TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5854 ~ 5860
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.604
3
5854
Re
cei
v
ed Ap
ril 2, 2014; Re
vised Ma
y 23
, 2014; Accep
t
ed Jun
e
11, 2014
Performance Analysis of a High Voltage DC (HVDC)
Transmission System u
nder Steady St
ate and Faulted
Conditions
M. Zakir Hos
sain, Md. Ka
mal Hossain
,
Md
. Alamgir Hoss
ain*, Md. Maidul Islam
Dep
a
rtment of Electrical
and
Elec
tron
ic Engi
neer
ing, Dh
aka
Universi
t
y
of E
ngi
neer
in
g and
T
e
chnol
og
y,
Gazipur-
170
0, Bang
lad
e
sh
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: alamg
i
r_d
uet
@hotmai
l
.com
A
b
st
r
a
ct
T
he mod
e
rn
High
Volta
ge
Direct Curr
ent
(HVDC) tran
smiss
i
on t
e
ch
nol
ogy d
e
p
e
n
d
s on th
e
deve
l
op
ment o
f
pow
er electro
n
ics bas
ed o
n
the se
mi
co
nd
u
c
tor devices. T
h
is pa
per repr
esents a si
mp
l
e
mo
de
l of HVD
C
transmissio
n
system in w
h
i
c
h the c
onvert
e
r and filter h
a
ve be
en d
e
si
gne
d to incre
a
s
e
stability of pow
er transm
i
ss
i
on. The HVD
C
trans
m
i
ssi
on system
has
been pro
pos
ed on the basis of
simulati
on stu
d
i
es usi
ng MAT
L
AB softw
are packa
ge (Si
m
u
link Mo
del). Us
ing this
mo
de
l, current - volta
g
e
(C-V) charact
e
ristics hav
e be
en si
mulate
d f
o
r steady stat
e
cond
ition. It h
a
s als
o
b
een s
t
udie
d
for d
i
fferent
fault co
nd
itions
. W
i
th th
e
pro
pose
d
strate
gy
the
HVDC
sys
tem can
pr
ovid
e us
eful
an
d
e
c
ono
mical
w
a
y t
o
transmit el
ectri
c
pow
er ov
er t
he l
o
n
g
d
i
stan
ce, there
b
y i
m
provi
ng th
e b
u
l
k
trans
missi
on
of el
ectric p
o
w
er
and p
o
w
e
r system sta
b
il
ity.
Ke
y
w
ords
:
hi
g
h
voltag
e dc tr
ans
missi
on (H
VDC) system,
conv
erter, recti
f
ier, AC and D
C
Filter, MATLAB
simulink
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduction
High voltage
dire
ct cu
rre
nt(HV
D
C)conv
ert AC
voltag
e to DC volta
ge in a
re
ctifier
and
transmits
DC po
wer
thro
u
gh th
e
tra
n
s
missio
n
line
,
and
then
i
n
verts DC i
n
to AC po
we
r i
n
inverter an
d
supplie
s th
e powe
r
. Wi
th the fast
developm
ent
of converte
rs (re
c
tifiers and
inverters) at
highe
r voltag
es
and
larger cu
rrents,
DC tran
smi
ssi
on
ha
s b
e
come
a majo
r fa
cto
r
in
the planni
ng
of the powe
r
tran
smi
ssi
on.
The HV
DC
techn
o
logy fi
nds
appli
c
ati
on in
th
e transmi
ssion
of power
over lo
ng
distan
ce
s or
by means of
unde
r-wate
r cable
s
,
which
are a criti
c
al comp
one
n
t
of a
voltage
-
sou
r
ce
conv
erter–hig
h
-vol
tage di
re
ct current tr
a
n
smissi
on
syst
em in
any o
ffshore
ele
c
trical
power
sche
me
[1]
and i
n
the intercon
nectio
n
of
differently mana
ged po
we
r sy
stem
s whi
c
h
may
be
ope
rated
synchrono
usly
or asyn
ch
ro
nou
sly [2]. Al
ternating
cu
rrent (AC) is t
he main
drivi
ng
force in the
industri
e
s a
nd re
side
ntia
l area
s; however for the
long tran
smissi
on line
AC
transmissio
n is mo
re expe
nsive than th
at of DC
tran
smissio
n
. In addition, AC t
r
an
smi
ssi
on li
ne
control i
s
mo
re
com
p
licate
d
be
ca
use
of
the fre
que
ncy. DC tran
sm
issi
on
doe
s n
o
t have the
s
e
limitations, which h
a
s le
d to transfe
r b
u
lk po
we
r over long
dista
n
ce
s [3]. In the begi
nning
all
HVDC
schem
es u
s
e
d
me
rcury arc valve
s
for
high
po
wer an
d volta
ge p
r
oved to
be a vital b
r
e
a
k
throug
h fo
r High Voltag
e
Dire
ct
Cu
rre
n
t
(HV
D
C)
tra
n
smi
ssi
on. T
hen th
e deve
l
opment
of p
o
we
r
electroni
c technolo
g
y and
the relatively
high sw
itchi
ng freq
uen
cy
of Pulse Wi
dth Modul
ation
(PWM
), HVDC tran
smi
ssi
o
n
system ba
sed on Vo
ltag
e Source Co
nverters (VS
C
s) ha
s take
n on
some ex
celle
nt advantage
s [4-7]. The
high-volta
ge
high po
we
r fully controll
e
d
semi
con
d
u
c
tor
techn
o
logy continue
s
to have
a signif
i
cant
imp
a
ct
on the d
e
vel
opment of
a
d
vanced p
o
wer
electroni
c ap
paratu
s
u
s
e
d
to sup
p
o
r
t optimize
d
operation
s
a
nd efficie
n
t manag
eme
n
t of
electri
c
al
gri
d
s [8] and
dev
elop b
o
th HV
DC t
r
an
smi
s
sion an
d flexib
le AC tra
n
sm
issi
on (FACT
)
techn
o
logie
s
.
There a
r
e di
fferent types of Simu
lation software/tool
s to analyzin
g the stability of
power
syste
m
; the HV
DC
system i
s
si
mulated
usin
g PSCAD/EM
T
DC software
[9] to analyze the
perfo
rman
ce
of HVDC
system. MATLAB uses a sp
eciali
zed Toolbox Simulink for simulating
control
syste
m
s
and
ha
s a
po
we
rful g
r
a
phic u
s
e
r
inte
rface
with a
l
a
rge
lib
rary
of
blo
c
ks [10].
The
HVDC tran
smissi
on sy
ste
m
base
d
on a new ind
u
ct
i
v
e filtering cu
rre
nt sou
r
ce conve
r
ter CS
C-
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Perform
a
n
c
e
Analysis of a
High Voltag
e DC (HV
D
C
)
T
r
an
sm
issi
on
S
yst
em
… (M.
Zakir
Ho
ss
ai
n)
5855
HVDC
syste
m
imp
r
oved
steady- a
nd t
r
ansi
ent-state
operating ch
a
r
acte
ri
stics
[1
1].
Furthe
rmo
r
e,
the study is t
o
investigate
t
he steady
state and the d
y
namic p
e
rf
o
r
mance of a 1
2
pulse HV
DC
(Hig
h Voltag
e
Direct
Cu
rre
nt) u
s
ing
a sy
stem in
Matla
b
/Simulink un
der different
f
ault
co
ndition
s
[12-13]. In ad
dition,
a hybri
d
multilevel voltage source
conv
erte
r (V
SC) with a
c
-side ca
scade
d
H
-
bridg
e
cells o
ffers the
ope
rational flexibil
ity of
VSC ba
sed
HV
DC
sy
stem in te
rm
s of active a
n
d
reactive power control
and im
proved ac fault ri
de-through capability wi
th current limi
t
ing
capability duri
ng dc fault [14].
In this pape
r a simple mo
del of HVDC transmi
ssion
system ha
s desi
gne
d in orde
r to
analyze the
performan
ces at stea
d
y
and dyna
mi
c state o
peratio
n und
er differe
nt fault
con
d
ition
s
. The HV
DC
sy
stem ha
s b
e
en sim
u
lated
with re
sp
ect
to nominal v
o
ltage, freq
u
ency
and the ph
ysical valu
e
of differen
t
devic
es a
nd co
mpon
ent para
m
et
ers. By usi
ng
MATLAB/Simulink to ob
se
rve the ch
aracteri
stic
of voltage and
curre
n
t both in rectifie
r a
nd
inverter si
de
and
com
p
a
r
e
the
simulatio
n
result
at
ste
ady
state
op
e
r
ation und
er with
a
nd with
out
fault co
nditio
n
s. Fo
r
suita
b
le a
rra
nge
m
ent, the
rest
of the p
ape
r is o
r
gani
ze
d a
s
: Sectio
n 2
rep
r
e
s
ent
s the HVDC tra
n
s
missio
n mo
del and
discusse
s
the pa
ramete
rs
of HVDC Simuli
nk
model. In se
ction 2, the si
mulation resu
lts of
the HVDC tran
smission model
are explaine
d a
n
d
confirm that
the co
ntrol
strat
egy ha
s f
a
st respon
se
and
stro
ng
stability. Fina
lly, Section 4
con
c
lu
de
s the pape
r.
2. HVDC Tr
ansmission
Model
2.1. Featur
e of HV
DC Tr
a
n
smission model
The thyriste
r
based HV
DC
transmissio
n te
chn
o
logy h
a
s the follo
wi
ng feature
s
:
(a)
The capa
bilities of po
we
r t
r
an
smi
ssi
on
of an ac li
nk
and a d
c
lin
k are different, for
the same in
sulation and same con
d
u
c
tor si
ze:
V
dc
=
√
2
V
ac
; if skin effect is not co
nsid
ere
d
,
I
dc
=
I
ac
. Then the amount of po
wer tran
smission in b
o
th link a
s
follows:
P
dc
=V
dc
×I
dc
and
P
ac
=V
ac
×I
ac
co
s
Φ
.
(1)
The ratio of p
o
we
rs:
P
dc
/P
ac
=
(V
dc.
×I
dc
)/(
V
ac
× I
ac
cos
) =
√
2
/
c
o
s
.
(2)
H
e
nc
e we
ge
t
P
dc
=1.
414
×P
ac
at
Unity po
wer fa
cto
r
a
nd P
dc
=1.768
×P
ac
at 0
.
8 po
we
r
fac
t
or.
(b)
For tra
n
smitting a spe
c
ific quantity of powe
r
at a sp
ecific in
sul
a
tion level requ
ired
less cond
uct
o
r
cro
s
s-se
cti
on. Let the
sa
me tra
n
smitted po
wer P, sam
e
lo
sse
s
P
L
and
sa
me
pea
k voltage
V
m
and
R
dc
and
R
ac
are t
he co
rresp
o
n
d
ing value
s
o
f
condu
ctor resi
stan
ce for dc
and a
c
re
spe
c
tively, negle
c
ting skin resi
stan
ce.
Therefore, for dc po
wer:
I
dc
=P
/
V
m,
and,
power lo
ss:
P
L
=(P
/
V
m
)
2
R
dc
= (P
/
V
m
)
2
×(
/A
dc
).
(
3
)
For a
c
po
wer:
I
ac
= P
/
(Vm
/
√
2) co
s
=
√
2 P/ V
m
cos
,
and
(4)
power lo
ss:
P
L
=[
√
2P/( V
m
co
s
)]
2
R
ac
=
2
(P/V
m
)
2
×(
/A
ac
co
s
2
).
(5)
Since po
we
r l
o
sse
s
are
sa
me, therefo
r
e
:
(P/V
m
)
2
×(
/A
dc
)= 2 (P/V
m
)
2
×(
/A
ac
cos
2
)
.
(
6
)
This give
s the result for the ra
tio of cross-se
ction a
r
e
a
as:
A
dc
/A
ac
= cos
2
/2
.
(
7
)
Hen
c
e we
ge
t
A
dc
= 0.5×A
ac
for unity power facto
r
and
A
dc
=0.32×A
ac
for 0.8 power factor.
The result ha
s be
en
cal
c
ul
ated at unity
power fa
ct
or
and at 0.8 l
e
gging to ill
ust
r
ate the
effect of
power facto
r
on the ratio.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 585
4 –
5860
5856
(c)
The
HVDC
links
ca
n
be
used
to in
t
e
rconn
ect
a
synchrono
us
AC
system
s that
can
be
ope
ra
ted with
different nomi
nal f
r
equ
en
cie
s
(5
0 and
60
Hz)
respe
c
tively and th
e
sho
r
t-
circuit current level
for each AC sy
stem interconnected
will not increase.
(d)
Whe
n
an ac
transmissio
n system is ext
ende
d, the fault level of
the whole
syst
e
m
goe
s u
p
, so
metimes ne
cessitating th
e
expen
sive
repla
c
eme
n
t o
f
circuit
bre
a
k
ers with
tho
s
e
of
highe
r fault
l
e
vels. T
h
is problem
ca
n
overcome
wi
th
HVDC
as it d
oes not
co
ntribute
cu
rre
nt
to
the ac short
circuit beyo
nd
its rated
curre
n
t.
The HV
DC
system ha
s m
odele
d
usi
n
g
the Simulink packag
e
is
based on
a point-to
-
point DC tra
n
smi
ssi
on sy
stem. T
he DC system i
s
a bipolar, 1
2
pulse
conv
erter u
s
ing t
w
o
universal thy
r
istor
bri
dge
conne
cted
in
seri
es.
DC in
terco
nne
ction
ha
s u
s
e
d
to
tran
smit p
o
w
er
from a 275
kV
,
50Hz
ne
tw
or
k
to
25
0kV
,
50Hz
net
work. Dista
n
ce b
e
twee
n the receivin
g end
and
the sen
d
ing e
nd of AC syst
ems a
r
e con
s
idere
d
110
km
DC trans
m
iss
i
on line in this
s
y
s
t
em.
2.2. Simulation Model of
HVDC Tran
s
m
ission Sy
s
t
em
The mo
st rel
e
vant com
p
o
nents th
at co
mpri
se a
HV
DC
syste
m
a
r
e the A
C
System, the
conve
r
ter sta
t
ion, co
nvert
e
r tr
an
sform
e
r,
smoothi
n
g
reacto
r, A
C
a
nd
DC fi
lter an
d
cont
rol
sy
st
em.
Figure 1. Simulink
Diag
ram
of HVDC
Circuit
2.2.1. AC Sy
stem
The A
C
n
e
tworks, both
at the rectifi
e
r a
nd
i
n
vert
er e
nd
are
repre
s
e
n
ted
a
s
infinite
sou
r
ces
sep
a
rated from
their respe
c
tive
comm
u
t
ating buses by system impedan
ce.
The
impeda
nces
are
re
pre
s
e
n
t
ed a
s
simpl
e
pa
rallel
R-L b
r
an
ch. T
h
e comp
onent
s valu
e of
AC
sy
st
em i
s
at
rect
if
ier
side
2
75kV
,
50
Hz
at in
ve
r
t
e
r
s
i
de
250kV
,
50
Hz
and
R=
0
Ω
,
L= 98m
H
.
2.2.2. Conv
e
r
ter Sta
t
ion
A conve
r
ter station con
s
ist
s
of b
a
si
c
co
nver
ter unit,
whi
c
h p
r
ima
r
i
l
y contain
s
converte
r
valve, converter tran
sform
e
r, smo
o
thin
g rea
c
tor,
AC filter, and DC filter. The thyristo
r or IG
BT
valves make the conve
r
si
o
n
from AC to DC
and thu
s
are the mai
n
comp
one
nt of any HVDC.
Basic
conve
r
ter units
can
be cla
ssifie
d
into 6-pul
se
and 12
-pul
se
converte
r un
its. Usu
a
lly most
HVDC sch
e
m
es e
m
ploy
the 12-pul
se
conve
r
ter
as
the ba
sic
con
v
erter u
n
it. In orde
r to form a
12-p
u
lse con
v
erter unit,
two
6-pul
se co
n
v
erter units
a
r
e con
n
e
c
ted in
serie
s
on
t
he DC
si
de a
nd
in parall
e
l on
the AC side.
2.2.3. Conv
e
r
ter Tra
n
sfor
mer
The
12
00MV
A
converte
r
transfo
rme
r
Y
g
,
Y/
∆
is modele
d
with
three
1-
Φ
p
hase
3-
windi
ng
tran
sformer. The
para
m
eters a
dopted
(b
as
e
d
on
AC
rate
d condition
s) are
con
s
ide
r
e
d
as typical for
transfo
rme
r
s found in HV
DC install
a
tion
su
ch a
s
lea
k
a
ge:
X=
j0.24
pu
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Perform
a
n
c
e
Analysis of a
High Voltag
e DC (HV
D
C
)
T
r
an
sm
issi
on
S
yst
em
… (M.
Zakir
Ho
ss
ai
n)
5857
2.2.4. DC Side of the Sy
stem
The
DC
side
of the co
nverter sy
stem co
nsi
s
ts of a
smoothing
re
a
c
tor
of 0.78
H for the
rectifie
r an
d t
he inve
rter
b
r
idge
s. Th
e
DC li
ne
i
s
m
odele
d
in di
stributed
para
m
eter lin
e m
odel
with lum
ped
l
o
sse
s
. Smoot
hing
rea
c
to
r
can
prevent
step
impul
se
wave
s cau
s
e
d
by DC
line
s
or
DC
swit
chin
g
yard enteri
n
g the valve hall, ther
eby a
v
oiding the d
a
mage to the
conve
r
ter va
lve
due to overvo
ltage stre
ss.
2.2.5. AC Filters and
Cap
acitor
Bank
s
On AC
side
of 12-p
u
lse HVDC
conve
r
t
e
r, cu
rr
ent ha
rmoni
cs of the ord
e
r of 1
1
,
13, 24
and high
er a
r
e gene
rated.
Filters a
r
e in
stalled in
o
r
d
e
r to limit the amount of harmo
nics to the
level requi
re
d by the network. In the conve
r
sa
tion pro
c
e
ss
th
e
conve
r
ter co
nsum
es rea
c
tive
power to me
et this rea
c
tive power d
e
m
and
s usi
ng
capa
citor b
a
n
k
s of
260MVA
R
,
275
kV
,
50
Hz
on ea
ch si
de
for rea
c
tive p
o
we
r co
mpe
n
s
ation.
2.2.6. Contr
o
l Sy
stem
The HV
DC transmi
ssion
systems mu
st
transpo
rt
very large am
ou
nts of ele
c
tric powe
r
that can only
be accompli
she
d
unde
r tightly c
ontroll
ed co
ndition
s. DC cu
rre
nt and voltage
is
pre
c
isely co
n
t
rolled to aff
e
ct the de
si
red po
we
r tra
n
sfer. In a
two-te
rminal
(point-to
-
po
int)
HVDC tra
n
smissi
on
syst
em, the ca
p
a
city and
directio
n of po
wer flo
w
ca
n be
control
l
ed
rapidly,
so
a
s
to
satisfy
the
op
erati
onal
de
man
d
s
for
the e
n
tire
A
C
/DC hybrid syste
m
s.
Therefore, it i
s
ne
ce
ssa
r
y to co
ntinuo
usl
y
and
p
r
e
c
ise
l
y measure
system qu
antities that i
n
cl
u
de
at each Conv
erter B
r
idg
e
, the DC
curre
n
t, DC si
de vol
t
age an
d del
a
y
angle, an
d for an
inverte
r
,
its extinction
angle.
3. Si
mulation Result and Anal
y
s
is
The Fi
gure 2
rep
r
e
s
ent
s th
e sim
u
lation
result
s of volt
age
and
current un
der wit
hout fault
at re
ctifier an
d inve
rter sid
e
s. It i
s
se
e
n
that at th
e
rectifier si
de,
at time
t = 0.55
se
c,
t
h
e
p
eak
value of the current is lo
we
r (
I
abc
= 0.
5
pu
) and in
cre
a
si
ng tren
d, whe
r
ea
s the thre
e pha
se volta
ge
V
abc
is aroun
d
1.17
pu, u
n
der
without fa
ult conditio
n
. After elapse time, the value of
I
ab
c
gradually
increa
se
s wit
h
slight fluctu
ation.
The re
sults at the in
verter si
de ar
e almost simil
a
r to the rectif
ier
with a little delay at outpu
t current. At
steady st
ate
operation, un
der with
out DC fault, it can be
noted that at
the rectifie
r (Figu
r
e 3
(
a
)),
firing angl
e
α
is maximum at time,
t =
0.29
se
c,
t
he
cur
r
e
n
t
I
d
remains
co
nsta
nt and voltag
e
V
dc
= 0.
6
pu
(app
rox.). Ho
wever, from
t = 0.45
se
c,
f
i
rin
g
angle
start to
decrea
s
e, where
a
s
cu
rre
n
t
I
d
is slowl
y
growi
ng up
. On the oth
e
r ha
nd, at the
inverter
sid
e
(Figure 3
(
b)),
curre
n
t and
voltage
ch
a
r
a
c
teristics are
more stea
dy
than
the
re
ctifier
side.
(a)
(b)
Figure 2. Voltage (
V
abc
) an
d Curre
n
t (
I
abc
) Cha
r
a
c
teri
st
ics u
nde
r with
out Fault Con
d
ition at (a)
rectifie
r sid
e
and (b
) invert
er sid
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 585
4 –
5860
5858
(a)
(b)
Figure 3. Voltage (
V
abc
) an
d Curre
n
t (
I
abc
) Cha
r
a
c
teri
st
ics at Steady
State Operati
on und
er
without Fault
at (a) rectifier side an
d (b
) inverter
side.
Und
e
r fa
ult
con
d
ition, at
stea
dy stat
e op
eratio
n (Figu
r
e 4(a) &
4(b
)),
volt
age
s
a
r
e
recta
ngul
ar
a
nd si
nu
soid
al
sha
p
e
s
at
sendin
g
en
d (rectifie
r
si
de
) and
re
ceivin
g end
(inve
r
ter
side
) re
sp
ecti
v
e
ly
.
Ho
wever, current
at
both side
s
a
r
e
pul
sating,
slightl
y
lower valu
e at re
ceivin
g end.
Whe
r
ea
s firi
n
g
angl
e i
s
al
most
con
s
tan
t
for the b
o
th
ca
se
s. On
the othe
r h
a
n
d
, fault cu
rre
n
t is
very high
(aro
und
I
ac
=
2×
10
4
A
and
I
dc
= 2
00A
at
t =
0.3 s
e
c
) fo
r d
c
a
nd a
c
faults
shown in Fig
u
re
5(a
)
with mo
d
u
lated
dc
cu
rrent wave. At the invert
e
r
si
de, for
sin
g
le
line to g
r
o
und
fault, voltage
for pha
se A
has b
e
come
zero an
d cu
rrents fo
r oth
e
r two p
h
a
s
e
s
are in pha
se a
s
sho
w
n
in
Figure 5
(
b).
Ho
wever, fa
u
l
t at phase A
has
no in
te
rf
eren
ce
on th
e voltage
s an
d cu
rrents of
the
remai
n
ing
ph
ase
s
.
Furth
e
r
more,
curren
t and volta
ge
for do
uble
lin
e to g
r
ou
nd f
ault (Fi
gure 6
(
a))
are
simila
r to
the exp
e
cte
d
form
s, volt
age
s for
faul
t pha
se
s a
r
e
ze
ro
and
cu
rre
nt is slig
htly
highe
r than t
he healthy ph
ase. In contrary, in t
he ca
se of line to li
ne fault, voltage ha
s be
co
me
doubl
ed for the two sho
r
ted pha
se
s a
nd cu
rrent ri
se
s to a ce
rtain spi
k
e a
n
d
then re
cov
e
rs
grad
ually.
(a)
(b)
Figure 4. Voltage (
V
abc
) an
d Curre
n
t (
I
abc
) Cha
r
a
c
teri
st
ics at Steady
State Operati
on und
er DC
Fault Con
d
itions at (a) rectifier side an
d
(b) inverte
r
si
de
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Perform
a
n
c
e
Analysis of a
High Voltag
e DC (HV
D
C
)
T
r
an
sm
issi
on
S
yst
em
… (M.
Zakir
Ho
ss
ai
n)
5859
(a)
(b)
Figure 5 (a)
Curre
n
t (
I
abc
) cha
r
a
c
teri
stics: line to grou
nd fault at inverter
side (ac) and DC faul
t
at rectifier
sid
e
, and (b
) voltage (
V
abc
) an
d curre
n
t (I
abc
) for sin
g
le lin
e to groun
d fault at inverter
side
(a)
(b)
Figure 6. Voltage (V
abc
) an
d Curre
n
t (I
abc
) Cha
r
a
c
teri
st
ics at Inverte
r
Side unde
r (a) dou
ble line
to groun
d faul
t and (b) lin
e to line fault
4. Conclusion
This p
ape
r
shows a
simpl
e
app
roa
c
h
o
f
HV
DC
mod
e
l by co
nsi
d
e
r
ing p
o
wer
electro
n
ic
device
s
fo
r
control th
e ov
erall
syste
m
i
n
orde
r
to
im
prove po
wer transfe
r as
well
a
s
to achi
eve
reliability in the power transfer. Software bas
ed
studies of transi
ent
disturbance
s have been
carrie
d out u
s
ing the Sim
u
link in MAT
L
AB. Current
- voltage (
C-
V
) characte
ristics have al
so
been
simul
a
ted for
stead
y state co
ndi
tion and
also
for differe
nt fault con
d
itions
at both
the
rectifie
r and i
n
verter
side
s.
It has found t
hat cu
rre
nt a
nd voltage st
rongly dep
end
on the types
o
f
fault. The
HVDC
syste
m
ha
s be
en
u
s
ed
to tra
n
smit power f
r
o
m
a
27
5k
V
,
50 Hz netwo
rk
to
250
kV
, 50 Hz net
work. T
he re
ceivin
g
end a
nd sen
d
ing en
d AC system
s a
r
e
sep
a
rate
d b
y
110
km
DC t
r
ansmi
ssion
line. The
anal
ytical re
sult
s
obtaine
d in t
h
is p
r
o
p
o
s
ed
model
ca
n b
e
a
useful tool in
system d
e
sig
n
and optimi
z
ation.
Referen
ces
[1]
Cha
ng Hs
in
Ch
ien, Buck
na
ll R
.
Anal
ysis
of H
a
rmonics
in
Su
bsea P
o
w
e
r T
r
ansmissi
on
Ca
bles
Used
i
n
VSC–HV
DC T
r
ansmissi
on S
ystems Operati
ng U
n
d
e
r Stea
d
y
-St
a
te Co
nd
i
t
ions.
IEEE Transactions
on
Pow
e
r Deliv
ery
. 2007; 22(
4): 2489, 24
97.
[2]
Rud
e
rval
l R, C
harp
entier
JP,
Sharma
R. Hi
g
h
Volt
age
Dir
e
c
t Current (
H
V
DC) T
r
ansmiss
ion S
y
st
ems
T
e
chnolog
y.
R
e
view
Paper, En
ergy W
eek 20
0
0
, W
a
shingto
n
,
DC, USA. 200
0.
[3]
Z
i
di SA,
Had
j
er
i S, F
e
ll
ah MK.
D
y
namic
Perfo
rmance
of a
n
HVDC
Link.
J. Electrical
Syst
ems
. 20
05;
1-
3: 15-23.
[4]
Casori
a S, S
y
b
ille G. A Porta
b
le a
nd Ap
pro
a
ch to contro
l s
y
stem simu
lat
i
on.
IPST
conferenc
e,
Rio d
e
Janer
io, Brazil.
2001.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 585
4 –
5860
5860
[5]
Jovcic D. T
h
y
r
istor-Based
HVDC
w
i
th Forced Commutation.
IEEE Transactions
on P
o
wer Delivery.
200
7; 22(1): 55
7, 564.
[6]
W
ang
Y, Xu L.
T
r
ansmission
Net
w
ork
Sup
p
o
rt Usi
ng V
S
C
-
base
d
HV
DC
S
y
stems.
T
h
e Internatio
na
l
Confer
ence
on
Electrical En
gi
neer
ing.
2
009.
[7]
Ali
y
u T
u
kur. Simulati
on of the
performanc
e
of Hi
gh V
o
lta
g
e
Direct C
u
rre
nt (HVDC) S
y
s
t
em
w
i
t
h
Si-
GT
O and Sic-GT
O
th
y
r
istors
in terms of efficienc
y.
Interna
t
iona
l jour
na
l p
aper
, JEMI. 2010; 1; Nos. 1
& 3.
[8]
F
l
oure
n
tzou
N, Agel
id
is VG, Demetria
des
GD. VSC-Base
d
HVDC
Po
w
e
r
T
r
ansmission
S
y
stems:
A
n
Overvie
w
.
IEEE Transactions
on Power Elec
tronics
. 200
9; 24(3): 59
2, 602
.
[9]
Shri
harsh
a J,
Shil
pa GN,
Ra
mesh E,
Da
ya
nan
da
LN,
Nat
a
raj
a
C. V
o
lta
g
e
So
urce
Co
nv
erter Bas
e
d
HVDC T
r
ansmission.
Internati
ona
l jour
na
l pa
per
, IJESIT
,
ISSN: 2319-
59
67
. 2012; 1(1).
[10]
S
y
b
ill
e G.
T
heor
y
a
nd a
p
p
lic
ation of p
o
w
e
r
s
y
st
em Block
s
et, a MAT
L
AB/Simuli
nk- Ba
sed Simu
latio
n
T
ool for po
w
e
r s
y
stem.
IEEE PES Winter Meeting Conference Proceedings
. 2000; 1: 77
4-77
9.
[11]
Yong
Li, Z
h
i
w
en Z
h
a
ng,
Rehtanz C, Lo
ng
fu
Luo, Rü
ber
g S, F
u
sheng
Li
u. Stud
y o
n
Stead
y- an
d
T
r
ansient-State Ch
aracteristi
cs of a Ne
w
H
V
DC T
r
ansmission S
y
stem B
a
sed
on a
n
Ind
u
ctive F
ilteri
n
g
Method.
IEEE Transactions on
Pow
e
r Electronics
. 20
11; 26
(7): 1976, 1
986
.
[12]
Jovcic D. T
h
y
r
istor-Base
d
H
V
DC
w
i
th
F
o
rc
ed C
o
mmutati
on.
IEEE Transactions
on
Po
we
r D
e
li
ve
ry
.
200
7; 22(1): 55
7, 564.
[13]
Khatir MOHAMED, Z
i
di
Sid
AHMED, Hadjeri SAMIR, F
e
lla
h Moham
med KARIM, Amiri RABIE
.
Performanc
e Anal
ysis
of a Vol
t
age So
urce C
onv
erter
(VSC)
based HVDC T
r
ansmission S
y
stem
u
n
d
e
r
F
aulted C
ond
itions.
Internati
ona
l jour
nal p
aper, Le
onar
d
o
Journ
a
l of Scienc
es
, ISSN 158
3-02
33
.
200
9; 15: 33-4
6
.
[14]
Adam GP, Ah
med KH, Finn
e
y
SJ, Bel
l
K, W
illi
ams BW
. Ne
w
Br
eed
of Net
w
o
r
k Fault-T
o
lerant Vo
ltag
e-
Source-
C
onv
er
ter HVDC T
r
ansmission S
y
ste
m
.
IEEE Transactions
on Power System
s
. 201
3; 28(1)
:
335-
346.
Evaluation Warning : The document was created with Spire.PDF for Python.