TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 82
0
0
~ 820
4
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.49
59
8200
Re
cei
v
ed Ma
y 23, 201
4; Revi
sed O
c
tob
e
r 15, 201
4; Acce
pted No
vem
ber 7, 20
14
CNC Pa
rametric Optimization for Exercise Equipment
Parts Surface Roughness Using TRIZ
Han
-
Ch
en H
u
ang
1
, Cheng-I Hou
2
, Tian-Sy
ung Lan
3
*
1
Chun
g Hua U
n
iversit
y
, T
a
i
w
an
2,3
Yu Da Unive
r
sit
y
of Scie
nce
and T
e
chnol
o
g
y
, T
a
i
w
a
n
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: tslan@
yd
u.e
du.t
w
A
b
st
r
a
ct
Product qu
ality
is
th
e most i
m
p
o
rtant issue
in
the
Co
mpu
t
er Nu
merica
l
Contro
l (C
NC)
proc
ess.
Henc
e, w
i
th exercise e
qui
p
m
e
n
t parts Surface Rou
g
h
ne
ss a
s
the target, this study selecte
d
Spin
dle s
pee
d
,
Cutting depth,
F
eeding,
and
Tool r
unoff, as
cont
rol parameters in CNC
paramet
ric optim
i
z
a
t
i
on of tar
g
et
qua
lity. By us
ing t
he T
h
eor
y of Inve
ntive
Probl
e
m
S
o
l
v
ing (T
RIZ
)
to
defi
ne th
e C
ause
an
d Effec
t
re
l
a
tio
n
s
hi
p
a
n
d
co
n
f
li
cti
n
g
p
o
i
n
ts, th
i
s
stu
d
y
q
u
i
ckl
y i
d
e
n
t
i
f
ie
d
an
op
tim
a
l
so
l
u
tio
n
,
a
c
co
rd
i
n
g
to
TR
IZ, and
deter
mi
ned
fa
ctor rel
e
vanc
e
by c
u
tting
c
ontrol
par
a
m
et
ers. By the
4
0
Inve
ntive
Pr
incip
l
es
of T
R
IZ
corresp
ond
in
g
to Contra
dictio
n Matrix, w
e
obtai
ne
d the
Surface R
o
u
g
hness
opti
m
i
z
ation strate
gy. T
h
e
empiric
a
l rese
arch results su
ggest that Surface Ro
ugh
nes
s can actual
ly be i
m
prov
ed u
nder the o
p
ti
m
a
l
para
m
eter co
mbin
ation. T
he e
ffectiveness a
n
d
pr
actica
lity of the propos
ed
meth
od ar
e ver
i
fied.
Ke
y
w
ords
: T
R
IZ
, surface roughn
ess, compu
t
er nu
meric
a
l c
ontrol
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The tu
rning
p
r
ocess i
s
a widely used
cu
tting pro
c
e
s
si
ng meth
od. I
n
turni
ng p
r
o
c
e
ssi
ng,
in addition to
the dimensi
o
ns an
d sh
ap
e of the
work piece, the surfac
e ro
ugh
ness of the work
piece
sho
u
ld
also
be
con
s
idere
d
[1]. Sin
c
e tu
rnin
g i
s
cutting
by a
single-point
cu
tting tool, it can
easily result in tool marks on the su
rf
ace [2], and
surfa
c
e
sm
oothne
ss level can
affect
the
appe
ara
n
ce
of the wo
rk p
i
ece [3], coo
r
dination
fu
nct
i
onality, and f
a
tigue
servi
c
e life. The
si
z
e
and n
u
mb
er
of tool ma
rks ca
n cau
s
e
Surface
Rou
ghne
ss, whi
c
h furthe
r affe
cts
su
bsequ
e
n
t
pro
c
e
ssi
ng a
nd the m
e
ch
anical prope
rt
ies of the
wo
rk
piec
e [4]. Major fac
t
ors
affec
t
ing Surfac
e
Rou
ghn
ess i
n
clu
de tool
sha
pe, tool l
i
fe, cutti
ng d
r
ive, vibratio
ns, feedi
ng
spe
ed, mate
rial
prop
ertie
s
, spindle
rotatio
n
error, a
n
d
cutting chat
ter [5]. In the pro
c
e
s
s, 4
cutting fact
ors
(Spindl
e spee
d, Cutting
de
pth, Feedi
ng,
and
Tool
ru
n
o
ff) are often
use
d
a
s
the
control fa
cto
r
s
of
Surface Ro
ug
hne
ss.
Gha
s
san et al. [6] used two differe
nt met
hod
s to measure Surface Roug
hn
ess. Two
light refle
c
tio
n
model
s, na
mely, the Intensit
y-T
opo
graphy Compat
ible (IT
C
) m
odel a
nd Li
g
h
t-
Diffuse
mod
e
l
we
re a
dopt
ed an
d a
ppli
ed to inte
rp
re
t acq
u
ire
d
vision data
an
d
enabl
e suitab
le
comp
utation
of ro
ughn
ess pa
ramete
rs.
Roq
ue
et al. [
7
] found
the
wea
k
point
s
of CNC from
the
perspe
c
tive
of CAD/CAM
,
namely, the lack
of an
advanced
mathemati
c
al
algorithm.
The
addition of a
d
vanced alg
o
rithm
s
ca
n signifi
cant
ly redu
ce the computation o
f
the machin
e
algorith
m
. This study ap
pli
ed TRIZ [8] to devel
op
CNC
cutting te
chn
o
logy. TRIZ is put forward
by G.S. Altshuler a
nd othe
r re
sea
r
che
r
s of Ru
ssia, a
nd ba
sed o
n
analysi
s
of 2,500,00
0 wo
rl
d-
wide patent
s.
G.S.
Altshull
e
r
h
a
s dra
w
n three axio
ms,
whi
c
h
con
s
titute the
scie
n
tific ba
ckgrou
nd
for the Clas
s
i
c
TRIZ [8].
At prese
n
t, there a
r
e ma
ny indust
r
ie
s ap
plying TRIZ.
For exam
ple,
Samsun
g an
d LG of
South Kore
a use the T
R
IZ
method to i
m
prove thei
r
prod
uct
s
an
d
redu
ce
co
sts. With Surfa
c
e
Rou
ghn
ess a
s
the re
se
arch subj
ect, this study in
trod
uce
d
TRIZ in
the CNC pro
c
e
ss to de
sig
n
Turni
ng Pa
ra
meters. By u
s
ing
the
Con
t
radictio
n M
a
trix [9], this
study d
e
term
ined th
e cutting
factors (Spin
d
le spe
ed, Cutting
de
pth, and
F
eedi
ng
and T
ool
ru
n
o
ff) and
Surf
ace
Roug
hne
ss
relation
shi
p
, and e
s
tabli
s
h
ed quality ch
ara
c
teri
st
ic a
nalysi
s
of Su
rface
Ro
ugh
ness. Using t
he
Fuzzy Lin
gui
stic m
e
thod,
without exp
e
rimental eq
uip
m
ent or
mate
rials, thi
s
stu
d
y fuzzifie
d
the
target setting
rule
s to sav
e
experim
ent
al ti
me and
costs to
comp
ute and impl
ement num
erical
pro
c
e
ssi
ng of
the rel
a
tionships
between
turning
pa
ra
meters an
d target
s. The
rese
arch findi
ng
s
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
CNC Param
e
tric Optim
i
zati
on for Exe
r
cise Equipm
ent Parts Surfa
c
e
…
(Ha
n
-Ch
e
n
Hua
ng)
8201
can b
e
a refe
ren
c
e for the
sub
s
e
que
nt surface ro
ugh
ness de
sig
n
.
2. Qualit
y
Discussio
n
2.1. CNC Tur
ning Qualit
y
In the m
easurem
ent of
CNC
Com
p
u
t
er
Nu
me
rica
l Co
ntrol tu
rning
quality, Surfa
c
e
Rou
ghn
ess i
s
on
e of the
most imp
o
rt
ant items.
T
h
is
study sel
e
cted
“Spin
d
l
e
sp
eed,
Cut
t
in
g
depth, Fe
edi
ng, and
Tool
run
o
ff” a
s
th
e co
ntrol fa
ct
ors [10] to a
nalyze th
e ef
fects of va
rio
u
s
cutting facto
r
s on Surfa
c
e
Rou
ghn
ess q
uality [11].
Surface Ro
u
ghne
ss ca
n
be re
pre
s
e
n
ted by
many
method
s, a
nd the mo
st
comm
on
rep
r
e
s
entatio
n meth
od
s i
n
clu
de th
e
Cente
r
lin
e
averag
e
rou
ghne
ss
(Ra
)
,
Maximum
h
e
ight
roug
hne
ss (Rmax), and
Ten point he
ight of irregu
larities (Rz);
this study ap
plied Ra a
s
the
method to
re
pre
s
ent Su
rfa
c
e
Rou
ghn
ess. Ra is
defin
ed by
cutting
a se
ction
of t
he roug
h curve
of the pro
c
e
ssi
ng
surfa
c
e
for the me
a
s
ureme
n
t le
n
g
th of L. By usin
g the
ce
ntral line
of the
averag
e h
e
ig
hts of the
len
g
th a
s
the X
axis an
d th
e
li
nes vertical t
o
the
cent
ral l
i
ne a
s
the
Y a
x
is,
the roug
hne
ss cu
rve can b
e
rep
r
e
s
ente
d
by y= f( x ).
2.2. TRIZ Th
eor
y
TRIZ (Th
e
o
r
y of Inventive Problem S
o
lving)
is
a term in Russi
an for the th
eory of
inventive pro
b
lem
solving.
The th
eo
ry
wa
s p
r
op
ose
d
by a
Ru
ssi
an n
a
med
Altshulle
r a
nd t
h
e
resea
r
ch g
r
o
up le
d by
hi
m; they u
s
e
d
20
0 tho
u
sand
s p
a
tents of a te
ch
no
logical n
a
ture to
perfo
rm anal
ysis and
stud
y, and found that co
mmo
n
and basi
c
problem
s, and probl
em
s sol
v
ing
techni
que
s, exist in the innovation an
d inventi
on probl
em
s of different field
s
. Hen
c
e, th
ey
prop
osed th
e
sam
e
soluti
on for u
s
e in
pro
b
lem
s
of
different fiel
ds
and
occu
rring i
n
different
times; thus, the model fo
r solving a
probl
em
mig
h
t already e
x
ist. Altshuller analyzed a
nd
summ
ed 39
t
e
ch
nical cont
radi
ctory syst
em cha
r
a
c
te
ri
stics
that are freque
nt
ly en
cou
n
tere
d [1
2],
and a
rra
nge
d
the corre
s
p
o
nding
solving
rule
s into a
matrix in ord
e
r to provide
desi
gne
rs
with a
fas
t
method to find mos
t
fitting s
o
lutions. This
mat
r
ix use
s
a
39x39
techni
cal
system to help fi
nd
the rul
e
s to
solve te
chni
cal co
ntra
dicti
ons, fo
r
a tot
a
l of 126
3 el
ements,
with
numb
e
rs in
the
medium
col
u
mn mea
n
ing
the numb
e
rs
of the co
rrespondi
ng n
e
w
rule
s. Thi
s
is
a wid
e
ly kn
o
w
n
contradi
ction
matrix tab
l
e u
s
ing
te
chni
cal
cont
radi
ction
s
[1
3], whi
c
h
d
e
termin
es the
cha
r
a
c
teri
stics of five p
e
rspe
ctives,
and it
s o
w
n
cha
r
a
c
te
ristic i
s
d
e
termin
ed through
corre
s
p
ond
en
ce to 39 e
ngi
neeri
ng pa
ra
meters. In the cont
radi
ctio
n matrix, first sele
ct and li
st
all
items that n
e
ed to b
e
imp
r
oved. In
the contradi
ction
matrix,
39 ch
ara
c
teri
stics i
n
the verti
c
al
axis
are
the
ch
aracteri
stics to
be
imp
r
ove
d
, whil
e 3
9
cha
r
a
c
teri
stics in
the
ho
ri
zontal
axis
are
cha
r
a
c
teri
stics that are ab
out to deterio
rate;
after ort
hogo
nal ope
ration, the req
u
ired inve
ntive
prin
ciple can be
obtain
ed.
Figure 1. TRI
Z
resea
r
ch p
r
oce
ss
3. Rese
arch
Metho
d
s
3.1. Qualit
y
Char
acteristi
cs
In ord
e
r to
u
nderstan
d th
e focu
s
of q
uality
cha
r
a
c
t
e
risti
cs, th
e
quality ch
ara
c
teri
stics
perfo
rmed
by
two
resea
r
ch
ers [5, 14] o
n
cutting
noi
se
is u
s
e
d
first, then fuzzy
se
mantics [5] a
n
d
experim
ental
data [14, 15] will be further used to defi
ne TRIZ issues; in this arti
cl
e, cutting noi
se
will be studied first.
Questi
o
n
C
ontr
adi
cti
o
n
T
e
c
hni
cal
C
ontr
a
di
cti
o
n
39
Eng
i
neer
i
ng
P
a
ra
me
t
e
rs
40
Inv
enti
v
e
Pr
i
n
ci
pl
es
C
ontr
a
di
cti
o
n
Ma
t
r
ix
40
Inv
e
nti
v
e
Pr
i
n
ci
pl
es
Anal
y
s
i
s
and
Str
a
teg
y
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8200 – 82
04
8202
3.2. TRIZ Process Flo
w
By
following
the
research
sug
g
e
s
tion
s of
We
ng [5]
and
Ch
an [1
5], this
study
used
4
cutting p
a
ra
meters (Spi
n
d
le speed,
Cutting depth,
Feedin
g
, an
d Tool
runoff
)
to analy
z
e
the
quality
chara
c
teri
stics of Surf
ace
Rou
ghne
ss, an
d
used
TRIZ
to dete
r
mine
the
confli
cts of
Surface
Rou
ghne
ss. Th
ro
ugh the
39
Engine
erin
g P
a
ram
e
ters,
4
0
Inventive P
r
inci
ple
s
, an
d
the
Contradi
ction
Matrix, we can o
b
tain a
cutting
strat
egy that can
optimize surface ro
ugh
ne
ss
quality.
3.3. TRIZ of Innov
ation Strategy
First, we con
necte
d the re
lationship
s
of
the four cutting paramete
r
s an
d sel
e
ct
ed
the
Enginee
ring Param
e
ters
b
y
Surface
Ro
ughn
ess in o
r
der to d
e
term
ine the imp
r
o
v
ing Param
e
ters
and worseni
n
g
para
m
eters of Surface Rough
ne
ss.
Th
e step
s of TRIZ are, as foll
ows:
a)
Attempt to determine the
a
ttributes that
cau
s
e
confli
cts from the te
xtual descri
p
tion
of
the pro
b
le
m to be addressed, and
convert
the textual descri
p
tions into an item of
the 39 Engin
eerin
g Para
m
e
ters
;
b)
Determine
th
e
traditio
nal method or rul
e
of thum
b t
o
propo
se
a
possibl
e p
r
ob
lem-
solving di
re
ction;
c)
Improving: to determi
ne "im
p
roving featu
r
es
" from the
hori
z
ontal axi
s
of the matri
x
;
d)
worse
n
ing: to
determine t
h
e "wo
r
senin
g
par
amete
r
s"
from th
e vertical axi
s
of t
he
matrix;
e)
Use the Inte
ractive T
R
IZ
Matrix to det
ermin
e
the
grid
s of pai
rwi
s
e
confli
cting
attributes;
f)
Reg
a
rdi
ng th
e 40 Inventi
v
e Princi
ple
s
in the gri
d
, determi
ne
and eval
uate
the
con
c
e
p
ts fro
m
the inventive princi
ple
s
.
3.3.1. TRIZ Definition
First, ba
sed
on the four
cutting para
m
eters, th
i
s
stu
d
y implement
ed the TRIZ
definition,
according to the literatu
r
e o
f
Weng [5] an
d Cha
n
[15]:
a)
Spindle
sp
ee
d: exce
ssivel
y fast an
d
slo
w
fee
d
ing
sp
eed
will
re
sul
t
in better surface
roug
hne
ss,
b)
Cutting dept
h: when cutting circul
ar
material, the
addition of lathe cent
er
can
stabili
ze the o
b
ject an
d imp
r
ove su
rfa
c
e rough
ne
ss.
c)
Feedin
g
: tool pre
s
sure affects surfa
c
e ro
ughn
ess.
d)
Tool
runoff: ac
cording to the 81 groups
of the Taguchi meth
od propos
ed
by Weng
[5], the medi
an values of
the manufact
uring
process will
result in the m
o
st
stable
c
u
tting.
3.3.2. Engineering Param
e
ter
s
By using the
TRIZ
39 E
ngine
erin
g Param
e
ters
, this stu
d
y propo
sed the i
m
provin
g
feature
s
and
worse
n
ing p
a
r
amete
r
s fe
ature
s
, and li
sted the facto
r
s to be improv
ed on the left of
Table 1, an
d
the worse
n
i
ng pa
ramete
rs in the
up
pe
r part of Ta
bl
e 1. The imp
r
oving featu
r
es
inclu
de: #9
speed, #
13 obj
ect sta
b
ility, #11 pressu
re o
r
stress,
an
d #29
ma
nufa
c
turing preci
s
io
n,
while worsen
ing paramete
r
s in
clud
e: #10 forc
e, #2
5 time waste
,
#39 produ
ctivity, and #31
hazard
o
u
s
factors.
3.3.3. Contr
a
diction Matrix
or Interacti
v
e
TRIZ Matrix
Acco
rdi
ng to
the co
nditio
nal eq
uation
s
of
the T
R
I
Z
definition,
this stu
d
y arrang
ed a
contradi
ction
matrix a
nd
applie
d 4
0
I
n
ventive Pr
inc
i
p
l
es
in
th
e ta
b
l
e
in
or
de
r
to fo
r
m
th
e
Interactive T
R
IZ Matrix, as sh
own in Table 1.
Table 1. Interactive TRIZ
Matrix
Worsening
featur
es
Improving featur
es
#10 #25 #39 #31
#9 13.28.15.19
-
-
2.24.35.21
#13 10.35.21.16
35.27
23.35.40.3
35.40.27.39
#11 36.35.21
37.36.4
10.14.35.37
2.33.27.18
#29 28.19.34.36
32.26.28.18
10.18.32.39
4.17.34.26
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
CNC Parametric
Optimiz
a
tion for Ex
erc
i
se E
q
u
i
p
m
e
n
t
Pa
r
t
s
Su
r
f
ac
e…
(
H
an
-C
hen
H
u
an
g
)
8203
4. Results a
nd Discu
ssi
ons
4.1. Experiment Tool
In this
study,
the exp
e
rim
ental e
quipm
ent ad
opted
the ECO
C
A
PC-3
807
mo
del PC-
Based CNC Lathe,
as
m
a
nufactu
red b
y
the
ECOC
A Industrial
Co., Ltd. Wh
ere S45
C
me
dium
carbon
ste
e
l i
s
a
dopte
d
a
s
the
expe
rime
ntal processi
ng mate
rial,
whi
c
h i
s
a p
r
oce
s
sing
mat
e
rial
comm
only ad
opted by the i
ndu
stry; the l
a
thing mate
ri
al sp
ec i
s
a
h
o
lding l
e
ngth
of 100mm S
4
5C
medium
carb
on steel. Th
e cutter a
dopte
d
is a re
ady-t
o-u
s
e di
spo
s
able cutter, with the handle
of
model No. TJNR2
020K1
6
manufact
u
re
d by Toshib
a
;
the cutter u
s
ed i
s
of mo
del No. NX2
525
manufa
c
tured
by Mitsubi
sh
i. The MITSUTOYO SURF
TEST SV400
su
rface an
al
yzer i
s
u
s
e
d
i
n
this study
to analyze
the surfa
c
e
ro
ug
hne
ss of
the
cutting
re
sult
s, and
the m
easure
d
surf
ace
roug
hne
ss value is sele
cte
d
as Ra.
4.2. Cutting Parameters
Reg
a
rdi
ng th
e four cutting
paramete
r
s
of C
NC, in
clu
d
ing Spi
ndle
spe
ed, Cutting depth,
Feeding, and Tool runoff, this
study listed the thre
e levels, as
shown in Tabl
e 2.
In the process
of cutting by CNC, the me
dian value
s
o
f
the
cutting param
eters are gene
rally u
s
ed (Tabl
e
3):
Table 2. Leve
l
s of cutting p
a
ram
e
ters
Tabl
e 3. Medi
an value
s
of cutting pa
ram
e
ters
Level
1
Level
2
Level
3
A: Spindle
speed
v(m/min)
150 200 250
B: Cutting
depth d(mm
)
0.5 1
1.5
C: Feeding
f(mm/rev)
0.02 0.06
0.1
D: Tool run
off
runoff(mm
)
-0.1
±0.03
0.1
A2 B2
C2
D2
Spindle speed
(m/mi
n
)
Cutting depth
(mm)
Feeding
(mm/rev)
Tool runoff
(mm)
200 1
0.06
±0.03
4.3. TRIZ An
aly
s
is Verification
The TRIZ cu
tting paramet
ers of the o
n
-site
cutting
are, as sh
o
w
n in Table
4. As
comp
ared wit
h
the research findings of
Wen
g
[5
] (Table 5), the propo
sed optim
ization st
rate
gy
to improve surface
roug
h
ness th
rou
g
h
TRIZ
ha
s
su
rpri
sin
g
effect
. The Su
rface Rough
ne
ss is
0.783
μ
m, whi
c
h i
s
improve
d
by 0.1403
μ
m, as compa
r
ed
with the f
i
nding
s
of Weng [5] (Fig
u
r
e
2).
Table 4. TRIZ
param
eters
Table 5. TRIZ
solution resu
lts
A3 B1
C3
D1
Spindle
speed
(m/mi
n
)
Cutting
depth
(mm)
Feeding
(mm/rev
)
Tool
runoff
(mm)
250 0.5
0.1
-0.1
Spindle
speed
(m/mi
n
)
Cutting
depth
(mm)
Feeding
(mm/rev
)
Tool
runoff
(mm)
Weng[5]
200 1
0.06
±0.03
The
propose
d
method
250 0.5
0.1
-0.1
Figure 2. Re
search result
0.
9233
μ
m
0.
783
μ
m
0.
7
0.
75
0.
8
0.
85
0.
9
0.
95
Weng[5]
T
he proposed m
e
thod
Surface roughness(
μ
m)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8200 – 82
04
8204
5. Conclusio
n
The
bottlene
ck of
CNC t
u
rnin
g m
a
ke
s it ex
tremely
diffic
u
lt
to s
e
t c
u
tting parameter
con
d
ition
s
, which
sho
u
ld b
e
very rigo
ro
us an
d rigi
d in ord
e
r to prevent red
u
ce
d quality due
to
para
m
eters. Therefore,
m
o
st cutting p
e
rsonn
el of the indu
st
ry u
s
e the medi
a
n
values a
s
the
stand
ard. Sin
c
e processin
g
pra
c
titioners can
not defi
n
itely select
the numeri
c
a
l
condition
s to
optimize tu
rn
ing qu
ality, this
study u
s
ed TRIZ i
n
setting p
a
ra
metric
co
ndit
i
ons fo
r surf
ace
roug
hne
ss in CNC turning.
The method
can
rapidly d
e
termin
e a solution an
d the best st
rate
gy.
As the re
sult
s su
gge
st, Surface Roug
hne
ss
can
si
gnifica
ntly improve t
he eff
e
ct to achi
eve
satisfying qu
ality chara
c
te
ristics, thus,
helpin
g
to lower
co
sts, e
nhan
ce p
r
ofits, and impro
v
e
prod
uct qu
ality.
Referen
ces
[1]
Patrikar RM.
Mode
lin
g a
nd
simulati
on
of s
u
rface ro
ug
hn
e
ss.
Appli
ed Su
rface
Scie
nce.
200
4;
22
8(1-
4): 213-2
20.
[2]
Kumar S, N
a
s
s
ehi A, N
e
w
m
an ST
, Allen R
D
, T
i
w
a
ri MK.
Process co
ntro
l in
CNC m
a
n
u
f
acturing f
o
r
discrete c
o
mp
one
nts: A ST
EP-
NC complia
nt frame
w
ork.
Rob
o
tics
and
Co
mpu
t
er-Integrat
e
d
Manufactur
i
ng
.
2007; 2
3
(6): 6
67-6
76.
[3]
Sun Y, W
ang J, Guo D.
Guide curve b
a
se
d interp
olati
on
scheme of par
ametri
c curves
for precisio
n
CNC mach
ini
n
g.
Internatio
nal
Journa
l of Machin
e T
ools a
n
d
Manufactur
e
.
2006; 4
6
: 235-
242.
[4]
He H, Wu
Y. Web-b
a
sed
virtu
a
l o
per
atin
g of
CNC m
ill
ing
m
a
chi
ne to
ols.
C
o
mputers
in
In
dustry.
20
09
;
60(9): 68
6-6
9
7
.
[5]
W
eng YC. A
stud
y
of the
opti
m
izatio
n of m
u
l
t
i-goa
ls n
u
meri
cal co
ntrol
lath
i
n
thro
ugh
the
a
pplic
atio
n o
f
fuzz
y
lin
gu
istic
.
Master thes
i
s
of the
de
par
tment
of mec
h
anic
a
l
eng
in
ee
ring
at T
a
tung
Univ
ersit
y
,
T
a
i
w
a
n
. 200
7.
[6
]
Gh
a
ssa
n AK,
Sh
i
r
i
n
za
de
h B. An
e
v
al
u
a
t
io
n o
f
surf
ace r
o
ugh
ness
par
a
m
eters me
asu
r
ement
usin
g
vision-
bas
ed d
a
ta.
Internatio
n
a
l Jour
nal of M
a
chi
ne T
ools
a
nd Man
u
factur
e
. 2007; 4
7
: 69
7-70
8.
[7]
Roq
ue
AOR,
Ren
e
JRT
,
Gilberto
HR, R
o
d
r
igo
CM
. C
o
m
putatio
na
ll
y
efficient
par
ametri
c an
al
ysis
o
f
discrete-tim
e
p
o
l
y
n
o
mia
l
bas
e
d
accel
e
ratio
n
–
dece
l
er
ati
on pr
ofile g
e
n
e
ratio
n
for industri
a
l
robotics a
n
d
CNC mach
in
er
y.
Mech
atronic
s
.
2007; 17(
9): 511-
523.
[8]
Baj
w
a PS, Ma
hto D. Conce
p
t
s,
T
ools and T
e
chni
ques
of Probl
em Solvi
ng T
h
rough T
r
iz: A Revie
w
.
Internatio
na
l Journ
a
l of Inn
o
v
ative Res
ear
c
h
in Sci
enc
e, Engi
neer
in
g a
nd T
e
ch
nol
ogy
. 2013; 2(
7)
:
306
1-30
73.
[9]
Rosli M
U
, Arif
fin MKA, Sap
uan SM, S
u
la
iman
S. Inte
g
r
ated AHP-T
R
IZ
Innovatio
n
Method f
o
r
Automotive
D
oor P
ane
l D
e
sign.
Inter
nati
ona
l Jo
urn
a
l
of Eng
i
n
eeri
n
g a
nd T
e
c
h
n
o
lo
gy
. 20
13
;
5(3):31
58-3
1
6
7
.
[10]
Suh SH, Chu
n
g
DH, Lee BE, Shin S, Cho
i
I,
Kim
KM. ST
EP-compli
ant CN
C s
y
stem for turnin
g: Da
t
a
mode
l, architec
ture, and imp
l
e
m
entatio
n.
Co
mp
uter-Ai
ded Desig
n
.
20
06; 38(6): 67
7-6
8
8
.
[11]
Xu
XW, Ne
w
m
an ST
. Making
CNC mac
h
i
ne
tools mor
e
o
p
e
n
, intero
per
abl
e an
d i
n
tell
ige
n
t
– a revi
e
w
of the techno
lo
gies.
Co
mputer
in Industry
. 20
06; 57(2): 1
41-
152.
[12]
Li T
.
Appl
y
i
ng
T
R
IZ
and AHP to Dev
e
lo
p I
nnov
ative
Desig
n
for Au
tomated Asse
mbl
y
S
y
stem
s
.
Internatio
na
l Journ
a
l of Adva
nced Ma
nufact
u
rin
g
T
e
chn
o
lo
gy.
2010; 4
6
: 301-3
13.
[13]
Yeh
CH, Ja
y
CY, Hua
n
g
C.
In
tegratio
n
of F
our-Phas
e Q
F
D and
T
R
IZ
in Pro
duct R&
D: A Note
bo
ok
Case Study
.
R
e
searc
h
in En
g
i
ne
erin
g Desi
g
n
. 2011; 2
2
: 12
5-14
1.
[14]
Hua
ng T
C
. An
optimiz
atio
n s
t
ud
y of mu
lti-g
oals
num
erica
l
cont
rol
lath
in
g par
ameters
throug
h th
e
associ
ation
of gre
y
rel
a
tio
n
a
nal
ysis m
e
tho
d
and T
aguch
i
method. Maste
r
thes
is of the
dep
artment of
mecha
n
ica
l
en
gin
eeri
ng at T
a
tung Un
iversit
y
,
T
a
i
w
a
n
. 200
7
.
[15]
Cha
n
CK. A
st
ud
y
of the
com
pet
itive
t
y
pe
m
u
lti-g
oal
o
p
timi
zed
lath
i
n
g
par
ameter. Master
thesis
of th
e
dep
artment of mecha
n
ica
l
en
gin
eeri
ng at T
a
tung Un
iversit
y
,
T
a
i
w
a
n
. 200
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.