is a typ
e
of ele
c
tro
n
microsco
pe t
hat produ
ce
s image
s of a
sampl
e
by
scannin
g
it with
a
focu
sed
bea
m of ele
c
tron
s. The
ele
c
trons i
n
tera
ct
with atom
s in
the sa
mple,
prod
uci
ng va
rious
sign
als that
can be de
tected an
d that cont
ai
n informatio
n about the sample'
s
surf
ace
topography a
nd compo
s
iti
on. The
scan
ning el
ectr
on
microsco
pe
image
s were
carrie
d out
by
usin
g SEM, model Q
uant
a 250 FEG
(Field Emissi
on Gun
)
atta
che
d
with E
D
X unit (Ene
rgy
Dispersive X
-
ray Analyses), with a
c
celerating voltage
30 kV, m
agni
fication 1
4
x u
p
to 10
000
00
x,
and a re
sol
u
tion of 1nm.
Therm
a
l
stability is m
e
asured by using th
ermo gravimetri
c
analysi
s
(TGA
).
TGA
experim
ents
were do
ne by
a shim
ad
zu
TA-50 the
r
m
a
l analyzer
u
s
ing
scanni
n
g
rate of 5
°C/min
unde
r N
2
with
20 ml/min flow rate, from room tempe
r
a
t
ure to 600 °
C
.
4. Dielectric
Propertie
s
Diele
c
tri
c
b
r
e
a
kd
own refers to
a
rapi
d
re
du
ction i
n
the
re
sista
n
c
e
of an
ele
c
tri
c
al
insul
a
tor
wh
en the volta
ge ap
plied
across it ex
cee
d
s th
e b
r
ea
kdo
w
n
voltage. Diel
ectri
c
brea
kd
own measurement
s were
p
e
rfo
r
med
u
s
ing
AC Dielec
tric Tes
t
S
e
t. The
s
a
mples
were
san
d
wi
ch
ed betwe
en
t
w
o electrode
s an
d
teste
d
at
ro
om temp
erature
und
er an
ac volta
ge
ra
mp
of 750 V/Sec. The ac volta
ge wa
s in
cre
a
se
d with
a rate of 750 V/Sec until brea
kdo
w
n o
c
curred.
Diele
c
tri
c
con
s
tant i
s
calle
d rel
a
tive pe
rmittivity which is
a p
a
ram
e
ter that i
ndi
cate
s the
relative ch
arge storage
capability of dielectri
c
s in
the pre
s
en
ce o
f
an electri
c
field. The use
d
instru
ment is an Agilent E4980A L
C
R meter with
diele
c
tric
sa
mple hold
e
r.
The equival
ent
parall
e
l cap
a
c
itan
ce (C
p
) i
s
m
e
a
s
ured
dire
ctly by th
e L
C
R mete
r,
then
the
diel
ectri
c
co
nsta
nt is
cal
c
ulate
d
as
sho
w
n b
e
low
in the results
se
ction.
Dissip
ation fa
ctor is called
loss tang
ent
or
Ta
n
δ
. It
rep
r
e
s
ent
s th
e en
ergy lo
ss in
the
diele
c
trics an
d it is preferred to be sma
ller for
insulat
i
on material
s.
It was measured di
re
ctly by
an Agile
nt E4
980A L
C
R m
e
ter
with
diel
ectri
c
sam
p
le
hold
e
r in th
e
freq
uen
cy ra
nge
200
Hz t
o
2
MHz at room
temperature.
Also, insul
a
tion re
sista
n
ce
was m
easured dire
ct
ly by LCR mete
r a
t
the same co
ndition
s.
3. Resul
t
s
and
Discus
s
ion
3.1.
Scanning Electro
n Micro
scop
y
(SEM)
The mo
rphol
ogy of the SEM image
s for
HDPE wi
th 2
%
clay, 6% clay, 10% clay, and 15
% clay com
posite
s
is
shown in Fig
u
re 1
-
4.
Each sam
p
le ha
s two ima
g
e
s
with different
magnification
s. All SEM image
s for all
sampl
e
s
rev
ealed that, cl
ay wa
s dispe
r
se
d in p
o
lymer
matrix very
well a
nd the
r
e
wa
sn’t an
y accumula
ti
on of cl
ay Nano-fille
r in i
t. An import
ant
observation i
s
that the thickne
s
s of clay
conte
n
t
is sti
ll in nano
-si
z
e ran
ge. Thi
s
mean
s that the
sampl
e
s
we
re su
ccessfull
y
prepa
red.
Figure 1. SEM image
s for
HDPE 2% sa
mple at (20
0
x & 40000x) m
agnification
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 7987 – 79
95
7990
Figure 2. SEM image
s for
HDPE 6% sa
mple at (20
0
x & 40000x) m
agnification
s
Figure 3. SEM image
s for
HDPE 10% sample at (2
00
x & 40000x) magnification
s
Figure 4. SEM image
s for
HDPE 15% sample at (2
00
x & 40000x) magnification
s
3.2. Thermal
An
a
l
y
s
is
The therm
a
l
stability of the prepared
samp
les was measured usi
ng
thermo-gravimetric
analyzer
(TG
A
). In this techniqu
e, the weight lo
ss
of
the mate
rial d
ue to the fo
rmation of vol
a
tile
comp
oun
ds u
nder d
e
g
r
ad
a
t
ion becau
se
of the
heating
and tempe
r
a
t
ure ri
sing i
s
monitored.
The dat
a ava
ilable fro
m
T
G
A is tab
u
lat
ed in T
able 1
and g
r
ap
hed
in Figu
re 5 i
n
clu
d
ing
T
10%
(onset tempe
r
ature),
the temperature at wh
i
c
h
10% degrada
tion from the
sample o
c
cu
rs,
T
50%
,
the temperature at
which 50%
degra
dation
occurs, T
max
, the temperature at wh
ich
maximum de
grad
ation o
c
curs, an
d re
sid
ual loss at 60
0 °C.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
proving the
Diele
c
tric Propertie
s
of Hi
gh
De
nsit
y Polyeth
y
le
ne b
y
… (Ossam
a E. Gouda)
7991
Table 1. TGA
result
s for HDPE and HDPE/clay comp
osite
s
Samples
T
10
%
(°C)
T
50
%
(°C)
T
max
(°C)
Resid
u
al
W
e
ight Los
s
(mg
)
at 600 °
C
HDPE 0
%
403.6
451.4
478.3
0.32
HDPE 2
%
403.5
451.6
479.3
0.42
HDPE 6
%
396.7
459.0
481.2
1.24
HDPE 10
%
399.1
463.1
484.2
1.77
HDPE 15
%
405.3
464.8
485.1
4.34
Acco
rdi
ng to
TGA re
sult
s as
sh
own
in
Figure 5, th
e incorporation of MMT
to HDPE
improve
d
the
therm
a
l sta
b
ility at high
er d
egradatio
n tempe
r
atu
r
e ra
nge
s
co
mpared to
p
u
re
HDPE. The tempe
r
ature o
f
the 10% degrad
at
ion of HDPE 2%, HDPE 6% and
HDPE 10% has
been
shifted
to lower t
e
mpe
r
atures relative to HDPE 0%, while the
10% deg
rad
a
tion
temperature
of HDPE 15
% shifted to
highe
r tempe
r
atures
comp
ared to HDP
E
0%. The 5
0
%
and m
a
ximu
m deg
rad
a
tio
n
tempe
r
atu
r
es h
a
ve be
en
shifted to
hig
her tem
p
e
r
at
ure
s
comp
are
d
to
HDPE 0%.
This m
eans that, therm
a
l stabilit
y has been
occurred with
increasing the
con
c
e
n
tration
of MMT co
mposed to HDPE. The re
sidu
al wei
ght
of the sam
p
les at 6
00
°C
increased
wit
h
increasing the concentration of
clay
composed to
HDPE. Thus, t
herm
a
l stability
of HDPE/clay
has be
en im
proved
com
p
ared to pu
re
HDPE.
Figure 5. TG
A curve
s
for
HDPE an
d HDPE/clay co
mposite
s
3.3. Dielectric
Propertie
s
3.3.1.
Dielectric Br
eakdo
w
n
Str
e
ngth
The diele
c
tri
c
brea
kdo
w
n
strength of the
compo
s
ite
s
is analy
z
ed u
s
ing a
n
AC di
electri
c
test set at ro
om tempe
r
at
ure. The te
st wa
s re
peated
5 times for e
a
ch
sam
p
le a
nd the avera
ge
value wa
s plo
tted and re
co
rded a
s
sho
w
n in Figure 6.
0
5
10
15
20
25
0
100
200
300
400
500
600
700
TGA
Analysis
HDPE
0%
HDPE
2%
HDPE
6%
Temperature
(
⁰
C)
Weight
Loss
(mg)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 7987 – 79
95
7992
Figure 6. Diel
ectri
c
brea
kd
own
stren
g
th
measurement
for HDPE/cl
a
y
compo
s
ites
Figure
6 shows the behavior of the dielectr
ic strength for HDPE/clay composites.
Results show that the dielectric breakdown volt
age increases with increasing
the
concentrations
of
clay-nanofiller to HDPE when
compared to the
pure
material having the same dimensions
until
reaching to an optimum value
(36.1 kV) at
HDPE 6%
then, the breakdown voltage starts to
decrease at 10%, and 15% clay-nanofillers. Alt
hough the breakdown voltage decreases at
10%
clay-nanofiller, it’s value still larger than the va
lue
of pure material. It is observed that
the
breakdown
voltage value of the sample HDPE 15%
is lower than that of pure material. As a
result, the dielectric breakdown strength has
been improved at all concentrations of clay-
nanofiller except 15% clay conc
entration when compared to the unfilled material. The optimum
enhancement occurred at HDPE 6%.
Figure 7 shows the dielectric test
set for breakdown voltage measurements.
Figure 7. Diel
ectri
c
test set for
dielect
r
ic brea
kd
own
m
easure
m
ent
s.
3.3.2.
Dielectric co
nsta
nt (
ε
r
)
Measured
qu
antity
wa
s
the
eq
u
i
valent
pa
rall
el
capa
citan
c
e
(C
p
)
of
t
h
e
sam
p
le
s in t
h
e
freque
ncy ra
nge 200
Hz to 2 MHz, the
n
the dielectri
c
con
s
tant (
ε
r
) is cal
c
ulate
d
by the follo
win
g
equatio
ns [16
]
and plotted as sho
w
n in
Figure 9.
C
ᴘ
ε
₀
εᵣ
(1)
31.
3
33.
5
36.
1
34
30.
1
20
25
30
35
40
HDPE
0%
HDPE
2%
HDPE
6%
HDPE
10%
HDPE
15%
Voltage
(kV
)
Dielectric
Breakdown
Voltage
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
proving the
Diele
c
tric Propertie
s
of Hi
gh
De
nsit
y Polyeth
y
le
ne b
y
… (Ossam
a E. Gouda)
7993
εᵣ
C
ᴘ
ε
₀
(2)
Whe
r
e:
ε
₀
= 8.
854*1
0
-12
F/m is
the permittivity of fre
e
s
p
ac
e, (A) i
s
the
are
a
of
electrode
s, a
nd
(t) is the thickness of the sample
s.
Figure 8
sho
w
s the
variat
ion of
the
di
electri
c
con
s
tant (
ε
r
) with freque
ncy
at
ro
om
temperature f
o
r all sam
p
le
s. Observed
differen
c
e
s
were foun
d in diele
c
tric
con
s
tant betwe
e
n
pure
HDPE and HDPE compo
s
ites
wi
th different c
oncentratio
n
s of clay-n
ano
filler. It is se
en
that,
ε
r
decre
ase
s
with in
crea
sing frequ
ency for all sa
mple
s. An importa
nt observation is th
at
diele
c
tric con
s
tant de
crea
se
s con
s
ide
r
ably wi
th the
addition
of
clay-n
anofille
r up to
6% filler
con
c
e
n
tration
,
and then it
increa
se
s at
10%
and 1
5
%
filler con
c
entration
s. T
he value of
ε
r
at
HDPE
10% i
s
still lower th
an that
of pure HDPE and
its valu
e at
HDPE 15%, i
s
higher than t
he
pure
materi
al
. The increa
sing of
ε
r
at 10% and 1
5
% filler co
ncen
trations
may
be du
e to the
effec
t
of
ε
r
of
comp
osite
s
(i
nclu
sio
n
s +
matrix) o
n
th
e re
sulta
n
t p
e
rmittivity [17, 18]. Thi
s
m
ean
s
that an enha
n
c
eme
n
t occu
rred in diel
ect
r
ic co
ns
ta
nt at 2%, 6%, and 10% filler co
nce
n
tration
s
.
Figure 8. Fre
quen
cy dep
e
nden
ce of die
l
ec
tri
c
co
nsta
nt at room temperature
3.3.3.
Dissipa
tion Factor (Ta
n
δ
)
Figure 9. Fre
quen
cy dep
e
nden
ce of di
ss
ipatio
n facto
r
at room tem
peratu
r
e
3.
80
4.
00
4.
20
4.
40
4.
60
2.
2
2
.
7
3.
2
3
.
7
4.
2
4
.
7
5.
2
5
.
7
6.
2
HDPE
0%
HDPE
2%
HDPE
6%
HDPE
10%
HDPE
15%
Dielectric
Constant
Log
(
Frequency)
At
room
temp.
0.
000
0.
010
0.
020
0.
030
0.
040
0.
050
0.
060
0.
070
0.
080
2.2
2
.7
3.2
3
.7
4.2
4
.7
5.2
5
.7
6.2
HDPE
0%
HDPE
2%
HDPE
6%
HDPE
10%
HDPE
15%
At
room
temp.
Tan
(
δ
)
Lo
g
(Frequenc
y)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 7987 – 79
95
7994
Figure 9
sho
w
s th
e vari
ation of
the
dissipatio
n facto
r
(T
an
δ
) with
freq
uen
cy at
roo
m
temperature
for all
sam
p
le
s. As
sho
w
n
i
n
the figu
re,
Tan
δ
de
cre
a
se
s with
in
cre
a
sin
g
fre
quen
cy
for all
sampl
e
s. Also an i
m
porta
nt ob
servation i
s
th
at Tan
δ
d
e
c
re
ases
with
increa
sing t
he
concentrations of
clay
-nanofiller in
corporated in
poly
m
eri
c
m
a
terial
up to 6% fill
er
concentrati
on,
then it further incre
a
ses at 10% and 15% filler con
c
entratio
n
s. Thi
s
ma
y be due to the
increa
sing
of
con
d
u
c
tivity accordi
ng to
in
cre
a
si
ng
of n
ano-fille
r
co
n
c
entration [1
7
,
18]. It is
se
e
n
that the value
s
of Tan
δ
fo
r HDPE 10%
sampl
e
are le
ss th
an that o
f
pure mate
ri
al. On the oth
e
r
hand, the val
ues of Ta
n
δ
for 15% filler co
ncentrati
ons a
r
e hi
gh
er than that
of pure m
a
te
rial.
This means that clay-n
anofiller improves the dissipation fa
ctor for HDPE polym
eric m
a
terial.
3.3.4.
Insulation Resista
n
ce (R)
Figure 10
sh
ows the vari
a
t
ion of the in
sulati
o
n
re
si
stance
(R) wit
h
frequ
en
cy at room
temperature
for
all sam
p
l
e
s.
Ma
rked differen
c
e
s
were fou
nd
in the in
sula
tion re
si
stan
ce
betwe
en p
u
re
HDPE and
HDPE
com
p
o
s
ites with
diffe
rent
co
ncent
ration
s of
cla
y
-nanofille
r. It is
see
n
that, the insulation
decrea
s
e
s
wi
th increa
sing
frequ
ency f
o
r all
sam
p
le
s. An impo
rt
ant
observation i
s
that the insulati
on increases
with the
addition of
clay-nanof
iller up to
6%
filler
con
c
e
n
tration
,
and th
en it
decrea
s
e
s
at 10% a
nd
15
% filler
con
c
entration
s. Al
though
that, the
insul
a
tion resistance
value
at 10% filler
concentration
is
still hi
ghe
r than th
at of
pure
HDPE.
On
the other hand, the insula
ti
on resistance value at 15% filler conc
entrations is lower than that o
f
pure
sampl
e
. The de
cre
a
si
ng
of
the
i
n
su
lation re
si
sta
n
ce
at
10% fil
l
er
co
ncentrat
i
on m
a
y be
d
ue
to the increa
sing
of co
nd
uctivity of co
mposit
e
s
at
high
con
c
e
n
tration
s
. Thi
s
mean
s that
an
enha
ncement
occu
rre
d in
the in
sulati
on resi
stan
ce up to
10
% filler con
c
entration
when
comp
ared to pure m
a
terial.
Figure 11
sh
ows the u
s
e
d
LCR M
e
te
r with
di
ele
c
t
r
ic
sam
p
le h
o
lder for m
e
asu
r
ing
dielec
tric
parameters
.
Figure 10. Th
e insul
a
tion resi
stan
ce vari
ation wi
th vari
able freq
uen
cies at roo
m
temperature.
Figure 11. Agilent E4980A
LCR meter
wi
th dielectri
c
sample hol
der
0
500
1000
1500
2.2
2
.7
3.2
3
.7
4.2
4
.7
5.2
5
.7
6.2
HDPE
0%
HDPE
2%
HDPE
6%
HDPE
10%
HDPE
15%
At
room
temp.
Resistance
(M
Ω
)
Lo
g
(Frequenc
y)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
proving the
Diele
c
tric Propertie
s
of Hi
gh
De
nsit
y Polyeth
y
le
ne b
y
… (Ossam
a E. Gouda)
7995
4. Conclu
sion
HDPE/clay
co
mpo
s
ites
are
p
r
epared
by melt com
pou
nding
metho
d
(Ma
s
te
r B
a
tch
method
). Morpholo
g
y stru
cture
of the prepared samp
les is inve
stig
ated by SEM. SEM image
s
sho
w
th
at
cl
ay co
ntent i
s
well
dispe
r
se
d i
n
the
polymer mat
r
ix indi
cating
sa
mple
s
are
su
ccessfully prep
ared. Th
erma
l
stability and dielectric prope
rtie
s are inve
sti
gated for th
e
prepared samples. TGA
result
s show
t
hat
HD
PE nanocomposites have
therm
a
l stability m
o
re
than unfilled
polymer mat
e
rial. Diel
ectric bre
a
kd
o
w
n
strength i
s
improve
d
by the addition
of
clay-n
anofille
rs. Diele
c
tri
c
con
s
tant
a
nd dissipatio
n fa
ctor a
r
e
studi
ed at ro
om te
mperature i
n
the
freque
ncy
ran
ge 200
Hz to
2 MHz. The e
x
perime
n
ta
l result
s show t
hat there i
s
a
n
enha
nceme
n
t
in both
ε
r
an
d Tan
δ
d
ue
to the uniqu
e
behavio
r of clay-n
anofille
r wh
en in
co
rporate
d
into t
he
polymer ba
se matrix HDPE. Also insulation re
si
stance has b
e
en improve
d
by the addition of
clay-n
anofille
r. From
all
re
sults,
It ca
n
b
e
noti
c
ed
that
6%
fille
r con
c
entration
is the optimum clay
conte
n
t for HDPE/clay system.
Referen
ces
[1]
BX
Du, HJ Liu.
Effects of At
mosph
e
ric Press
u
re on T
r
ackin
g
F
a
ilur
e
of Ga
mma-ra
y
Irra
di
ated Po
l
y
m
e
r
Insulating Materials.
IEEE Transactio
n
s on D
i
electrics
and E
l
ectrical Ins
u
lat
i
on
. 20
10; 17(
2
)
.
[2]
F Carmona. C
ond
uctin
g
Fille
d Pol
y
mers.
Physica A
. 1989;
157: 46
1-4
69.
[3]
Y Bai, Z
Y
Ch
eng, V Bh
arti,
HS Xu, QM Z
hang.
H
i
gh d
i
electric-c
onsta
nt
ceramic-
po
w
d
er pol
ym
er
compos
ites.
Appli
ed Phys
ics Letters
. 200
0; 76(2
5
): 380
4-3
806.
[4]
MM Ueki, M
Z
a
nin. Infl
ue
nce
o
f
add
itives
on
t
he
die
l
ectric str
ength
of H
i
g
h
-
dens
it
y Pol
y
et
h
y
l
e
n
e
.
IEEE
T
r
ansactio
n
s o
n
Diel
e
ctrics a
nd Electric
al In
sulati
on
. 19
99; 6(6):87
6
-88
1
.
[5]
PB Messers
mith, EP Giann
elis. S
y
nt
hesis
an
d C
haracter
i
zatio
n
of La
ye
red
Silic
ate-Ep
o
x
y
Nan
o
comp
osit
es.
Chem
istry of Materials
.1
9
94; 6: 171
9-17
25.
[6]
SS Ra
y, M
Okamoto. Pol
y
mer/
l
a
yer
ed silicate
n
a
n
o
c
o
mpos
ites:
a
revie
w
from p
r
epar
ation
to
process
i
ng.
Pr
ogress i
n
Poly
mer Sci
enc
e
. 2003; 28: 1
539-
164
1.
[7]
R Gensler, P
Groppe
l, V Muhrer, N Mull
er.
Applic
at
io
ns o
f
Nano
particl
es
in Pol
y
m
e
rs for Electron
ic
and El
ectrical
Engi
neer
in
g.
Particle a
nd Part
icle Syste
m
s C
haracter
i
z
a
tio
n
. 2002; 19: 29
3
-
299.
[8]
T
T
anaka. Die
l
e
ctric Na
noc
o
m
posites
w
i
th
Insul
a
ting
Pro
p
e
rties.
IEEE
Transactions on Dielectrics
and
Electrical Insulation
. 20
05; 12
(5): 914-9
28.
[9]
Y Cao, PC Irw
i
n, K Youns
i.
T
he F
u
ture of
Nanod
iel
e
ctri
cs in the Elec
trical Po
w
e
r In
dustr
y
.
IEEE
T
r
ansactio
n
s o
n
Diel
e
ctrics a
nd Electric
al In
sulati
on
. 20
04; 11: 797-
80
7.
[10]
T
Imai, F
Saw
a
,
T
Ozaki,
Y Inou
e, T
Shimizu, T
T
anaka.
C
o
mpar
is
on
of Insu
latio
n
Bre
a
kdow
n
Properti
es of Epoxy Na
noc
ompos
ites un
der Ho
moge
n
eous a
nd D
i
v
e
rge
n
t Electric
F
i
elds
. IEEE
Confer
ence
of Electrical Ins
u
l
a
tion a
nd D
i
el
e
c
trics Phenom
ena (CEIDP). 2
006: 30
6-3
09.
[11]
T
J
Le
w
i
s. Interfaces are
t
he Domi
na
nt F
eature of Di
electrics at th
e Nan
o
metric
Level.
IEEE
T
r
ansactio
n
s o
n
Diel
e
ctrics a
nd Electric
al In
sulati
on
. 20
04; 11: 739-
75
3.
[12]
M Ro
y, JK N
e
l
s
on, RK M
a
cCr
one,
LS Sch
adl
er.
Pol
y
mer
Na
nocom
posite
D
i
electrics
– T
h
e
Rol
e
of th
e
Interface.
IEEE Transactions
on Di
electrics
and El
ectrical I
n
sul
a
tion
. 2
005
; 12: 629-6
43.
[13]
PM Aja
y
a
n
, L
S
Scha
dler, P
V
Braun.
Na
n
o
comp
osite Sc
ienc
e a
nd T
e
chno
log
y
.
Ne
w
York: W
ile
y.
200
3.
[14]
Xi
ao
hui
Li
u, Qiuju W
u
. PP
/cla
y
na
noc
omposit
es prep
ar
ed
b
y
graftin
g
-melt
interc
ala
t
ion.
Elsev
i
er
Poly
m
e
r
. 20
01;
42: 100
13-1
0
0
19.
[15]
Moham
ed A
Hassa
n, Ibrahi
m El-Sa
y
ed,
M
oham
ed A
Nour, Aksam
A Moham
ed.
F
l
ammabi
lit
y
Properties of HDPE Nanoc
omposites B
a
sed on Modific
a
tion of
Na-MM
T
w
i
th Organo Silane and
Ammoni
um Ph
osph
ate Mon
o
and D
i
basic.
E
lixir App
l
. Che
m
.
20
12; 46: 8
328-
833
3.
[16]
LiLi.
Di
electric
pro
perties
of
age
d
pol
ym
ers
an
d
nan
ocom
posites
in
Io
w
a
. PhD
T
hesis
. Io
w
a
St
ate
Univers
i
t
y
; Gra
duate T
hesis; 201
1.
[17]
S Sing
ha, MJ
T
homas. Permittivit
y
and T
a
n
De
lta
Ch
aract
e
ristics of Ep
o
x
y N
a
n
o
comp
o
s
ites.
IEEE
T
r
ansactio
n
s o
n
Diel
e
ctrics a
nd Electric
al In
sulati
on
. 20
08; 15(1).
[18]
S Sin
gha, MJ
T
homas. Die
lectric
Pro
perti
es of E
p
o
x
y
Nan
o
comp
osit
es
. IEEE Transactions o
n
Dielectrics and Elec
trical Insulation
. 20
08; 15
(1).
Evaluation Warning : The document was created with Spire.PDF for Python.