TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 9, September
2014, pp. 66
5
1
~ 665
7
DOI: 10.115
9
1
/telkomni
ka.
v
12i9.428
6
6651
Re
cei
v
ed Au
gust 31, 20
13
; Revi
sed Ma
y 23, 201
4; Accepted
Jun
e
15, 2014
Design of Array
MEMS Vector Vibration Sensor in the
Location of Pipeline Int
e
rnal Inspector
Mengra
n
Liu*, Guojun Zhang, Zeming
Jian*, Hong
Liu, Xiaopeng Song, Wen
dong Zhan
g
Ke
y
Lab
orator
y Of Science an
d T
e
chnolo
g
y
on Electro
n
ic
T
e
st & Measure
m
ent, North Un
iversit
y
of Chi
n
a
*Corres
p
o
ndi
n
g
author, em
ail
:
liumen
g
ran
1
9
91@
163.com,
zhan
gg
uoj
un
1
977
@nuc.e
du.
cn,
jianz
emi
n
g
x
@
163.com
*
, li
uho
ngzb
d
x
@1
63.c
o
m, sroc@16
3
.com,
w
d
z
h
a
n
g
@
nuc.e
du
A
b
st
r
a
ct
In view
of the
pip
e
li
ne
marki
ng d
i
fficult a
n
d
poor meas
ure
m
e
n
t
prec
isi
o
n
,
a new
-type
mo
no
lithi
c
integr
ated arra
y MEMS vector vibrat
ion s
e
n
s
or has be
en p
u
t forw
ard. It
h
a
s overco
med
the defici
ency tha
t
prese
n
t vector
acoustic
sens
o
r
ap
pli
ed
in th
e oi
l
and
gas
pip
e
li
ne
inter
n
al i
n
sp
ector ca
n n
o
t be
accur
a
t
e
abo
ut sign
al p
o
s
ition, an
d el
i
m
inat
e
d
the p
o
rt/starboar
d bl
ur prob
le
m. Throu
gh ANSYS si
mulati
on a
nalys
i
s
,
it concl
u
d
e
tha
t
the array v
e
ctor vibr
ation s
e
ns
or h
a
s the s
ensitivity
of
2.0
5
mv/p
a (-1
73.8
d
B,0dB=
1
v/
μ
pa
).
T
he first-order
mo
da
l is
438
H
z
,
a
nd th
e thir
d
-
order
mod
a
l is
452
H
z
.
T
he r
e
son
anc
e freq
uency
of the t
w
o
sensitiv
e co
mp
one
nts is r
e
sp
ectively
45
2
H
z
a
n
d
438
H
z
.
At the e
n
d
of t
h
is
pap
er, the
alg
o
rith
m th
at
can
be use
d
to esti
mate th
e a
z
i
m
uth ang
le d
e
te
cted by the sen
s
or , is given.
Ke
y
w
ords
:
pip
e
li
ne int
e
rn
al ins
pector, abov
e-gro
u
n
d
ma
rk
er, array
vibratio
n vec
t
or sensor, ANSYS
simulati
on, a
z
i
m
uth
estimatio
n
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1.
Introduc
tion
Pipeline i
s
o
ne of the
maj
o
r m
ode
of transportatio
n
of oil an
d g
a
s
resou
r
ce
s,
whi
c
h i
s
safe, sta
b
le,
and e
c
o
nomi
c
[1]. In ord
e
r to guarantee
the normal
safe ope
ration
of pipelin
e, it is
necessa
ry to
dete
c
t pip
e
li
ne. Pipelin
e i
n
sp
ectio
n
te
chnolo
g
y is currently the
most
wid
e
ly
and
most effectiv
e pipelin
e d
e
tection m
e
thod. In
ord
e
r
to improve
the accuracy of the detector
insid
e
, we
ne
ed to pip
e
line
intern
al in
sp
ector for th
e
grou
nd m
a
rker. Currently, there
had
be
en
some
differe
nt prin
ciple
o
f
the grou
nd
marker
,
su
ch as th
e ed
d
y
current me
thods, ma
gn
etic
method
s
and
aco
u
sti
c
m
e
thod
s [2
-4]. And the
s
e
ma
rkers dete
c
tio
n
in
pipe
hav
e a
c
hieve
d
b
e
tter
effect on the detection of
the pipe. Ho
wever,
no
wa
days the pip
e
line is devel
oped toward the
dire
ction of la
rge di
amete
r
, wall thi
c
kne
s
s an
d
bu
ried deep,
the se
n
s
or ba
sed on the
prin
cipl
e of
aco
u
sti
c
dete
c
tion ha
s be
come the key
point
of the developme
n
t of the technolo
g
y [5, 6].
The dete
c
tor
insid
e
in the pipe is
runni
n
g
unde
r the i
m
petus
whi
c
h is produ
ce
d by the
fluid in the pi
pe. The
r
e ha
ve two mainly
acou
stic
sig
n
a
ls in the p
r
o
c
e
ss
of run
n
ing: one i
s
so
und
sign
als ge
nerated by
the f
r
iction
b
e
twe
en inte
rn
al
inspe
c
tor a
nd pipe wall, the
other is imp
a
ct
sou
nd
sign
al
s b
e
twe
en i
n
ternal
in
spe
c
tor
and
pip
e
line
weld.
A larg
e nu
m
ber
of the fi
eld
experim
ents
sho
w
that the freque
ncy
of the fric
tion
acou
stic
sig
nals i
s
co
nce
n
trated b
e
tween
150
HZ
and
3
50HZ,
while t
he im
pact
a
c
ousti
c
sign
als are
con
c
e
n
trated b
e
twe
e
n
the
dozen
s
of
HZ. Whe
n
internal in
sp
ect
o
r is ru
nnin
g
in the
pipe, the two kin
d
s
of acou
stic si
gnal
s will sp
read
arou
nd thro
u
gh soil medi
u
m
. Acousti
c signal
s decay
expone
ntially with the
increase of dista
n
ce
in the
soil.
Due to th
e effe
ct of atten
uat
ion of
th
e soi
l
, the si
gnal
will be
wea
k
e
r
, the traditio
nal
aco
u
sti
c
sen
s
or
ba
sed
on
the p
r
in
ciple
o
f
the vi
bration
acou
stic
sig
n
als
dete
c
tion
has no
vecto
r
.
With the a
c
o
u
stic
se
nsor
array to dete
c
t the po
si
tio
n
of the internal in
spe
c
tor,
however d
u
e
to
the con
s
isten
c
y problem
of
acou
stic
sen
s
or,
so
the
a
z
imuth
estim
a
tion p
r
e
c
isi
o
n of the i
n
ternal
detecto
r is n
o
t high; and the single ve
ctor a
c
ou
st
ic sen
s
or al
so
has the po
rt/starbo
a
rd bl
ur
probl
em
(det
ection
range
betwe
en
0°a
nd 9
0
°
)
. In th
is p
ape
r, the
r
e is a
ne
w-ty
pe a
r
ray vect
or
vibration
sen
s
or with
a hig
h
se
nsitivity, whi
c
h
ove
r
co
mes th
e short
age of the
azi
m
uth e
s
timation
in
th
e
e
x
is
ting
ve
c
t
or
s
e
ns
o
r
ar
r
a
y, par
tic
u
lar
l
y the
defect
s
a
ppli
ed in th
e lo
cation of pi
pel
ine
internal in
sp
e
c
tor, an
d elim
inates the p
o
rt/starbo
a
rd bl
ur problem.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
51 – 665
7
6652
2.
Sensor Stru
cture
Desig
n
and theor
e
ti
cal Analy
s
is
2.1. Structu
r
e Design
In this pa
per, the
stru
cture of
array m
onolithi
c inte
grated
vibration ve
ctor se
nso
r
a
s
sho
w
n in Fig
u
re 1, processing b
a
sed o
n
SOI mate
ri
al, with a sta
ndard pres
su
re re
si
stan
ce
type
silicon micro
mech
ani
cal p
r
ocessin
g
technolo
g
y in
to four be
am arm and the micro
colum
n
fixed
in the
cente
r
of the fou
r
beam
s of th
e
micro
s
ilicon
micro
s
tru
c
tu
re, which form the
sen
s
iti
v
e
comp
one
nts,
and a
rray type vibration ve
ctor
sen
s
o
r
st
ructu
r
e i
s
co
mposed
of two su
ch
sen
s
itive
comp
one
nts.
In order to m
a
ke
the t
w
o
sen
s
itiv
e
co
mpone
nts of
the sen
s
o
r
g
ood
co
nsi
s
te
ncy,
the two se
nsi
t
ive compon
e
n
ts all the thickne
ss of the
beam is 1
0
μ
m, length is 1
000
μ
m, width is
120
μ
m, The
radiu
s
of the
micro col
u
mn
is 100
μ
m, le
ngth is 5
000
μ
m. The arra
ngeme
n
t of the
four
cantileve
r be
am
of th
e two
sen
s
itive com
pon
en
ts is different, and
on
e i
s
t
he "
十
" type, t
he
other is a "X" type.
By the diffusion pro
c
e
s
s, four be
am arms
of each sensitive comp
onent
s ha
s ei
ght equal
strain
v
a
ri
stor
R1, R2, R3, R4, R5, R6
,
R
7, R8,
an
d R9, R10, R1
1,
R1
2,
R1
3, R14, R1
5,
R16,
the distrib
u
tio
n
of strain va
risto
r
co
nne
ct
ion
diag
ram
on the se
nso
r
s a
s
shown in Figure 2. R1
,
R2, R3 a
nd
R4 conn
ectio
n
into the first wheatst
o
ne
bridg
e
;R5, R6 ,R7 and
R8
conn
ectio
n
into
the se
con
d
whe
a
tston
e
bridg
e
;R9,
R10, R
11,a
n
d
R12
con
n
e
c
tion into the third wheat
stone
bridg
e
; and
R13, R1
4, R15
,
R16
co
nne
ction into the f
ourth
wh
eatst
one b
r
idg
e
. T
hen a
fea
s
ibl
e
detectio
n
circuit is sho
w
n i
n
Figure 3.
Figure 1. Sensor Structu
r
e
Diag
ram
Figure 2. Dist
ribution of Strain Vari
stor
Con
n
e
c
tion Diagra
m
Figure 3. Wh
eatston
e Brid
ge Circuit Di
a
g
ram
2.2. Theor
y
Analy
s
is
Acco
rdi
ng to
the theo
retical kno
w
ledg
e
and
de
du
ction, the
stre
ss
)
(
x
of any p
o
in
t
x
on
single
can
t
ilever be
am
unde
r the
a
c
tion of b
endi
n
g
mom
ent
)
(
x
M
and ho
rizontal f
o
rce
H
F
is:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign of Array MEMS Ve
ctor Vib
r
ation
Senso
r
in the Location of Pipeline … (Meng
ran Li
u)
6653
2
33
(
)
()
2
22
2
(3
3
)
3
F
La
L
x
a
L
H
M
x
bt
bt
L
a
L
a
(1)
Without
any
stre
ss a
c
tion
(in the
first bri
dge
a
s
an e
x
ample)
bri
d
g
e
outp
u
t
voltage ca
n
be rep
r
e
s
e
n
ted as:
()
(
)
13
2
4
0
()
(
)
12
3
4
RR
R
R
VV
ou
t
i
n
RR
R
R
(2)
At this point,
the brid
ge i
s
bal
an
ced.
Whe
n
there
is st
re
ss, the
pre
s
sure se
nsitive
resi
stan
ce tol
e
ran
c
e o
n
the
shaft cha
nge
s, so
the outp
u
t voltage of the brid
ge is
repre
s
e
n
ted a
s
:
1
1
3
3
22
44
1
1
22
3
3
44
()
(
)
(
)
(
)
()
(
)
out
in
R
R
R
R
RR
RR
VV
R
R
RR
R
R
RR
(3)
At this
point,
1
234
R
RR
RR
,
12
3
4
R
RR
RR
。
Formul
a (3
) can be ap
proxi
m
ated to:
ou
t
i
n
R
VV
R
(4)
For P type pressu
re
sen
s
itive resi
stan
ce :
11
1
71.
8
1
0
R
R
(5)
By the formula (4) a
nd (5
):
11
1
71.8
1
0
ou
t
i
n
VV
(6)
In the formul
as: L i
s
the l
ength of the
beam
(um
)
, b
is the
width
of the bea
m (um); t is
the thickne
s
s of the beam (um);
a
is central conn
e
c
tion body h
a
lf width (u
m);
1
is the
maximum
stress on
se
nsit
ive unit co
rre
s
po
ndin
g
to the directio
n
of X or Y ,
in
V
is wheat
stone
bridg
e
’s in
put
voltage [10, 11].
3. Sensor Structur
e Finite Element Simulation An
aly
s
is
Array mi
cro
s
tructu
re finite
elem
ent mo
del
wa
s e
s
t
ablished
by
usin
g finite
element
analysi
s
soft
ware ANSYS11. And then we separ
ately carried on the static analysis, m
odal
analysi
s
and
harm
oni
c re
spon
se analy
s
i
s
. The three
-
dimen
s
ion
a
l SOLID92 tetrahed
ron el
em
ent
wa
s used in the pro
c
e
s
s of analysi
s
. The requi
re
d material p
r
op
erties are
sho
w
n in Table 1.
Table 1. The
Material Prop
erties
Material
Modulus of elasticity
(
N
*m
-
2
)
Poisson'
s r
a
tio
Densit
y
(
kg*m
-
3
)
Silicon microstructure
1.65e11
0.278
2330
C
y
lindrical object
7.4e10
0.17
2320
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
51 – 665
7
6654
3.1. The Static Anal
y
s
is a
nd the Sensor Sensitiv
it
y
Con
s
trai
nts a
r
e imp
o
sed in
the ba
se of t
he ar
ray
stru
cture. At the
same tim
e
, 1
pa loa
d
wa
s ap
pliedo
n micro
cylinder y1 p
o
sitiv
e
dire
ction.
T
hen, by defini
ng a path, th
e stre
ss curv
e on
the array microstru
c
tu
re y1
axis is sho
w
n
in Figure 4.
Figure 4. Path Analysis
Di
agra
m
The Fi
gure
4 sho
w
s tha
t
the be
am
stre
ss
is ba
sically linea
r distri
bution
and th
e
maximum stress app
ears
on both en
d
s
of the
bea
m, howeve
r
, the root of the beam h
a
s
a
beating,
so th
e re
sista
n
ce
woul
d better
not put ther
e. Therefore th
e varisto
r
o
n
the be
am sho
u
ld
be pla
c
ed in t
he ce
nter a
w
ay from the root end
s 130
μ
m [12-15].
The se
nsitivity of
the sen
s
or micro
s
tru
c
t
u
re
can be e
x
presse
d as t
he ratio of the output
voltage
(
V
ou
t
)
of the mi
cro
s
tru
c
ture a
n
d
the l
oad
(
F
)
on
th
e ce
n
t
er colum
n
. From
the
formula (6), the se
nsitivity of
the sen
s
itive unit’s X axis and Y axis
can b
e
rep
r
e
s
ented a
s
:
11
1
71.8
10
out
Ax
A
y
in
V
SS
V
F
(7)
As sho
w
n i
n
Figure 4,
whe
n
1p
a loa
d
was
applie
d in
micro
cylinde
r y1 p
o
sitive
dire
ction,
the se
nsor m
a
ximum st
re
ss in y1 axi
s
dire
ction i
s
28
573
9.
3
1
P
a
.Becau
se wh
e
a
tstone brid
g
e
’s
input voltag
e
is
10
VV
in
, by formul
a (7) ,the
sen
s
itivity of the
sensitive unit’s X
axis
and
Y axis i
s
2.05 mv/pa (1
73.8 dB).
3.2. Modal Analy
s
is
Modal a
nalysis is g
ene
rally
used to d
e
te
rmine
the vib
r
ation ch
aract
e
risti
cs i
n
the
desig
n
of the st
ru
cture
or
ma
ch
ine pa
rts. T
he natu
r
al f
r
eque
ncy of t
he
sen
s
itive com
pon
ents is
determi
ned b
y
modal anal
ysis, as
sho
w
n in Figu
re
5, and eight
modal value
of the sen
s
or is
sho
w
n in Ta
b
l
e 2.
Becau
s
e th
e fixed silico
n
b
a
se q
uality around
the t
w
o
sen
s
itive co
m
pone
nts is
different,
the natural freque
nci
e
s of
the two sen
s
itive co
m
p
o
nents
(the freque
ncy of the first sen
s
i
t
ive
parts i
s
452
Hz a
nd the freque
ncy of the se
co
nd
se
nsitive com
p
onent
s is 438
Hz) i
s
different,
and there is a
certain e
r
ror.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign of Array MEMS Ve
ctor Vib
r
ation
Senso
r
in the Location of Pipeline … (Meng
ran Li
u)
6655
(a) T
he first
mode
(b) T
he seco
nd mode
(c) The third mode
(d) T
he eight
h mode
Figure 5. Modal Analysi
s
Diag
ram
Table 2. Eigh
t Mode Date
s of the Senso
r
mode
frequenc
y(Hz)
first mode
second mode
third mode
fourth mode
fifth mode
sixth mode
seventh mode
eighth mode
438
438
452
452
1886
2039
27539
27541
3.3. Harmoni
c Analy
s
is
(a) T
he first sensitive comp
onent
s harmo
nic
analysi
s
re
sul
t
(b) T
he seco
nd se
nsitive compon
ents
harm
oni
c ana
lysis re
sult
Figure 6. Harmonic An
alysis
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
51 – 665
7
6656
Harmoni
c a
n
a
lysis i
s
use
d
to dete
r
mi
ne the
st
e
ady-
s
ta
te
r
e
s
p
on
s
e
o
f
lin
ea
r
s
t
r
u
c
t
ur
e
that sine lo
ad
chan
ging ov
er time is
a
p
p
lied
on.
And, harm
oni
c ana
lysis can p
r
e
d
ict the dyna
mic
cha
r
a
c
teri
stics of the array microstructu
re.
Theref
ore, harm
oni
c an
alysis
can b
e
overcome
d
the
resona
nces
of
array microstru
c
tu
re.
Harmo
n
ic an
al
ysis re
sult
s of
the array mi
cro
s
tructu
re
ar
e
sho
w
e
d
in
Fi
gure 6
(the a
b
scissa i
s
the
frequen
cy,
a
nd
the vertica
l
axis is the di
spla
cem
ent o
f
y-
dire
ction
)
. The re
sults
can be seen
in Figur
e
6 that reso
nant frequ
en
cys of se
nsi
t
ive
comp
one
nts
of the array st
ructu
r
e a
r
e 4
52Hz an
d
43
8Hz, whi
c
h consi
s
t with th
e previou
s
an
alys
is
res
u
lts
.
4
.
Th
e Appli
cation o
f
the
Sensor
in the Location of Pipeline Internal Inspector
Whe
n
the vib
r
ation
sig
nal i
s
a
pplied
to t
he a
rray ve
ct
or vib
r
ation
sensor,
θ
1 me
asu
r
ed
by the first
sensitive
com
pone
nts a
nd
θ
2 me
asure
d
by the seco
nd sen
s
itive
comp
one
nts
are
different in a certai
n a
ngle, so a
s
to ac
hieve
acou
stic lo
cali
zation an
d eliminate
the
port/sta
rbo
a
rd blur p
r
obl
e
m
.
Whe
n
the
pip
e
line in
sp
ecti
on g
auge
mo
ves in th
e pi
p
e
line, it can
p
r
odu
ce
fri
c
tio
n
soun
d
cau
s
e
d
by th
e dete
c
tor
an
d the in
ner
wall of pipeli
n
e
and th
e cra
s
h so
und
of in
ternal i
n
spect
o
r
and the
weld
se
ams of pi
pe. The
both
so
und
si
g
n
a
l
s can be de
tected by
the
array
ve
ctor
vibration sen
s
or. And the
s
e two kind
s o
f
sound si
gna
ls throu
gh the
sen
s
itive co
mpone
nt cha
nge
into voltage
signal,
so
as t
o
a
c
hieve
th
e pu
rpo
s
e
of
acou
stic l
o
calizatio
n. In p
l
acin
g the
array
vector vib
r
ati
on sen
s
or,
Carte
s
ia
n co
ordin
a
te
sy
stem is fixed
on the g
r
ou
n
d
, and x axis is
parall
e
l to the pipe.
If output voltage sig
nal
of each
se
n
s
itiv
e com
p
o
nent are Vx1,Vy1 and
Vx2,Vy2
.
Coo
r
din
a
te of
the first se
nsitive comp
on
ent is
co
nsi
d
ered
a
s
a
dat
um (x-y
plane
) to me
asure
the
angle
(
θ
) of the pipeline int
e
rnal in
sp
ect
o
r. Angle
me
asu
r
ed by th
e first sen
s
iti
v
e compo
nen
t is
θ
1=
a
r
cta
n
(V
y
1
/Vx
1
)(0°
<
θ
1
≤
90
°),
and
Angle m
e
a
s
u
r
ed
by the
se
con
d
sen
s
itive comp
onent
is
θ
2= arctan
(V
y2/Vx2)(0°
<
θ
2
≤
90
°). T
he
distan
ce
bet
wee
n
the
se
nso
r
a
nd the
pipelin
e inte
rnal
insp
ecto
r i
s
much
furth
e
r
than the
di
sta
n
ce
bet
we
e
n
the center of t
he tw
o sen
s
iti
v
e
com
pon
en
ts
,
so the
cente
r
of the t
w
o
sen
s
itive
co
mpone
nts
ca
n bee
n
see
n
at the
sam
e
ori
g
in. T
w
o
coo
r
din
a
te sy
stem
s divide
x-y plane into four r
egi
o
n
s. Array direction
a
l diag
ram is shown
in
Figure 7.
Whe
n
0°
<<
,
<
<
θ
1
45°
0
°
θ
2
45°,
θ
, o
r
ie
ntational a
ngl
e of pipeli
ne i
n
ternal i
n
spe
c
tor, i
s
in
the regio
n
of
Ⅰ
and
θ
=
θ
1.
Whe
n
0°
<<
,
<
<
θ
1
45°
4
5
°
θ
2
90,
θ
, orie
ntational angl
e of pipeline i
n
ternal in
sp
e
c
tor, is in
the regio
n
of
Ⅳ
and
θ
=
1
80°
-
θ
1.
W
h
en
45
°
<<
θ
1
90°
,<
0°
<
θ
2
45°,
θ
, o
r
i
entational
an
gle of
pipeli
n
e internal i
n
specto
r, i
s
in the regio
n
of
Ⅱ
and
θ
=
θ
1.
Whe
n
45°
<<
,
<
<
θ
1
90°
45°
θ
29
0
°
,
θ
, orientational an
gle of pipelin
e internal in
specto
r, is
in the regio
n
of
Ⅲ
and
θ
=1
80°-
θ
1.
Estimate dire
ction an
gle of
pipeline inte
rnal inspe
c
tor
is sh
own in Table 3.
。
Figure 7. Arra
y Directio
nal
Angle Dia
g
ra
m
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign of Array MEMS Ve
ctor Vib
r
ation
Senso
r
in the Location of Pipeline … (Meng
ran Li
u)
6657
Table 3. Esti
mate Directio
n Angle of the Pipeline Internal In
spe
c
t
o
r
θ
1
(
0° 45
°)
45°
(
45° 90
°)
90°
θ
2
(
0° 45
°)
(
45° 9
0
°)
0°
90°
(
0° 45
°)
(
45° 9
0
°)
45°
θ
θ
1
180°
-
θ
1
45°
135
°
θ
1
180°
-
θ
1
90°
4. Conclu
sion
In view of the se
riou
s att
enuatio
n of signal
emite
d
by the pipeli
ne internal in
spe
c
tor
throug
h the
soil me
dium,
and the ma
rkin
g difficult
and po
or m
easure
m
ent
pre
c
isi
on, an
d in
orde
r to elimi
nate the p
r
e
s
ent vecto
r
a
c
ousti
c
sen
s
or in judgi
ng
si
gnal p
o
sitio
n
about pi
pelin
e
internal
in
spe
c
tor
po
rt/starboard bl
ur
problem,
a
ne
w-type a
rray
M
E
MS vector vibration
sen
s
or
has
been put
forward. Through A
N
SYS simulation a
nalysi
s
, it conclude t
hat t
he array vector
vibration sen
s
or h
a
s the
sensitivity of 2.05mv/pa
(-17
3.8dB). The first-ord
e
r mo
d
a
l is 438
Hz, a
nd
the third
-
o
r
de
r mo
dal i
s
4
5
2
Hz. The
resonan
ce
freq
u
ency of
the
t
w
o se
nsitive comp
one
nts
i
s
respe
c
tively 452
Hz
and
4
38Hz, con
s
ist
ent with
the fi
rst-ord
e
r
mod
a
l and th
e thi
r
d-ord
e
r m
o
d
a
l.
The an
gle
s
of the two
sensitive
co
m
pone
nts a
r
e
respe
c
tively obtaine
d,
θ
1
and
θ
2, in
the
pro
c
e
ss
of measurin
g the
angle of pi
pel
ine internal
in
spe
c
tor. After analysi
s
an
d
inferen
c
e, th
e
orientatio
n a
ngle of the
pipeline int
e
rnal
i
n
sp
ect
o
r can be
accurately o
b
tained a
n
d
the
port/sta
rbo
a
rd
blu
r
pro
b
le
m
ha
s bee
n eliminated. T
he li
st of th
e
spe
c
ific o
r
ien
t
ation an
gle
has
been give
n.
Referen
ces
[1]
Guo Minz
hi, Y
ang J
i
aY
u. Sta
t
us an
d d
e
vel
o
pment
tre
nd
of contemp
o
rar
y
transporti
on t
e
chn
o
lo
g
y
fo
r
oil.
Chi
na Petr
ole
u
m
and C
h
e
m
ic
al Ind
u
stry
. 200
4; (7): 16-2
0
.
[2]
Gao F
uqi
n. A
pplic
atio
n a
n
d
deve
l
o
p
ment
of
in
ner
e
x
a
m
inati
on tec
h
n
o
lo
g
y
o
n
p
i
pe
l
i
ne.
Petroleum
Plan
nin
g
& En
gin
eeri
n
g
. 20
0
0
; 11(1): 40-4
1
.
[3]
Shen Go
ngtia
n, JinG W
e
ike
,
Z
uo Yantia
n. Revi
e
w
of no
ndestructiv
e
te
sting tech
niq
u
e for buri
e
d
pip
e
li
nes.
No
n
destructive T
e
s
t
ing
. 200
6; 28(
3): 137-1
41.
[4]
AC Bruno, R
Schifin
i
. Ne
w
magn
etic tech
niq
ues
for ins
pectio
n
an
d metal-l
o
ss asse
ssment of oil
pip
e
li
nes.
Jour
nal of Mag
netis
m an
d Mag
neti
c
Materials
. 20
01; 226-
23
0.
[5]
Cui
Ya
o-Yao. Stud
y
on
the Ke
y
T
e
chno
lo
gies
in th
e Rackin
g
and L
o
c
ation S
y
stem
of Pipelin
e
Spectio
n
Gaug
e Based o
n
Ac
oustic Sens
or Arra
y
s
. PhD T
hesis. T
i
anjin:
T
i
anjin Un
ivers
i
t
y
. 20
11.
[6]
W
u
Xi
ao. R
e
s
earch
on Ab
o
v
e Groun
d M
a
rkin
g an
d T
r
ackin
g
of Oil
and Gas P
i
pe
line I
n
terna
l
Inspectio
n
Instrument Base
d o
n
Geoph
on
e Arra
y
.
PhD T
hesi
s
.
T
i
anjin: T
i
anj
in Univ
ersit
y
; 2
011.
[7]
W
U
Xi
ao, JIN
Shi-ji
u, LI Yi-b
o
.
Above-gr
ou
n
d
marker s
y
ste
m
of pip
e
li
ne i
n
ternal i
n
sp
ectio
n
instrum e
n
t
base
d
on g
e
o
p
hon
e arra
y.
Na
notech
n
o
l
ogy a
nd Precis
ion E
ngi
neer
in
g.
20
10; 8(6): 55
4.
[8]
Mu Li
nfan, H
u
i
zhen
ni
ng,
Xia
n
zon
g
.
Attenu
ation of
sou
n
d
w
a
ves in
s
o
il.
Applied Acoustics.
1
9
95;
(01): 19-2
2
.
[9]
GE Xi
ao
ya
ng,
Z
H
ANG Guoju
n
, DU C
h
u
nhu
i. A ne
w
MEM
S
bio
n
ic
acou
stic vector se
n
s
or use
d
i
n
abov
e-gro
u
n
d
marker of pip
e
l
i
ne.
Pie
z
oelect
rics & Acoustooptics
. 201
2; 3
4
(6): 882-
88
5.
[10]
Che
n
Sh
an
g, Xue
Ch
en
yang, Zh
ang
W
endo
ng,
Fa
bricati
on
and
testing
of a
silic
on-b
a
se
d
piez
oresistiv
e
tw
o
-
a
x
is
acce
le
rometer.
Na
not
echn
olo
g
y a
n
d
Precisi
on E
n
g
i
ne
erin
g.
20
08;
6(4): 27
2-
277.
[11]
Che
n
S
han
g. Rese
arch of
a
Bion
ic
Vect
or H
y
dr
o
pho
ne
B
a
sed
o
n
Si
lico
n
. PhD
T
hesis. T
a
i
y
u
an:
Nort
h
univ
e
rsit
y
of Chin
a; 200
8.
[12] Xu
Ji
ao,
Z
h
a
n
g
Guoju
n
, Shi
Guixi
o
n
g
. Ad
vancem
ents in
encaps
ul
ation
of hair vector
h
y
drop
ho
ne.
Chin
ese Jo
urn
a
l of Sensors
a
nd Actuators
. 2
011; 24(
4): 519
-520.
[13]
Liu L
i
n
x
i
an, Z
han
g Guoj
un,
Xu J
i
ao. Des
i
gn an
d test for a doub
le T
-
shap
e MEMS bio
n
ic vecto
r
h
y
dro
pho
ne.
Jo
urna
l of Vibrati
on an
d Shock
.
201
3; 32(2): 13
0-13
1.
[14]
Xu
Jia
o
, L
i
Ju
n
,
Z
hang G
uoj
u
n
. Desi
gn
of a
nove
l
vector
h
y
drop
hon
e
base
d
o
n
MEMS.
Pie
z
oel
e
c
tri
c
s
& Acoustooptics.
2012; 34(
1): 90-9
1
.
[15]
Z
hang Guo
j
u
n
,
Liu Lin
x
i
an,
Z
hang W
end
ong.
Performa
nce Res
earch
on MEMS Bionic Vect
o
r
H
y
dro
pho
ne b
a
sed o
n
“San
d
w
i
c
h”-t
ype
pac
kage structure.
Sensor letters.
2012; 1
0
: 712-
718.
Evaluation Warning : The document was created with Spire.PDF for Python.