TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.4, April 201
4, pp. 2480 ~ 2
4
8
8
DOI: http://dx.doi.org/10.11591/telkomni
ka.v12i4.4839
2480
Re
cei
v
ed Se
ptem
ber 18, 2013; Revi
se
d Octob
e
r 29,
2013; Accept
ed No
vem
b
e
r
13, 2013
Design of Structural Parameters of Centrifugal Elevat
or
Overspeed Governors
Yunpu Song
*, Cheng Ch
en
Schoo
l of Mechan
ical a
nd En
erg
y
Eng
i
n
eeri
ng, T
ongji Univ
ersit
y
, 4
800, C
ao’
an Ro
ad, S
han
gh
ai, Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: song
yu
np
u@
tongj
i.ed
u.cn*,
jizhi
33
182
19
@
126.com
A
b
st
r
a
ct
As an
i
m
p
o
rta
n
t part
of over
s-pee
d a
nd f
a
il
-safe pr
ot
ectio
n
for e
l
ev
ators, the ce
ntrifug
a
l
elev
ato
r
overs-p
eed
go
vernor is
a d
e
v
ice for li
mitin
g
over-s
pee
d
of elev
ator car
s
. T
h
is pap
er researc
hes o
n
the
impact of the sprin
g
stiffness of t
he centrifugal b
l
ock, w
h
ich plays a ke
y
role in th
e perf
o
rmanc
e of thi
s
over-sp
eed
g
o
v
ernor,
on th
e
oper
ation
of th
e ov
er-s
pe
ed
gover
nor.
By
s
e
tting up a ma
thematica
l
mo
de
l
and furth
e
r c
a
rrying
out si
mu
lati
on a
naly
s
is, this
pa
pe
r research
es
on the
influ
e
n
c
e of systemati
c
para
m
eters, such as the mass
of cent
rifuga
l block, the turn
i
ng rad
i
us of
th
e centrifug
a
l b
l
ock, the amou
nt of
sprin
g
co
mpre
ssion of the c
entrifug
a
l bl
oc
k, on the spri
n
g
stiffness of the centrifu
ga
l block, an
d obt
ai
n
s
their spec
ific in
fluenc
e relati
on
ship.
Ke
y
w
ords
:
elev
ator over-
s
pee
d gov
ern
o
r,
centrifuga
l
block, sprin
g
sti
ffness, str
u
ctural parameter
simulation
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. O
v
er
v
i
e
w
Elevators a
r
e
an indi
spe
n
sable tra
n
sport for
high-ri
se
building
s
, an
d ca
rry thou
sand
s of
passe
nge
rs u
p
an
d d
o
wn
every d
a
y. T
herefo
r
e,
sa
f
e
ty is
of pri
m
ary
con
c
e
r
n [
1
-3]. All m
o
d
e
rn
elevators are
provided wit
h
a perfe
ct safety protecti
on system, i
n
clu
d
ing a serie
s
of elect
r
ical
s
a
fety devic
es
and
mec
h
anic
al safety devic
e
s
.
In
the
safety p
r
ote
c
tion sy
stem
o
f
an el
evator,
it
is
the over-speed govern
o
r,
safety
ge
ar a
nd b
u
ffer that provid
e
the final
com
p
reh
e
n
s
ive
safety
and
se
cu
rity control. Th
at i
s
to
say, if fo
r any
rea
s
on
the
car is in
a
dang
ero
u
s sit
uation
of over-
spe
ed o
r
eve
n
falling du
ri
ng the op
era
t
ion of an
ele
v
ator and all
other
safety device
s
a
r
e
not
functioni
ng, the over-spee
d governor,
safety gear a
n
d
buffer will work
to stop the
ca
r,
so a
s
to
avoid any da
mage to pa
ssenge
rs o
r
the
elevator [4-6]
.
The
cent
rifu
gal ove
r
-sp
e
ed g
o
vern
or is
a ve
ry i
m
porta
nt safety device
i
n
mod
e
rn
elevators [7-12], while th
e stiff
ness of
the ce
ntrifug
a
l blo
ck
sp
ri
ng play
s a
critical
role i
n
the
perfo
rman
ce
of the over-sp
eed
gove
r
no
r. Re
se
arch o
n
this i
s
rarely fo
u
nd in lite
r
at
ure.
Therefore, by
setting up a mathemati
c
al
model
and
furthe
r
carryin
g
out
simul
a
tion an
alysi
s
, this
pape
r plan
s to rese
arch
on the syste
m
atic
param
eters
whi
c
h have gre
a
t influen
ce on
the
stiffness of the centrifu
gal
block sprin
g
,
and find out their influe
nce
relation
ship.
2. Sy
stem Structur
e and
Mecha
n
ical Analy
s
is
The structu
r
a
l
of centrifug
a
l over-spe
e
d
govern
o
r is shown in Figure 1 an
d F
i
gure 2.
The rop
e
she
a
ve and bra
k
e disc of the over-sp
eed g
o
verno
r
ca
n rotate on the ratchet sh
aft
of
the over-spe
ed govern
o
r indep
ende
ntly
. On the
r
ope
sheave of th
e over-spee
d
governor fixed
two ce
ntrifug
a
l blocks
whi
c
h can rotate
aroun
d t
heir resp
ective p
i
ns.
They are
symmetricall
y
distrib
u
ted an
d con
necte
d to each othe
r via conne
cting rod.
The
spring of the centrifugal bl
o
c
k
tensio
ns th
e
centrifu
gal
block to
ward
s the
c
ente
r
,
and the
size of the sp
ri
ng force
can
be
adju
s
ted with nut.
The outer edge of the centrifu
gal
bl
ock is provid
e
d
with a press cla
w
and pa
wl
mech
ani
sm.
Angled teeth are evenly distribute
d
in t
he interior ci
rcular su
rfa
c
e of the brake
disc
(rat
c
het
). Wh
en the ove
r
-speed
govern
o
r
she
a
ve is
st
ationa
ry an
d the
centrifu
gal blo
c
k is kept
tensio
ned to
wards th
e ce
nter
, a certai
n gap w
ill b
e
maintained
betwe
en the
centrifu
gal bl
ock
and the
she
a
ve. Whe
n
t
he car
ru
ns,
the over-sp
eed g
o
vern
o
r
sheave i
s
driven
by the
con
n
e
c
ting
ro
d and
over-speed
gove
r
n
o
r rope
to rotate, and th
e
centrifu
gal fo
rce
a
c
ted o
n
the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign of Structural Para
m
e
ters of Ce
ntrif
ugal Ele
v
ator O
v
ersp
e
ed Go
verno
r
s (Yunpu Son
g
)
2481
centrifu
gal bl
ock enable
s
the centrifu
gal
block
to swi
ng outwa
rd
s arou
nd the pin and maintai
n
s
balan
ce
d with the spri
ng
force.
Th
e circumfe
rentia
l
gap of the centrifugal
bl
o
ck of is redu
ced.
The faste
r
th
e sp
eed of t
he over-spee
d governor
sheave is, the
bigge
r the centrifugal fo
rce
acted on the centrifu
gal bl
ock and the smaller t
he ci
rcumfe
rential
gap. Whe
n
the car re
ache
s a
certai
n over-speed, the ce
nt
rifugal blo
c
k swing
s
out
wards, re
su
lti
ng in the rota
tion of the press
cla
w
.
The
pa
wl is
rel
e
a
s
e
d
, and the
p
a
wl i
s
en
gag
ed with th
e a
ngled te
eth o
n
the b
r
a
k
e
disc,
and the ca
r is forced to stop. By adjusting the
pre-comp
re
ssion
amount of the spri
ng of the
centrifu
gal bl
ock, the actio
n
spe
ed of
the
over-sp
eed govern
o
r can be
adju
s
ted.
Figure 1. Insi
de Struct
u
r
e
of the Over-speed
Govern
or
Figure 2. Sch
e
matic Di
ag
ram of the Position of
the Ratchet
2
Figure 3. Analytical Diag
ra
m of the
Force Acted on th
e Centrifu
gal
Block
Figure 3 sh
o
w
s the fo
rce acted o
n
the
cent
rifu
gal bl
ock. In this di
agra
m
, the angle
α
is
formed
by th
e line
DQ
co
nne
cting the
cente
r
of
gr
a
v
ity of the ce
ntrifugal
blo
c
k a
nd the
cen
t
er of
the rotating
shaft of the centrifugal
blo
ck, an
d t
he a
r
m of force o
f
the centrifu
gal force of the
centrifu
gal fo
rce
to the
poi
nt Q. When
α
i
s
0
°, the
arm
of force
of the
cent
rifugal fo
rce to
the
rotating shaft of the centrifu
gal blo
ck i
s
lo
nge
st,
and the movement i
s
mo
st sen
s
itive. Therefo
r
e
,
the initial val
ue of
α
is ta
ken a
s
0
° in t
he research,
i.e. F2 is
perpendi
cula
r to
DQ. Befo
re t
he
elevator
rea
c
hes th
e sp
e
ed limit, this geomet
ric
relation
ship
remain
s un
ch
ange
d. On
ce
th
e
spe
ed excee
d
s the limit, the ce
ntrifug
a
l
block turn
s a
very small a
ngle
θ
to trig
ger the a
c
tio
n
of
the pawl. The
r
e is the follo
wing
stru
ctural relation
shi
p
:
b
x
a
1
(1)
1
、
centr
ifugal bloc
k spr
i
ng
2
、
Pawl spr
i
ngs
3
、
Pawl
4
、
Press claw
5
、
T
o
r
s
ional spr
i
ng
6
、
Adjusting par
t
7
、
Connectin
g r
o
d
8
、
Rope sheave
9
、
Centr
i
fugal blo
c
k
Ratchet wheel
(
b
r
a
ke disc)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 4, April 2014: 2480 – 2
488
2482
)
(
r
R
(2)
s
j
R
V
R
V
0
(3)
Whe
r
e: a
-
Di
stance f
r
om th
e ce
nter
of gravity of the centrifugal
bl
o
ck to
the rotation center, m;
b-
Dista
n
ce fro
m
the
rotatio
n
cente
r
of th
e centrifu
gal
block to
the
p
o
int where th
e sprin
g
i
s
acting
on the ce
ntrifugal blo
c
k, m;
θ
-Angle the ce
ntrifuga
l block ha
s
turne
d
wh
en the actio
n
of the
centrifu
gal bl
ock is trig
ge
red, rad;
δ
-Ra
d
ian(displa
ce
ment) the
cen
t
ri
fugal blo
c
k has tu
rne
d
when
the action of
the cent
rifug
a
l block
is tri
ggered, m; r-i
nitial distan
ce
from the ce
nter of gravit
y o
f
the cent
rifuga
l block to the
rotation
cent
er of the rop
e
she
a
ve, m; x
1
-amount of
comp
re
ssi
on
of
the centrifu
ga
l block
spri
ng
K
1,
m; R-turni
ng radi
us of the cent
ri
fugal
block
whe
n
the action of the
centrifu
gal
bl
ock i
s
trig
ge
red, m;
-A
ngul
ar frequ
en
cy
of the
rotati
on
of the
ro
pe
s
heave, rad/s;
V
0
-
Linea
r velo
city of the cent
er of grav
ity of the centrifugal blo
ck,
m/s; R
s
-Radi
us of the ro
pe
she
a
ve, m; V-Line
ar velo
ci
ty of
t
he over-spe
ed gove
r
n
o
r sh
eave, m/s.
2.1. Centrifu
gal Force Ac
ted on th
e Centrifugal Bl
ock
);
(
2
1
1
r
m
F
j
)
(
2
2
2
r
m
F
j
(4)
Whe
r
e: F
1
,F
2
-Centrifu
gal
force a
c
ted
on tw
o
ce
ntrifugal bl
ocks,
N; m
1
,m
2
-ma
ss of
two
centrifu
gal bl
ocks, Kg.
2.2. Torque
Equilibrium
Equation of Centrifugal Blocks
g
gR
m
a
F
c
N
2
2
2
(5)
d
F
b
x
K
gR
m
c
N
a
F
g
0
1
1
1
1
1
(6)
Whe
r
e: N1, N2-Fo
r
ce a
c
te
d by the conn
ecting
rod
on
two centrifug
a
l blo
c
ks, N;
c-Dista
n
ce from
the rotation cente
r
of the centrifug
a
l block to
the point whe
r
e
the centrifu
g
a
l block and
the
con
n
e
c
ting ro
d is conn
ect
ed, m; Rg-A
rm of force
of
the gravity of the centrifu
gal blo
ck to t
h
e
rotation
ce
nte
r
of th
e
centri
fugal bl
ock,
m; K1-S
tiffness
of
the
cent
rifugal blo
c
k spri
ng, N/m; F0-
Force exe
r
te
d by the pre
s
s cla
w
on th
e
centrifu
gal bl
ock, N; d - Arm of force of
F0 relative to
th
e
rotation cente
r
of the centrif
ugal blo
c
k, m.
Since
N2
eq
uals to
N1 in
a two-fo
rce
rod, F
o
rm
ula
4, 5
and
6
can
be
comb
ined
and
simplified into:
d
F
b
x
K
gR
m
m
a
r
m
m
g
j
0
1
1
2
1
2
2
1
)
(
)
(
)
(
(7)
2.3. Torque Equilibri
um Equation of Pawls
R
at
che
t
Figure 4. Analysis Di
agram
of Force
s
l Acted on the P
a
w
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign of Structural Para
m
e
ters of Ce
ntrif
ugal Ele
v
ator O
v
ersp
e
ed Go
verno
r
s (Yunpu Son
g
)
2483
As
sho
w
n
in
Figure 4,
the
pa
wl i
s
su
bj
ect to
a f
r
ont
al p
r
e
s
sure
F
T
from
the press cla
w
and
a fo
rce
exerted
by th
e pa
wl
sp
rin
g
. Since
th
e
gravity and
t
he
rotation
of
the ove
r
-sp
e
e
d
govern
o
r she
a
ve have
little influe
nce in
the fo
rce
a
n
a
lysis, th
ey a
r
e
negle
c
ted
i
n
the
analy
s
i
s
o
n
the dynamic t
o
rqu
e
equili
brium.
e
x
K
l
F
T
2
2
(8)
Whe
r
e: F
T
-F
o
r
ce
exerted
b
y
the press
claw on
th
e p
a
wl, N; l-Arm
of force of F
T
relative to th
e
rotation cente
r
of the pawl, m; K
2
-Stiffness of the pawl
spri
ng, N/m; X
2
- Amount of pre-ten
s
io
ni
ng
of the pa
wl
spring, m;
e-Arm of force of t
he pa
wl
sp
rin
g
force
relativ
e
to the
rotati
on cente
r
of t
h
e
pawl, m.
The frictio
n
b
e
twee
n the p
r
ess
claw
an
d the pawl i
s
sho
w
n in th
e followin
g
formul
a
.
Whe
n
the structural si
ze
s and re
l
e
vant para
m
eters a
r
e dete
r
mine
d, this force is co
nsta
nt.
e
l
x
K
t
F
f
2
2
(9)
2.4. Torque
Equilibrium
Equation o
f
the Press Claw
Figure 5. Analysis Di
agram
of
Force
s
Acted on the Press Cla
w
As
sho
w
n
in
Figure 5,
und
er th
e a
c
tion
of the
tor
t
io
n
a
l s
p
r
i
ng
, th
e
pr
e
ss c
l
a
w
ac
ts
on
the
centrifu
gal bl
ock on on
e h
and, and a
c
ts on the pawl
on the other
hand.
n
F
T
fh
0
(10)
Whe
r
e: h
-
Arm of force
o
f
the friction
betwe
en
the
pre
ss
cla
w
a
nd the pa
wl
relative to the
rotation
cente
r
of the press claw, m; T
-
pre
-
tight
eni
ng
force
of the tortional
sp
rin
g
, N; F0-F
orce
exerted by the centrifu
gal force on
the p
r
ess cl
aw, N;
n-Arm of force
of F0 relative to the rotation
cente
r
of the pre
ss
cla
w
, m.
2.5.
S
y
stem Equilibrium Equation
Substitute ab
ove formula i
n
to Form
ula 7 to
obtain the system e
q
u
ilibrium e
quat
ion:
)
(
)
(
0
)
(
2
2
1
1
2
1
2
2
1
n
T
h
en
l
x
K
b
x
K
gR
m
m
a
r
m
m
g
V
(11)
Whe
r
e: is the
imbalan
ced
mass. In ca
se , the above formula
can b
e
simplified in
to:
d
n
T
h
en
l
x
K
b
x
K
a
r
m
m
V
)
(
0
)
(
2
2
1
1
2
1
2
(12)
Centrifug
a
l b
l
oc
k
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 4, April 2014: 2480 – 2
488
2484
Therefore, th
e cal
c
ulatio
n formul
a for the sti
ffness of the cent
rifuga
l block is a
s
follows:
b
x
d
n
T
h
en
l
x
K
a
r
m
m
K
V
1
2
2
2
2
1
1
)
(
)
(
(13)
3. Sy
stem Simulation An
aly
s
is
Subs
titute s
i
mulation parameters
: Rs
=0.3
m, a
=
0.15m, b
=
0.
1m, K2=0.1
e3N/m,
m1=m
2=1kg, r=0.17
5m,
e=0.0
5
m,
=
h
=
n=l
=
d
=
0.02m
,
μ
=0.1, T
=
0.
05Nm,
x1
0
.
01m,
θ
=1r
a
d,
δ
=0.0
15m, in
to Formul
a 1
3
, and the
rel
a
tionship bet
wee
n
the stiff
ness of
the centrifugal blo
ck
spri
ng
and
th
e trig
geri
ng
speed
of th
e o
v
ers-pe
ed
go
verno
r
can
be
obtain
ed,
as
sho
w
n
in
Fig
u
re
6:
Figure 6. Rel
a
tionship bet
wee
n
t
he Stiffness of the Centrifugal
Blo
ck Sp
ring a
n
d
the Trigge
rin
g
Speed of the
Over-sp
eed
Govern
or
If the stiffness of the centrif
ugal blo
ck
spring i
s
too bi
g, a very larg
e trigge
ring
speed of
the over-sp
e
e
d
govern
o
r
sh
eave will be n
eede
d to tr
igg
e
r the centrifu
gal blo
ck a
n
d
further b
r
a
k
e
and
stop. If the stiffne
s
s i
s
too
small, t
he spri
ng i
s
easy to vib
r
a
t
e unde
r the
action
of imp
a
ct,
and the co
ntrol beco
m
e
s
less stable. In
the following,
a simulation
analysi
s
will b
e
carried o
u
t o
n
the influen
ce
of variou
s rel
e
vant param
eters
on t
he
stiffness of the cent
ri
fugal block
sprin
g
,
so
as to identify main co
ntrol f
a
ctors.
3.1. Influenc
e of the Fric
tion Coefficie
n
t u bet
w
e
e
n
the Press
Cla
w
and th
e Pa
w
l
Cha
nge the friction coeffici
ent
μ
from 0.08 to 0.2 by an incr
ement o
f
0.02, and perform a
simulatio
n
an
alysis
of the friction
co
effici
ent
μ
on the
stiffness of th
e ce
ntrifugal
block, a
s
sh
o
w
n
in Figure 7.
Figure 7. Influence of the Friction
Coefficient
μ
on the Stiffness of the Centrifu
gal
Block Sp
ring
S
pee
d
(
m
/
s
)
S
pee
d
(
m
/
s
)
Stiff
ness
(
n
/
m
)
Stiff
ness
(
n
/
m
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign of Structural Para
m
e
ters of Ce
ntrif
ugal Ele
v
ator O
v
ersp
e
ed Go
verno
r
s (Yunpu Son
g
)
2485
As is
se
en from the
simul
a
tion result
s,
the
frictio
n
coefficient b
e
twee
n the p
r
e
ss
cla
w
and th
e p
a
wl
ha
s little infl
uen
ce
on th
e
stiffness of t
he
cent
rifugal
blo
c
k spri
ng,
whi
c
h
can
b
e
negle
c
ted.
3.2. Influenc
e of the
Cen
t
rifugal Bloc
k
Mass m
Cha
nge
the
centrifugal
blo
c
k ma
ss from
0.6k
g to
1.4
k
g
by an
increment of
0.2
k
g, a
nd
perfo
rm a si
mulation
anal
ysis of
the
centrifugal
blo
c
k ma
ss o
n
t
he
stiffness
of the
ce
ntrifuga
l
block, as
sho
w
n in Figu
re
8.
Figure 8. Influence of the Centri
fugal Blo
ck M
a
ss m o
n
the Sti
ffness of the Cent
rifugal Block
Spring
As is seen
from th
e si
m
u
lation
re
sult
s,
the
cent
rifugal bl
ock
mass h
a
s si
gnifica
nt
influen
ce o
n
the stiffne
s
s o
f
the ce
ntrifu
gal blo
c
k spri
ng. The
bigg
er the
mass i
s
, the la
rge
r
t
he
stiffness of the centrifu
gal block sp
rin
g
is req
u
ire
d
un
der t
he sa
me
linear velocit
y
of
the over-
spe
ed gove
r
n
o
r sh
eave.
3.3. Influenc
e of the
Cen
t
rifugal Bloc
k
Spring Compression
Am
ount x1
Cha
nge th
e centrifugal
blo
ck
sp
ring
co
mpre
ss
ion
a
m
ount x1 fro
m
0.01m to
0
.
05m by an
increme
n
t of 0.01m, and p
e
rform
a simu
lation analy
s
is, as sho
w
n i
n
Figure 9.
As is seen from the sim
u
l
a
tion re
sult
s, t
he cent
rifuga
l block sprin
g
comp
re
ssi
on
amount
x1 is
also a
n
i
m
porta
nt fact
or influ
e
n
c
ing
the va
lu
e
ta
king
of
th
e spri
ng stiffness. The small
e
r
t
he
comp
re
ssion
amount
is, th
e large
r
the
stiffness
of
the
ce
ntrifugal
bl
ock
sp
ring
is
requi
re
d u
n
d
e
r
the s
a
me linear veloc
i
ty of t
he over-sp
e
e
d
govern
o
r
sh
eave.
Figure 9. Influence of the Spring
Com
p
re
ssi
on Amou
nt x
1
on the Stiffness of
the Centrifugal
Bloc
k
Spring
Sp
ee
d
(
m
/
s
)
S
pee
d
(
m
/
s
)
S
t
iff
ness
(
n
/
m
)
S
t
iff
ness
(
n
/
m
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 4, April 2014: 2480 – 2
488
2486
3.4. Centrifu
gal Block Str
u
ctur
al Size b
Cha
nge th
e
centrifugal
blo
c
k structu
r
al
size
b f
r
om
0
.
06m to 0.1
4
m
by an
increment of
0.02m, and p
e
rform
a simu
lation analy
s
is, as sho
w
n i
n
Figure 10.
Figure 10. Influen
ce of the Structu
r
al Size b
on the Stiffness of the Centrifu
gal Bl
ock Sprin
g
As is seen f
r
om the si
m
u
lation re
sult
s, t
he cent
rifugal blo
c
k st
ructu
r
al
size
b has
signifi
cant i
n
fluen
ce
on th
e
stiffness of th
e centri
fug
a
l block sp
ring. The small
e
r
t
he size
b
is,
t
h
e
large
r
the stiffness of the cent
rifu
gal bl
ock sp
ring i
s
requi
re
d und
er the sam
e
linear velo
city of
the over-sp
e
e
d
govern
o
r
sh
eave.
3.5. Centrifu
gal Block Str
u
ctur
al Size a
Cha
nge the
centrifu
gal bl
ock stru
ctu
r
al
size
a from
0.14m to 0.2m by an increment of
0.02m, and p
e
rform
a simu
lation analy
s
is, as sho
w
n i
n
Figure 11.
Figure 11. Influen
ce of the Structu
r
al Size a
on the Stiffness of the
Centrifu
gal Bl
ock Sprin
g
As is seen f
r
om the si
m
u
lation re
sult
s, t
he cent
rifugal blo
c
k st
ructu
r
al
size
a has
signifi
cant i
n
fluen
ce
on th
e
stiffness of t
he
cent
rifugal
blo
c
k spri
ng.
The
large
r
th
e si
ze
a i
s
, th
e
large
r
the stiffness of the cent
rifu
gal bl
ock sp
ring i
s
requi
re
d und
er the sam
e
linear velo
city of
the over-sp
e
e
d
govern
o
r
sh
eave.
3.6. Press Cl
a
w
S
t
ruc
t
ur
a
l
Size d
Cha
nge th
e
size d from
0.01m to 0.0
3
m
by an
in
cre
m
ent of
0
.
01m, and
p
e
rform
a
simulatio
n
an
alysis o
n
the
influen
ce of the si
ze
d
on the stiffne
ss o
f
the
centrifu
g
a
l block
sp
rin
g
,
as sho
w
n in
Figure 12.
S
pee
d
(
m
/
s
)
S
t
iff
ness
(
n
/
m
)
S
t
iff
ness
(
n
/
m
)
S
pee
d
(
m
/
s
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign of Structural Para
m
e
ters of Ce
ntrif
ugal Ele
v
ator O
v
ersp
e
ed Go
verno
r
s (Yunpu Son
g
)
2487
Figure 12. Influen
ce of the Structu
r
al Size d on
the Stiffness of the
Centrifu
gal Bl
ock Sprin
g
As is seen f
r
om the
simul
a
tion results,
this
st
ru
ctural
si
ze i
s
a
pa
rameter of tra
n
slatio
n
influen
ce, an
d has n
o
sig
n
i
ficant influen
ce on t
he
stiffness of the cent
rifugal
bl
o
ck sp
ring.
3.7. Pa
w
l
Str
u
ctur
al Size e
Cha
nge th
e
size e from
0.05m to 0.0
3
m
by an
in
cre
m
ent of
0
.
01m, and
p
e
rform
a
simulatio
n
an
alysis o
n
the
influen
ce of the si
ze
e
on the stiffne
ss o
f
the
centrifu
g
a
l block
sp
rin
g
,
as sho
w
n in
Figure 13.
Figure 13. Influen
ce of the Structu
r
al Size e
on
the Stiffness
of Centrifug
a
l
Block Sp
ring
Figure 14. Influen
ce of the Structu
r
al Size n
on
the Stiffness
of the Centrif
ugal Block Sp
ring
As is
se
en fro
m
the si
mulat
i
on results, th
is
st
ru
ctural
si
ze h
a
s no
sig
n
ificant influ
e
n
ce
on
the stiffness of the c
entrifu
gal blo
ck
spri
ng.
3.8. Press Cl
a
w
S
t
ruc
t
ur
a
l
Size n
Cha
nge th
e
size n from
0.01m to 0.0
4
m
by an
in
cre
m
ent of
0
.
01m, and
p
e
rform
a
simulatio
n
an
alysis o
n
the
influen
ce of the si
ze
n
on the stiffne
ss o
f
the
centrifu
g
a
l block
sp
rin
g
,
as sho
w
n in
Figure 14.
As is seen f
r
om the
simul
a
tion results,
this
stru
ctural
si
ze ha
s si
gnifica
nt influ
ence on
the stiffness of the centrifu
gal blo
ck
spri
ng wh
en it is less than 0.02
m.
4. Conclusio
n
The
stiffness of the
cent
rifugal
blo
c
k sp
ri
n
g
h
a
s
a very
sig
n
ificant i
m
pa
ct
on
the
perfo
rman
ce
of the over-speed gove
r
n
o
r. If the selected
stiffness
is too larg
e, a very large
trigge
ring
sp
eed
will
be
n
eede
d by
the
over-spee
d
govern
o
r she
a
ve to tri
gge
r the
ce
ntrifug
a
l
S
pee
d
(
m
/
s
)
S
pee
d
(
m
/
s
)
S
t
iff
ness
(
n
/
m
)
S
t
iff
ness
(
n
/
m
)
S
pee
d
(
m
/
s
)
S
t
iff
ness
(
n
/
m
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 4, April 2014: 2480 – 2
488
2488
block a
nd fu
rther
bra
k
e
an
d stop
the el
e
v
ator car.
I
f
t
he sel
e
ct
e
d
st
if
f
nes
s
is too
small, the spri
ng
is ea
sy to vibrate und
er th
e
action
of imp
a
ct,
thus ma
king the
cont
ro
l
of the over-speed
governo
r
less sta
b
le.
By means
of simulatio
n
ba
sed
on a
m
a
thematical mo
del, this p
a
p
e
r find
s that the
followin
g
stru
ctural p
a
ram
e
ters: m-
cen
t
rifugal bl
o
ck
mass; a-di
sta
n
ce fro
m
the cente
r
of gra
v
ity
of the centrif
ugal blo
ck to
the rotation center; n-
arm
of force exert
ed by
the ce
ntrifugal blo
c
k on
the pre
s
s cl
a
w
rel
a
tive to the rotation
cente
r
of
the
pre
ss
cla
w
;
b-di
stan
ce from the rotation
cente
r
of the
ce
ntrifug
a
l
block to
the
point
wh
ere
the
ce
ntrifu
gal bl
ock
sp
ring a
c
ts on
the
centrifu
gal bl
ock; and x1
-
amount of
co
mpre
ssion
of the ce
ntrifug
a
l blo
ck
sp
rin
g
, will influen
ce
the sele
ction
of the stiffness of
the centrifugal
blo
ck
sp
ring. Th
e larg
er m
-
centrifu
gal bl
ock
mass; a
-
di
sta
n
ce
from
the
cente
r
of g
r
a
v
ity of
the ce
ntrifugal
blo
c
k to
the
rotati
on
cente
r
or n
-
arm
of force
exerted
by th
e centrifug
a
l
block
on th
e pre
s
s claw
re
lative
to
the rotation cente
r
of
the pre
s
s cl
a
w
is, the l
a
rg
er the
stiffness of the
cent
ri
fugal blo
c
k spring i
s
. Th
e l
a
rge
r
b
-
di
sta
n
ce
from the
rota
tion ce
nter of
the ce
ntrifug
a
l blo
ck to th
e point
whe
r
e the centrifu
gal blo
c
k spri
ng
acts o
n
the centrifugal bl
o
ck o
r
x1- amo
unt of
comp
ression of the centrifu
gal bl
ock sp
ring i
s
, the
smalle
r the st
iffness of the
cent
rifu
gal bl
ock sp
ring i
s
. In spec
ifi
c
d
e
sig
n
, above
para
m
eters can
be a
d
ju
sted
according
to
need
to
obtai
n the
sti
ffne
s
s, which m
a
tche
s th
e
sp
e
c
ified t
r
igg
e
ri
ng
spe
ed of the over-sp
eed g
o
verno
r
shea
ve.
Referen
ces
[1]
Che
n
Jias
hen
g
.
Structure Prin
ciple, Instal
lati
on
an
d Mai
n
te
nanc
e of Elev
a
t
ors. China M
a
chin
e Press.
201
1; 200-
225.
[2]
Z
hu De
w
e
n, Z
han
g Z
hen
di, Li Da
w
e
i. Deta
iled Grap
hic D
e
monstrati
on o
f
Elevator Installati
on. Ch
in
a
Electric Po
w
e
r Press. 2011; 1.
[3]
W
e
i Kong
pin
g
, Z
hu Ron
g
. Ele
v
ator T
e
chnolo
g
y
. C
hemic
al Industr
y Press. 200
6;
7.
[4]
Z
hu C
han
gmin
g. Safet
y
R
u
les
for the
Co
nstruction
an
d Inst
allati
on
of El
ect
r
ic Lifts. Stan
d
a
rds Pr
ess o
f
Chin
a. 20
07; 1
1
.
[5]
Bo Yon
gga
ng.
Method
and Pr
ecauti
ons for S
i
te Veri
ficati
on
of Over-spee
d Governors. Ch
i
na Elev
ator.
200
9; 13: 51-5
2
.
[6]
Standar
diz
a
tio
n
Admi
nistrati
o
n
of
Chi
na. S
a
fet
y
R
u
l
e
s for
the C
onstructi
on
and
Instal
la
tion
of Lifts-
GB7588-
20
03
Standar
d. Stan
dards Pr
ess of
Chin
a. 20
03; 6.
[7]
He Demi
ng,
Xi
ao W
e
ip
ing. El
evat
or Structur
e and Pri
n
ci
ple
.
Sun Ya
t-sen Univers
i
t
y
Pr
es
s. 2009; 8.
[8]
Yong
Hu
ifen
g,
Jian
W
u
zha
ng,
Yan
e
Z
h
ao.
Mode
lin
g
and
Rob
u
st Co
ntrol
of H
o
rizo
ntal
Vibrati
ons
f
o
r
High-s
p
e
ed El
evator.
Journ
a
l
of Vibration
an
d Contro
l.
200
9; 15(9): 13
75-
139
6.
[9]
Jian
g Jin
g
, Z
hang
Xueso
ng.
Variab
le F
r
eq
uenc
y Sp
ee
d-r
egu
latio
n
S
y
stem of Elevato
r
Using PL
C
T
e
chnolog
y. 2
011
3
rd Intern
a
t
iona
l Conf
eren
ce on Adva
nce
d
Comp
uter Co
ntrol (ICACC 2
011).
[10]
Den
g
Ji
ng
xin,
Guo
Xia
odi
n
g
, Ch
en
Xia
o
k
e
, Ch
en
g Z
h
e
ngme
i
. Simu
la
tion
an
d A
ppl
i
c
ation
o
n
th
e
Adaptiv
e F
u
zz
y
PI Co
ntrol
in
Lo
w
-
Ris
e
E
l
e
v
ator Sp
ee
d R
egu
latio
n
S
y
st
em.
Ap
pl
i
e
d
Me
ch
an
i
cs
an
d
Materials.
2
0
1
2
; 103: 55
0-55
5.
[11]
Che
n
Cha
o
, H
an Yan
h
u
i
, Ha
n Mei. Lo
w
e
r C
r
oss-
Brace
d
T
r
uck and S
w
i
n
g Motion T
r
uck Have Differe
nt
Effect on F
r
ei
ght C
a
r D
y
n
a
m
ics Perform
ance.
T
E
LKO
M
NIKA Indo
n
e
sia
n
Jo
urn
a
l
of El
ectrica
l
Engi
neer
in
g.
2013; 11: 1
278 -
128
3.
[12]
Z
hang Ch
uan
hui,
So
ng Xia
odo
ng.
T
he Self-Ada
ptive F
u
zz
y PID Co
n
t
roller i
n
Actu
ator Simu
late
d
Loa
din
g
S
y
ste
m
.
T
E
LKOMNIKA Indon
esia
n Journ
a
l of Elec
trical Eng
i
ne
eri
n
g
. 201
3; 11: 2
619 -2
62
5.
Evaluation Warning : The document was created with Spire.PDF for Python.