TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 14, No. 1, April 2015, pp. 49 ~ 54
DOI: 10.115
9
1
/telkomni
ka.
v
14i1.772
9
49
Re
cei
v
ed
De
cem
ber 2
7
, 2014; Re
vi
sed
March 6, 201
5; Acce
pted
March 26, 20
15
Building Integrated Photovoltaic is a Cost Effective and
Environmental Friendly Solution
M Tripath
y
*
1
,
P K Sadhu
2
Dep
a
rtment of Electrical E
ngi
neer
ing, Ind
i
an
School of Min
e
s, Dhan
ba
d-8
260
04, Indi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: meetaran
i_tri
path
y
@r
ediffm
ail.com
1
, prad
i
p_sa
d
h
u
@
y
a
h
oo.co.in
2
A
b
st
r
a
ct
Buil
din
g
integr
ated ph
otovo
l
taic
(BIPV) ma
rket is under
deve
l
op
in
g stage w
i
th a relatively lo
w
nu
mb
er of installati
ons w
o
rld
w
ide. Ho
w
e
ver
,
integratin
g p
hotovo
l
taic tec
hno
logy i
n
to b
u
ild
in
gs is strai
ght
forw
ard as no
additi
on
al spa
c
e is requ
ired
and b
u
il
di
ng
mater
i
als
are
simply re
plac
e
d
by PV mo
du
les.
Althou
gh BIPV
is cons
id
ered
a pro
m
isin
g te
chno
logy,
esp
e
cial
ly w
here
l
and f
o
r lar
ge-s
c
ale PV
pl
ants
is
rare, sev
e
ral
factors co
ntinu
e
to c
onstrai
n
its w
i
de-spr
e
a
d
a
dopti
o
n
BIPV thus
pro
m
i
s
es to
beco
m
e
a
n
attractive a
l
ter
native
for
both
en
d
users
an
d for
nati
o
n
a
l
policy
mak
e
rs. In this
p
a
p
e
r
w
e
a
nalys
e t
h
e
invest
me
nt of BIPV, benefit
s of BIPV pow
er
system a
nd
co
st of BIPV power system.
Ke
y
w
ords
:
BIPV, payback period, LCC, ta
x incentiv
es, cost of BIPV
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
A large glob
al emission
of carb
on di
oxide (CO
2
) gas, are pu
shing the wo
rld into
dang
ero
u
s
condition. Because of indu
strial re
voluti
ons, carb
on
emission fro
m
burni
ng fo
ssil
fuels ha
s g
r
o
w
n expo
nenti
a
lly. By end of t
he year 20
30, the total emissi
on of CO
2
is expe
cte
d
to
excee
d
10 bill
ion tons [1]. More
over, be
cau
s
e of
sha
r
p increa
se of
fossil fuel
pri
c
es an
d con
c
e
r
n
about glo
bal
warming, the
r
e is
a tren
d
of wide a
cceptan
ce for t
he po
we
r su
pply to con
s
i
der
more
an
d m
o
re
re
ne
wabl
e en
ergy
so
urces in
ma
ny part
s
of t
he
worl
d [2]. The E
u
ro
pe
an
commi
ssion
has set a
target of
achieving 2
0
%
of to
tal ene
rgy
bu
dget from
ren
e
wa
ble
so
urces
by the yea
r
202
0 [3]. T
h
is
will
stabi
lize th
e g
r
e
e
nhou
se
ga
s
emission
thu
s
red
u
cin
g
t
he
contri
bution
to glob
al warming. Amon
g
all the r
ene
wabl
e reso
urce
s, sol
a
r
en
ergy i
s
the
most
abun
dant, ine
x
haustibl
e an
d clea
n on
e [4]. World’
s p
r
ese
n
t ene
rgy
requi
rem
ent is 15T
era
Wa
tt
(15
×
10
12
) i.e.
10
4
times smaller tha
n
solar en
ergy incid
ent on th
e planet. It is estimated th
a
t
th
e
sola
r e
n
e
r
gy
received
withi
n
le
ss than
o
ne h
our w
oul
d be
sufficien
t to cove
r o
n
e
year of
worl
d’s
energy b
udg
et [5]. Photov
oltaic te
ch
nol
ogy is o
ne of the elegant tech
nolo
g
ies
available for the
efficient use of solar p
o
wer [6]. Without any
environmental h
a
rm, this techn
o
logy pro
d
u
c
es
electri
c
al
po
wer
by con
v
erting solar irradi
an
ce
into dire
ct
electri
c
cu
rre
nt by using
semi
con
d
u
c
tors [7]. In future
scop
e fo
r PV appli
c
at
ion, there a
r
e four
majo
r factors
m
u
st be
con
s
id
ere
d
vi
z. cost
red
u
ct
ion, incre
a
se
of e
fficien
cy, BIPV applicat
ions and
sto
r
age
system
[8].
BIPV technol
ogy tran
sfo
r
ms b
u
ildin
g f
r
om
ene
rgy
con
s
um
er to
ene
rgy p
r
od
uce
r
[9]. In t
h
is
advan
ceme
nt, con
s
tru
c
tion
techn
o
logy i
s
requi
red to
be me
rge
d
wi
th BIPV technology for
bet
ter
perfo
rman
ce
[10]. Here, th
e photovoltai
c
mod
u
le
s be
come t
r
ue
co
nstru
c
tion
ele
m
ent se
rving
as
building
exteriors, such a
s
ro
of, facad
e
or
skylig
ht [11]. The BIPV also serves a
s
we
athe
r
prote
c
tion, th
ermal
in
sulati
on, noi
se
p
r
ot
ection
etc.
M
o
reove
r
,
sin
c
e sola
r e
nerg
y
gene
rato
rs
are
norm
a
lly loca
ted near the
cu
stome
r
s, th
ere is n
o
ne
ed to con
s
tru
c
t further tra
n
smi
ssi
on lin
es.
Therefore,
finan
cial
re
so
urces
can
b
e
saved
and
po
wer lo
sse
s
in
di
stributi
on n
e
two
r
ks
and
se
curity
risks
are
minimi
ze
d. Also, the
r
e
is
no
need
to
co
nstruct
mo
re m
a
jor po
wer pl
ants du
e
to
the fact that renewable
sources can be
utilized
as
emergency suppliers. I
n
addition,
solar
energy can h
e
lp the main
netwo
rk d
u
ri
n
g
pea
k load
hours an
d sh
are
s
the he
a
vy burden [1
2,
13]. The power
generated
from
sola
r energy
i
s
still
insignifi
cant as
compared to
other types
of
power p
r
odu
ction techniq
ues, but the
rece
nt
gro
w
th ca
nnot
be igno
red [
14]. The wo
rld
experie
nced
more th
an 15
0% gro
w
th in
PV produ
ct
i
on in the p
a
st 5 years, [15
]. For exampl
e
durin
g the la
st de
cad
e
, Europ
ean
phot
ovoltaic
com
panie
s
have
rea
c
he
d an
averag
e an
n
ual
prod
uctio
n
of 40% and in 2
005, glob
al solar ma
rkets
earn
ed 11.
8 billion doll
a
rs
whi
c
h is u
p
5
5
%
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 1, April 2015 : 49 – 54
50
more tha
n
20
04 figure
s
. Th
e ultimate go
al is to
doubl
e the existing
efficiency in
orde
r to incre
a
se
rapidly
clea
n
energy produ
ction [16]. Th
e Intern
at
ion
a
l Energy Ag
ency
(IEA)
predict
s that
so
lar
system
s will prod
uce one
fifth of the whole glob
al energy by 205
0 and antici
p
ates 60% ri
se by
the en
d of thi
s
centu
r
y [17
]. Although
we can
se
e th
i
s
signifi
cant rise of
tend
en
cy
toward
sol
a
r
system
s arou
nd the wo
rld, but a lo
t of problem
s have
to be solved i
f
we want to keep this tre
n
d
.
2. BIPV In
v
e
stmen
t
Anal
y
s
is
This
se
ction
i
dentifies gen
eral
method
s of
investm
e
nt analy
s
is
a
nd explai
ns h
o
w th
ey
may be
appli
ed to th
e a
s
se
ssm
ent
of
building
-
in
te
g
r
ated
photov
oltaic
(B
IPV) power syste
m
s.
Figure 1 sh
o
w
s the Gl
obal
BIPV installati
on and predi
ction of its expan
sion rate.
Figure 1. Glo
bal BIPV installation and
p
r
edi
ction of its expan
sio
n
rate
[19]
2.1. Economic Bene
fits
Investment e
v
aluation
s
of
energy sy
stems
gene
rall
y includ
e an
asse
ssment
of the
proje
c
ted b
e
n
e
fits com
pare
d
to the estim
a
ted co
st
s of
the system. T
he dire
ct fina
ncial b
enefit o
f
a BIPV system is prim
arily the value of
energy g
enerated. Th
ese
di
re
ct benefits may be
con
s
id
ere
d
a
s
: Proje
c
ted
benefit is
sa
me as valu
e of electri
c
ity gene
rated. T
he direct e
c
o
nomic
co
sts of a
BIPV system may be d
e
f
ined a
s
a
d
d
i
tion of ca
pital co
st, pe
ri
odic
co
sts
a
n
d
repla
c
e
m
ent co
st.
Wh
en photovoltai
c
(PV)
te
chn
o
l
ogy is ada
pted a
nd u
s
e
d
as a
buildi
ng
comp
one
nt, as exam
ple o
f
BIPV, its economi
c
cost
s and ben
efits may be sha
r
ed between t
h
e
occup
ant an
d the utility comp
any. Fo
r a buil
d
i
ng own
e
r,
the
a
dded co
sts of
installin
g and
operating a
system to gen
erate el
ectri
c
i
t
y may
be offset by the a
v
oided cost
s of purcha
s
in
g
electri
c
ity o
r
by sellin
g
su
rplus ele
c
tri
c
ity to
the utility com
pany. Fi
gure
2
sh
ows the d
e
velop
m
ent
status of diffe
rent co
untri
es in BI
PV market and their fu
ture progress.
Figure 2. Dev
e
lopme
n
t status of different
count
ri
es in
BIPV market and their futu
re progress
[20]
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Building Integ
r
ated Photo
v
oltaic is a
Co
st Effe
ctive a
nd Envi
ronm
ental Frie
ndl
y… (M Trip
ath
y
)
51
2.2.
Pa
y
b
ack period
The payb
a
ck perio
d is th
e minimum ti
me it takes t
o
re
cover in
vestment costs. The
payba
ck
peri
od for a
n
en
ergy sy
stem i
s
calculat
ed
as the total i
n
vestment
co
st divided
by the
first yea
r
’s re
venue
s fro
m
energy saved
,
displ
a
ced,
o
r
p
r
od
uced. I
n
payb
a
ck
an
alysis, th
e u
n
i
t
of
measurement
is the num
b
e
r of y
ears t
o
pay ba
ck t
he Investme
nt co
st. Proj
ects
with sh
ort
payba
ck
pe
ri
ods are p
e
rceived to h
a
ve
lowe
r
risks
.
Simple payb
a
c
k an
alysis ta
ke
s into
acco
un
t
only first co
st
s and e
n
e
r
gy
saving
s at present co
st. This meth
od
omits several
significant cost
factors, inclu
d
ing the cost
escala
tio
n
rat
e
and the cost of capital. Thus, si
mple p
a
yback an
alysis
can ove
r
e
s
timate the actu
al payba
ck p
e
riod a
nd, co
nse
que
ntly, the length of time to recoup
the
investment. T
he
two
m
a
in
variation
s
are
payba
ck
after taxe
s a
n
d
di
scounte
d
p
a
yback. Payb
ack
after taxes i
n
clu
d
e
s
and
evaluates
margi
nal tax rates a
nd
depreci
a
tion
sched
ule
s
. In the
discou
nted p
a
yback meth
od, future ye
ar’s
reven
u
e
s
are co
nsi
d
ered to h
a
ve
less val
ue than
curre
n
t reven
ues.
Disco
u
n
t
ed payba
ck i
s
the time b
e
t
ween th
e poi
nts of initial i
n
vestment a
n
d
the point at which a
c
cumul
a
ted savin
g
s
(net of t
he accumul
a
ted co
sts) are
sufficient to offset the
initial investm
ent co
st
s. Co
sts
and
savin
g
s a
r
e
adju
s
t
ed to a
c
cou
n
t
for the
cha
nging val
ue
of
money ove
r
time. For i
n
ve
stors
who
se
ek
rapid
tu
rn
over of inve
stment fund
s, the investm
e
nt
increa
se
s in attractivene
ss as the pa
ybac
k peri
o
d
decrea
s
e
s
. Ho
wever, a sho
r
ter payb
a
ck
perio
d doe
s
not necessa
ri
ly indicate th
e most e
c
ono
mically efficie
n
t investment
. An investment
with a longe
r payba
ck pe
ri
od may be more p
r
ofit
able
than an investment with a
shorte
r payb
a
ck
perio
d if it
co
ntinue
s to yie
l
d saving
s fo
r a lo
nge
r
peri
od. Th
e p
a
yb
ack m
e
a
s
ure
is e
s
sentially
a
brea
k-even
measure of system
life. Payback ca
n be use
d
to determin
e
the minimum time a
sy
st
em
mu
st
l
a
st
in
o
r
de
r t
o
re
cov
e
r t
h
e i
n
v
e
st
m
ent
co
sts. T
h
e
payb
a
ck m
e
thod
i
s
often
u
s
e
d
as
a ro
ugh
guid
e
to cost effe
ctivene
ss. If the payb
a
ck
p
e
riod
is
sig
n
ificantly le
ss th
an the
expe
cted
system life, the proje
c
t is likely
to be con
s
ide
r
ed
co
st effective.
2.3
. Life C
y
cle Cos
t
An
aly
s
is
In life-cycle
cost (L
CC) an
alysis, all rel
e
v
ant present and future
co
sts (le
s
s any positive
ca
sh flows) a
s
soci
ated wit
h
an ene
rgy system a
r
e summed in p
r
ese
n
t or ann
ual value du
ri
ng a
given study
perio
d (e.g., the life
of th
e system
). These co
sts i
n
clu
de, but a
r
e not limited
to,
energy, acqui
sition, in
stalla
tion, ope
ratio
n
s a
nd
m
a
int
enan
ce (O&
M
),
re
pair, re
placement (le
ss
salvag
e valu
e), inflation,
and di
scount
rate for t
he
life of the investment (op
portunity cost
of
money inve
sted). The u
n
i
t of measu
r
ement is p
r
ese
n
t value or an
nual v
a
lue doll
a
rs.
A
comp
ari
s
o
n
b
e
twee
n the L
CC
of an
ene
rgy sy
stem
to
an alte
rnativ
e dete
r
mine
s
if the system
in
que
stion i
s
cost effe
ctive. If the LCC i
s
l
o
we
r tha
n
tha
t
for the
ba
se
ca
se
and
in
other
aspe
cts is
equal, an
d th
e proj
ect me
ets the inve
stor’s
obje
c
tive
s and
bud
get
con
s
trai
nts, i
t
is con
s
id
ere
d
co
st effective and the pref
e
rre
d investme
nt [18].
3. Bene
fits o
f
BIPV Po
w
e
r Sy
stem
3.1. Electricit
y
Benefits
The valu
e of
electri
c
ity ge
n
e
rated
by a B
I
PV powe
r
sy
stem i
s
dete
r
mined
by the
amount
of electri
c
ity con
s
um
ed
plus the val
ue of su
rp
lu
s ele
c
tri
c
ity gene
rated. T
y
pically, facil
i
ty
electri
c
ity bill
s are paid
monthly out
of ann
ual operations budgets.
T
he
O&M budget
will
decrea
s
e
by usin
g the sol
a
r en
ergy
so
urce. T
he va
lue of BIPV electri
c
ity ge
neratio
n to the
building o
w
n
e
r is the diffe
ren
c
e of the
estimat
ed b
a
s
elin
e ene
rgy
bill and the actual
co
st of the
sola
r e
nergy sou
r
ce. If a b
a
ckup
syste
m
is in
stalle
d, the cost of
b
a
ckup fu
el m
u
st al
so
be ta
ken
into con
s
id
eration wh
en d
e
termini
ng th
e value of BIPV electricity
gene
ration.
3.2
. Thermal Bene
fits
The en
ergy g
enerated by t
he BIPV power
sy
stem
ca
n be eval
uat
ed by a
s
sessing the
co
st of surpl
u
s ele
c
tri
c
ity generated p
l
us the
syste
m
’s ene
rgy contri
bution t
o
the buildin
g’s
thermal
pe
rfo
r
man
c
e. A
s
su
ch, the
BIPV power
sy
stem
can
be
de
sign
ed a
c
cordi
ng to
the
building’
s he
ating, coolin
g, and
d
a
y
lighting
l
oad
s. Th
e
syste
m
can
also
be
deli
bera
t
ely
oversi
ze
d to
gene
rate
su
rplus en
ergy,
depe
nding
o
n
ho
w it
is valued
by the
utility and
h
o
w
much it cost
s to generate. The ad
ded
costs a
s
so
ci
at
ed with the h
a
rd
wa
re an
d desi
gn of hyb
r
id
BIPV/thermal system
s
wo
uld ne
ce
ssita
t
e a care
ful
eco
nomi
c
ev
aluation. Em
pirical dat
a
on
hybrid
syste
m
perfo
rma
n
c
e a
nd b
ene
fits are
cu
rre
ntly limited. One of the
ways BIPV p
o
we
r
system
s may
contrib
u
te to
a building’
s therm
a
l
perfo
rmance is thro
ugh the thermal effect of the
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 1, April 2015 : 49 – 54
52
sha
d
ing fu
nct
i
on on
air
co
nditioning
loa
d
s, whic
h a
BIPV awning
system
prov
ides
duri
ng t
he
summ
er. In
contra
st to sh
ading, the
he
at cog
ene
rati
on of a BIPV hybrid
syste
m
in the
wint
er
provide
s
an
other contrib
u
tion to a building’s
the
r
mal
perfo
rman
ce.
This heat is
prod
uced wh
en
ambient ai
r is vented be
h
i
nd the BIPV glass pan
el
s to cool the
solar cells (P
V cells perform
more
efficie
n
t
ly at lower tempe
r
atures). The
ca
ptured
wa
rm
air
may then
be
used
to p
r
e
heat
water o
r
air fo
r buildin
g se
rvices.
3.3. En
v
i
ron
m
ental Be
ne
fits
Whe
n
gene
rating elect
r
ici
t
y,
BIPV power sy
ste
m
s p
r
odu
ce n
o
harmful enviro
n
mental
emission
s. A
stakehol
der can a
c
c
ount fo
r avoid
ed
env
ironm
ental
co
st a
s
soci
ated
with n
o
t u
s
in
g
fossil fu
el-g
e
nerate
d
po
we
r. This val
ue
can
be in
clu
d
ed in a
n
L
C
C analysi
s
. Ho
wever, thi
s
v
a
lue
sho
u
ld
not b
e
co
nsi
dered
whe
n
a
s
se
ssi
ng d
e
ci
sio
n
s
i
n
which e
n
vironmental
effe
cts
plan
no
ro
le
(e.g., Ene
r
gy
Saving
s Pe
rforma
nce
Contra
ct
ing
would
not in
cl
ude
qualitativ
e envi
r
onm
e
n
tal
benefits that
do not dire
ctl
y
affect ca
sh
flow in the economi
c
analy
s
is).
3.4. Tax Ince
ntiv
es
The four
cate
gorie
s of U.S
.
taxation incent
ive prog
ra
ms that may apply to BIPV powe
r
system
s i.e. tax credit
s
, tax rate, tax basis, and
taxa
ble entity. Ta
x credits pe
rmit a perce
ntage
of expen
ditures to
be
de
ducte
d fro
m
the net taxe
s o
w
e
d
to th
e gove
r
nme
n
t. In the United
States, the taxation pa
ra
meter is
divided into fed
e
ral, state,
and lo
cal ta
x obligation
s
.
A
redu
ction
to t
he tax
rate
can p
r
ovide
a
finan
cial
ad
vantage i
n
th
ree
ways:
(1) It ca
n exe
m
pt
certai
n activities,
p
r
o
d
u
c
ts, or ent
ities fro
m
taxation, o
r
tax them
at a
lower rat
e
th
an thei
r
market
sub
s
titutes; (2) Entire e
n
tities (e.g., so
me publi
c
ly o
w
ne
d ele
c
tric utilities) may
be exempt from
federal
in
com
e
tax even th
ough
they co
mpete
with
ot
her
providers of the
sam
e
servi
c
e th
at a
r
e
taxed; and
(3
) a lo
we
r tax rate may pe
rm
it a parti
cula
r
type of firm to
pay a lo
we
r
percenta
ge ta
x
on ce
rtain a
c
tivities (e.g., lowe
r tax rate
s on capital
gain
s
). The t
a
x basi
s
ca
n
be redu
ce
d b
y
decrea
s
in
g the taxable income on which a given per
centa
ge tax is appli
ed. Thi
s
is a
c
compli
she
d
by either
acceleratin
g
the t
i
ming of the t
a
x dedu
ct
ion
or by ex
cludi
ng po
rtion
s
of
inco
me
subj
ect
to taxation. Firms may be a
llowe
d to ded
uct co
sts of PV investment
s from taxabl
e incom
e
mu
ch
faster th
an th
e investm
ent
s a
c
tually de
pre
c
iate.
T
he r
e
du
c
t
ion
in
c
u
rr
en
t ta
xe
s is
gr
e
a
t
er
tha
n
the re
du
ction
in future tax
e
s. Th
e
cu
rrent tax savin
g
s
(e.g., a
c
celerate
d d
epreciatio
n
on
p
l
ant
and equi
pme
n
t) can al
so b
e
invested an
d earn inte
re
st. Altering the taxable entity will affect the
definition
of a
tax
payer. This cha
nge may
enabl
e
profits to b
e
offset by losse
s
and
hav
e a
benefi
c
ial effect on tax ca
lculatio
ns. Exceptio
ns to
rules o
n
co
nsolidating tax returns
can g
i
ve
rise to su
bsi
d
ies, whi
c
h a
llow profits to be shi
fted in a large, vertically integrat
ed co
rpo
r
atio
n
(su
c
h
a
s
o
c
curs in the
oil i
ndu
st
ry). Fo
r
example,
wh
en the taxabl
e entity is diffi
cult to d
e
fine
and
transactio
n
s
betwe
en divi
sion
s a
r
e d
o
ne at artifici
al
ly set tran
sfe
r
pri
c
e
s
, profits ca
n be
shi
fted
among divi
sio
n
s an
d co
untries to minimi
ze the tax burd
en.
4. Cost o
f
BI
PV Po
w
e
r Sy
stem
As with ma
ny rene
wa
ble e
nergy te
chn
o
l
ogie
s
,
system
prices i
n
doll
a
rs
pe
r install
ed watt
of dire
ct cu
rrent pea
k po
wer capa
city ($
/
W
p
DC) have
a signifi
cant
effect on PV developm
ent. In
gene
ral, the i
n
stalle
d pri
c
e
s
of BIPV systems a
r
e
hi
gh
er tha
n
PV sy
stem p
r
ices,
but the cau
s
e
of
these
pri
c
e p
r
emium
s
—hi
g
her
co
sts, hig
her m
a
rg
i
n
s, or
othe
r con
s
i
der
atio
ns—a
nd the p
o
tenti
a
l
for pri
c
e red
u
ction
s
re
ma
in uncertain.
In t
oday’s solar ma
rket, few BIPV produ
cts are fully
integrate
d
wi
th building
material
s a
s
envision
ed i
n
these BIP
V
cases; the
r
efore, the case
s
should be seen
as near-t
erm possi
bilities. In contrast, the PV
Reference Case
represents a
2010 b
e
n
c
hm
ark
system p
r
ice from a
n
NREL study
th
at use
s
the same metho
d
o
logy to asse
ss
obje
c
tive sy
stem p
r
ices [21
]. The bul
k
of
the BI
PV ca
ses
potential
savings stem
from
eliminati
ng
the co
st of module
-
mo
un
ting hardware—wh
ich ra
ck-m
ounte
d
PV system
s n
eed but BIPV
system
s d
o
not—an
d
fro
m
offsetting
the co
st of
t
r
adition
al bui
lding m
a
teria
l
s. BIPV lab
our
saving
s re
sul
t
from the elimination of mounti
ng h
a
rdwa
re an
d o
u
r assu
mptio
n
of lower-co
s
t
roofing
contractors i
n
pla
c
e
of ele
c
tri
c
ians. So
me in
stallation l
a
b
our
co
sts in
crea
se, h
o
wever,
due to
the i
n
cre
a
sed tim
e
that is re
qui
red to
i
n
stall
a
gre
a
ter num
ber
of smalle
r BIPV mod
u
les
for a given area
(i.e., more total ele
c
tri
c
al interconne
ction
s
a
nd wiri
ng).
Module
co
sts and
efficien
cie
s
are key facto
r
s that contribu
te to ov
erall system p
r
ice
s
acro
ss all o
f
the case
s, and
we
assum
e
t
hat the BIPV ca
se
s h
a
ve
lowe
r effici
en
cie
s
. If BIPV prod
uct
s
com
p
letely re
pla
c
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Building Integ
r
ated Photo
v
oltaic is a
Co
st Effe
ctive a
nd Envi
ronm
ental Frie
ndl
y… (M Trip
ath
y
)
53
traditional
bui
lding mate
rial
s, overall
system co
sts
sh
ould reflect a
comm
ensurate co
st offset.
Develo
ping
multifunction
al pro
d
u
c
ts is a cent
ra
l ch
alleng
e for BIPV produ
ct d
e
sig
ners b
e
cause
building m
a
te
rials often re
quire hi
ghe
r dura
b
ility than PV devices, and BIPV
must meet code
s
and sta
nda
rd
s for both P
V
and buildi
ng produ
ct
s.
The co
sts
and pe
rf
orm
ance of stan
dard
roofing
mate
rials va
ry. Asph
alt shi
ngl
es a
r
e
th
e most comm
o
n
pro
d
u
c
t
in
stalled on U.S.
resi
dential
ro
oftops; they
accou
n
t for
more
than
5
0
% of U.S. resid
ential
se
ctor
market
share
(Natio
nal Ro
ofing Co
ntra
ctors Asso
ciati
on 201
1 b)
.
For mo
st co
n
d
itions, a
s
ph
alt shingl
es l
a
st
about 17
–20
years, an
d in
stalled
co
sts
are bet
wee
n
$18–
$32/m
2
[22]. More ex
pen
sive rooft
o
p
prod
uct
s
su
ch as cl
ay tiles may last more than 50 ye
ars
and often
provide bett
e
r in
sulation
and
fire protectio
n
than le
ss
co
stly prod
uct
s
. Table 3 li
sts
the value
s
for several roofi
ng mate
rial
s to
illustrate general cost trends.
Table 1. Average Install
ed
Retail Pri
c
e
s
for Tra
d
itional
Resi
dential
Roofin
g Mate
rials, Conve
r
ted
to $/W Base
d
on the BIPV
Derivative Ca
se (1
3.8%-eff
icient, 0.58 m
2
)
R
o
of
i
n
g Pro
d
u
c
t
$/m2
$/
w
Asphalt shingle
$25.08
$0.18
Wood shingle
$51.13
$0.37
Concrete tile
$57.86
$0.42
Slate tile
$78.58
$0.57
Metal tile
$101.45
$0.74
Clay
tile
$116.52
$0.85
PV produ
cts
have a ra
nge
of efficienci
e
s, and
lo
we
r-efficien
cy pro
duct
s
re
quire
more
spa
c
e tha
n
hi
gher-effici
en
cy produ
cts fo
r equivale
nt system po
wer
cap
a
citie
s
. Similarly, lowe
r-
efficien
cy BIPV techn
o
log
i
es
req
u
ire
m
o
re
sp
ace a
n
d
di
spla
ce
m
o
re t
r
adition
a
l
pro
d
u
c
ts th
an
highe
r- efficie
n
cy BIPV technolo
g
ies;
th
us, in
term
s
of $/W,
offset
s a
r
e
inversel
y relate
d to
PV
efficien
cie
s
:
a 6.3%-effici
ent devi
c
e
ha
s m
o
re
t
han
doubl
e the
of
fset value
of
a 14.5%
-efficient
device for a
n
equivalent ro
ofing pro
d
u
c
t. Table 4 lis
t
s
the approxim
ate offset values fo
r sel
e
ct
ed
techn
o
logie
s
and buildi
ng
material
s, illustrating the p
o
ssible rang
e
of reside
ntial
offset values b
y
highlightin
g a
low-ca
se offset (shin
g
le
s)
and a hig
h
-ca
s
e offset (cla
y tiles).
Table 2. Esti
mated Offset
Values fo
r the Re
side
ntial BIPV Case
s
Tech
nol
og
y
PV metrics
Reside
ntial mat
e
rial
of
fsets
efficie
n
c
y
W
p
/m
2
A
s
ph
al
t
s
i
n
g
l
e
Cla
y
tile
a-si
5.8%
58
$0.43
$2.01
CIGS
11.2%
113
$0.22
$1.03
c-
si
13.8%
138
$0.18
$0.85
5. Conclusio
n
Although the
deployme
nt of BIPV is relatively low, opportu
nitie
s
re
main p
r
o
m
ising.
De
cre
a
si
ng
module
co
sts, increa
sin
g
con
s
um
er int
e
re
st in sola
r energy, and
policy sche
mes
that suppo
rt distrib
u
ted ge
nerat
io
n syst
ems have the
potential to increa
se rate
s of BIPV market
gro
w
th. The
comm
erciali
z
ation of
sola
r produ
ct
s th
at have the
full function
al
ity of building
material
s h
a
s been ve
ry limited, but sy
stem
s are
in
cre
a
si
ngly be
ing develo
p
e
d
to acco
unt
for
desi
gn ae
sth
e
tics
and in
st
allation-co
st redu
ction
s
.
Th
is ra
nge
of integration i
s
l
eadin
g
to mo
re
sola
r produ
ct
s that may fully replac
e tra
d
itional buildi
ng materi
als.
Referen
ces
[1]
Enkvist, Per-Anders, Jens
Di
nkel, Ch
arles
Lin.
Impact of the fina
ncia
l crisis on car
b
o
n
econom
ics
:
Versio
n 2.1 of the gl
ob
al gre
e
nho
use g
a
s ab
atement cost curve.
McKinse
y
& Comp
an
y.
201
0.
[2]
WT
RG econo
mics. Oil price histor
y
an
d an
al
ysis.
See a
l
s
o
:<
http://
w
ww.
w
t
rg.com/pric
e
.htm>
(2008).
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 1, April 2015 : 49 – 54
54
[3]
Europ
e
a
n
com
m
ission. C
o
m
m
unic
a
tion fro
m
the co
mmiss
ion to th
e Eur
o
pea
n p
a
rli
a
me
nt, the Co
unci
l
,
the Euro
pe
an
Econom
ic an
d
social
commit
t
ee an
d
the c
o
mmittee of th
e reg
i
ons-
20
20 b
y
20
2
0
Europ
e
’s clim
a
t
e chang
e op
p
o
rtunit
y
. 200
8.
[4] Parida,
Bhubanes
w
a
ri
, S Ini
y
an, Rank
o Goi
c
. A revie
w
of solar ph
otovo
l
taic techn
o
lo
gi
e
s
.
Renew
abl
e
and susta
i
n
abl
e ener
gy revie
w
s
. 2011; 15(3
)
: 1625-1
6
3
6
.
[5]
Le
w
i
s, N
a
than
S. Po
w
e
rin
g
the pla
net.
MRS bull
e
tin.
2
007;
32(1
0
): 808-
82
0.
[6]
Jain, Amit, Raj
eev Me
hta, Su
shee
l K Mittal.
Model
li
ng im
p
a
ct of solar r
a
diati
on o
n
site
selecti
on for
solar PV po
w
e
r
plants in In
dia.
Internation
a
l J
ourn
a
l of Gree
n Energy
. 2
011
; 8(4): 486-49
8
.
[7]
Strong, Steven
. Buildi
ng int
e
g
r
ated ph
otovo
l
taics (bi
p
v).
W
hole b
u
il
din
g
de
sign g
u
id
e
. 201
0.
[8]
Rod
e
, Joha
nn
es, F
abien Cr
assard. T
he evoluti
on of
bui
l
d
in
g integr
ated
photovo
l
taics
(BIPV) in the
German an
d F
r
ench tech
no
log
i
cal in
nov
atio
n s
y
stems for sol
a
r cells. 20
07.
[9]
Rau
gei, Marco,
Paolo F
r
a
n
kl. Life c
y
cle im
pa
cts and
costs o
f
photovo
l
taic s
y
stem
s: curre
n
t
state of the
art and future o
u
tlooks.
Ener
g
y
. 2009; 34(
3): 392-
399.
[10]
Prasad, D
eo,
Mark Sno
w
.
Desig
n
i
ng
w
i
t
h
so
lar
po
w
e
r
:
a source b
ook for bu
il
di
ng int
egrate
d
photov
olta
ics (BiPV). Routle
d
ge. 201
4.
[11]
Pagl
iaro, Mari
o, Rosari
a Ciri
m
inn
a
, Giovan
ni
Palmis
an
o. BIPV: merging
the photov
olt
a
ic
w
i
th th
e
constructio
n
in
dustr
y
.
Pro
g
res
s
in Photovo
l
tai
cs: Research a
nd App
licati
ons
. 2010; 18(
1): 61-72.
[12]
Peng, Ch
an
gh
ai, Ying Hu
an
g, Z
h
ishen W
u
. Buildi
ng-
i
n
teg
r
ated ph
otovo
l
taics (BIPV) in architectur
a
l
desi
gn in C
h
i
n
a.
Energy a
nd
Buil
din
g
s
. 201
1; 43(12): 3
592
-359
8.
[13]
Che
n
F
,
Lu SM,
T
s
eng KT
,
Lee SC, W
a
n
g
E.
Assessme
n
t of renew
abl
e ener
gy reser
v
es
. In
T
a
iw
an
Ren
e
w
a
ble
an
d Sustain
a
b
l
e
Energ
y
R
e
vie
w
s. 2010; 14: 25
11-2
8
.
[14]
Z
ahed
i a. A re
vie
w
of dr
ivers,
ben
efits, and
chall
e
n
ges i
n
i
n
tegrat
i
ng re
ne
w
-
abl
e e
nerg
y
sources i
n
t
o
electricit
y gri
d
.
Ren
e
w
able an
d
Sustain
a
b
l
e Energy
R
e
view
s
. 2011; 15: 47
75-9.
[15]
Pereir
a MG, Camach
o CF
, F
r
eitas MAV, Silv
a NF
Da.
T
he rene
w
a
b
l
e e
ner
g
y
mark
et in Br
azil: curre
nt
status and p
o
tentia
l.
Ren
e
w
able a
nd Susta
i
nab
le En
ergy
Review
s
. 201
2
;
16: 3786-
802.
[16] Europ
e
a
n
Co
mmission.
Ph
otovolta
ic sol
a
r energy
deve
l
op
ment an
d
current rese
ar
ch
. European
communiti
es. 2
009.
[17]
Dincer F
.
T
he anal
ys
is o
n
photov
olta
ic el
ectric
it
y
ge
ner
ation status, p
o
t
entia
l an
d p
o
lici
e
s of t
h
e
l
e
ad
i
n
g
co
un
trie
s i
n
so
la
r e
nergy
.
Re
new
ab
l
e
and Sust
ain
a
b
le En
ergy Re
view
s
. 2011; 1
5
: 713-2
0
.
[18]
Rue
gg RT
, Marsha
ll HE. B
u
ild
in
g Econ
o
m
ics:
T
heor
y
and Pr
actice.
Ne
w
York:
Van N
o
stran
d
Rein
ho
ld. 19
90
[19]
Goodric
h A, Ja
mes T
,
W
oodhous
e M.
Residenti
a
l, Co
mmercial, an
d Util
ity-Scale Ph
otovolta
ic (PV
)
System Pr
ices
in th
e U
n
ited
S
t
ates: Cu
rre
nt Drivers an
d
C
o
st-Reducti
on
O
pportu
nities
. I
n
pre
parati
o
n
Golde
n
, CO: Nation
al Re
ne
wabl
e Ener
g
y
La
borator
y. 20
11.
[20]
RS Means. Bui
l
din
g
Co
nstruction C
o
st Data. Nor
w
e
ll, MA: Reed C
onstructi
on Data. 2
010
[21]
Batter
y
S. BIPV
T
e
chnol
og
y
and Mark
et F
o
re
cast BIPV
T
e
chno
log
y
and
Market F
o
reca
st. 2011.
Evaluation Warning : The document was created with Spire.PDF for Python.