TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.6, Jun
e
201
4, pp. 4134 ~ 4
1
4
1
DOI: 10.115
9
1
/telkomni
ka.
v
12i6.486
6
4134
Re
cei
v
ed O
c
t
ober 2
2
, 201
3; Revi
se
d Decem
b
e
r
17, 2013; Accept
ed Ja
nua
ry 1
7
, 2014
On-line Monitoring System of Capacitive Equipment
Dielectric Loss
Xin-bo Hua
n
g
1
, Tu Deng
2
*, Jie Shi
3
Xi
’a
n Pol
y
tech
nic Univ
ersit
y
,
Jinh
ua Ro
ad,
Beili
n District, Xi'
a
n, Shan
xi P
r
ovinc
e
, Chin
a
,
No. 19
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: dengtu
a
n
d
y
@hotmai
l
.com
A
b
st
r
a
ct
T
o
ens
ure c
a
pacitiv
e e
q
u
i
p
m
e
n
t w
o
rkin
g
safely
and
re
li
ably,
an
on-
lin
e
mo
nitori
ng
s
ystem
of
capac
itive eq
u
i
p
m
e
n
t diel
ectric loss w
a
s devel
ope
d. T
h
e
insulati
on situ
ation w
a
s estimate
d accur
a
tel
y
throug
h l
ong-
distanc
e sync
h
ron
ous s
a
mplin
g (us
i
n
g
IRIG-B code
synchro
nous
clock), sea
m
l
e
ss
conn
ectio
n
of data betw
e
e
n
devic
es (usin
g
Intellig
ent
Ele
c
tronic Dev
i
ce
(IED)), commu
n
icati
on foll
ow
in
g
IEC618
50 pr
otocol, an
d data
analys
is (usin
g
fault di
agn
os
is alg
o
rith
m). Run
n
in
g resu
lts show
ed that t
h
e
system
not only can
accur
a
tely
m
o
nitor the infor
m
ati
on, such
as leakage
curr
ent, dielectric
loss, and
equ
ival
ent ca
p
a
citanc
e, w
h
ich reflect
the w
o
rkin
g con
d
iti
o
n of cap
a
citiv
e
equ
ip
me
nt, bu
t also ca
n tran
smit
data to the o
n
-
line
monitor
i
n
g
data
center th
roug
h the IEC
618
50 pr
otoc
ol
. T
he operati
n
g data,
mon
i
tor
i
ng
on CVTs
in
330kV substation, showed
the great im
pr
ovement of this syst
em on credibility, accuracy, and
stability. What
’s more, it als
o
prove
d
the gre
a
t value of us
in
g and pr
o
m
oti
n
g this system.
Ke
y
w
ords
:
capac
itive eq
u
i
p
m
e
n
t,
die
l
ect
r
ic
loss, on-l
i
n
e
mo
nitori
ng, i
n
telli
ge
nt el
ect
r
onic
dev
ice (I
ED),
IEC618
50 pr
otocol
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1 . Introducti
on
The
safe
and
relia
ble
ope
ration of the
e
quipme
n
ts i
n
sub
s
tation
is
the foun
datio
n for th
e
fast devel
op
ment of n
a
tio
nal e
c
o
nomy
[1]. Cap
a
citi
ve equi
pment
acco
unted
for a
bout
30
% to
40% of the to
tal sub
s
tation
equipm
ents,
who
s
e i
s
ol
at
ion conditio
n
i
s
di
re
ctly rela
ted to the
saf
e
operation of
the su
bstatio
n
. Therefore,
it is
of gre
a
t
significan
c
e
to carrying
on the o
n
-lin
e
monitori
ng [2
]. As the stra
tegy of sma
r
t grid i
s
puttin
g
forward, intelligent
sub
s
t
a
tion re
qui
re
s
sign
al to b
e
digitizatio
n
, communi
catio
n
mod
e
to b
e
networkin
g, informatio
n t
o
be
sh
are
d
and
stand
ardi
zati
on [3]. On th
e one
han
d, tradition
al con
d
ition overha
uling
can’t re
alize fa
ult in time.
On the
othe
r han
d, it al
so
ca
n’t me
et the
requi
rem
e
nt of info
rmat
ion a
nd
re
so
urces
sha
r
ing
in
intelligent
su
bstation. A
c
cording to
the char
acte
ristics of ca
pacitive e
qui
pment on
-lin
e
monitori
ng, a whol
e st
ructure an
d
hard
w
a
r
e d
e
s
ign of intell
igent monito
ring te
rminal
is
prop
osed. In
ord
e
r to m
a
ke
co
mmun
i
cation
prot
o
c
ol m
eet the
req
u
irem
ent
of State Grid
Corpo
r
ation,
a de
sign
of
correspon
ding
IED is
pr
o
p
o
s
ed
as
w
e
ll, w
h
ic
h fo
llo
ws
th
e IEC
6
185
0
proto
c
ol. Me
a
n
whil
e, colle
cted data a
r
e
dealt with g
r
e
y
relational
al
gorithm, thu
s
the efficien
cy
o
f
monitori
ng an
d reliability of fault diagno
si
s are e
n
sured
.
2 Theor
y
and Structure
2.1. Algorith
m
of Monitor
i
ng
Diele
c
tri
c
lo
ss facto
r
is
cal
c
ulate
d
by tangent
δ
, which is the comp
lement an
gle
of phase
differen
c
e be
tween curren
t flowing thro
ugh and volt
age acro
ss the device [4]. In general,
tan
δ
,
cap
a
citive
eq
uipment
diele
c
tri
c
lo
ss fa
ctor, i
s
so
sm
all that the
measurement
ca
n b
e
ce
rtain
affected by n
o
ise ja
mming
, harmoni
c freque
ncy cha
nging, an
d h
a
rmo
n
ic
wav
e
form di
storti
on
rate. Ha
rmoni
c analysi
s
me
thod is ado
pted to extract cap
a
citive eq
uipment diel
e
c
tri
c
loss angl
e,
whi
c
h ma
ke
the dielectri
c
loss facto
r
tan
δ
is not affected by th
e influen
ce of harmo
nic
comp
one
nt. In this sy
ste
m
, the cal
c
ul
ation of diel
e
c
tri
c
loss fa
ctor is
compl
e
ted by IED, the
impleme
n
tation pro
c
e
s
s is as follows:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
On-lin
e Monit
o
ring S
ystem
of Capa
citive E
quipm
ent Di
electri
c
Lo
ss (Xin-b
o Hu
an
g)
4135
After A/D conversi
on, ana
log sign
als a
r
e conv
e
r
ted into discrete
seri
es of voltage and
curre
n
t, expressed a
s
x(n
)
and y(n
)
(0
<n<N, N is
the
numbe
r of sample
s). Afterwa
r
d
s
de
al X(n)
with DFT
(
Dis
c
rete F
o
ur
ie
r
T
r
a
n
s
f
or
m)
:
X
k
D
F
T
x
n
∑
x
n
e
π
=
x
n
cos
j
s
i
n
(1)
So the real p
a
rt and ima
g
i
nary pa
rt of voltage is:
X
k
∑
xn
cos
X
k
∑
xn
sin
(2)
Phase of voltage si
gnal
ca
n be cal
c
ul
ated ac
co
rdin
g the real pa
rt and imagi
nary part:
α
t
a
n
(3)
Phase of cu
rre
nt sign
al,
β
, can be o
b
tained throug
h the same
method. IED of
cap
a
citive e
quipme
n
ts m
onitorin
g
cal
c
ulate
s
tan
δ
thro
ugh diele
c
tri
c
loss factor calcul
ation
formula:
tan
δ
t
an
π2
β
α
⁄
(4)
Due to fu
nda
mental wave
is mainly ex
tracted i
n
thi
s
metho
d
, the effects
of harm
oni
c
comp
one
nt are inhibited a
n
d
meas
ureme
n
t accura
cy is improved.
2.2. Algorith
m
of Fault Di
agnosis
The di
ele
c
tri
c
loss fa
ctor is pretty
small,
wh
i
c
h
ra
nge
from
0.001
to 0.03,
so
it i
s
e
a
sily
be co
rrupted
by noise. Th
e analysi
s
re
sult of insu
lat
i
ng situatio
n
sho
w
s that: The influe
nce
o
f
external e
n
vironm
ent fact
ors, e
s
p
e
ci
all
y
tem
peratu
r
e and h
u
midi
ty, can affect the data mu
ch
more
obviou
s
ly when th
e i
n
sul
a
ting p
r
o
perty of
capa
citive equi
pm
ent is o
n
a
g
ood
con
d
ition
[5].
Ho
wever,
wit
h
the
red
u
ctio
n of e
quipm
e
n
t’s in
su
l
a
ting
perfo
rma
n
ce
and
the
rai
s
e
of eq
uipme
n
t’s
temperature,
the influence of t
he equipment’
s
o
w
n tempe
r
at
ure on
ta
n
δ
is
greate
r
than
temperature
and hu
midity of external e
n
vironm
en
t. Given all tho
s
e fact, the i
n
sul
a
tion pro
perty
of ca
pa
citive
equipm
ent i
s
analy
s
ed
an
d jud
ged
a
c
curately th
rou
gh g
r
ay
co
rrelation
analy
s
is,
whi
c
h can an
alyze the rel
a
tionshi
p between diele
c
tr
i
c
loss
seri
es a
nd ea
ch external enviro
n
m
ent
f
a
ct
or seri
es.
(1) Buildin
g
model
of me
asu
r
ed
data
seri
es an
d
compa
r
ative d
a
ta serie
s
: a
m
ong th
at,
monitored di
e
l
ectri
c
lo
ss fa
ctor
tan
δ
serie
s
i
s
reg
a
rd
ed
as
measured d
a
t
a se
rie
s
, exp
r
esse
d a
s
,
and site
environment temp
eratu
r
e
an
d h
u
midity data is re
garded
a
s
X
compa
r
ative data serie
s
,
expre
s
sed a
s
X
:
X
x
k
x
1
,x
2
,…,x
n
X
x
k
x
1
,x
2
,…,x
n
(5)
k=1,2,…,n; j=1,2,3,4;
X
k
prese
n
t resp
ectively
the fa
ctors su
ch a
s
humidity and
temperature
of site, equip
m
ent’s o
w
n te
mpe
r
ature, interface co
ntamination.
(2)
Determini
ng the co
rrela
t
ion coeffici
en
t:
ζ
k
(6)
Define:
∆
m
a
x
max
x
k
x
k
∆
m
a
x
max
x
k
x
k
So:
ζ
k
∆
∆
∆
(7)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4134 – 4
141
4136
Above the formula,
ζ
k
is correlation coefficient of com
parative data
serie
s
X
refer to
measured data serie
s
X
o
n
point k,
1
kn
;
|x
k
x
k|
is the absolute differe
nce
betwe
en
X
k
and
X
k
on the Kth
el
ement,
∆
is mi
ni
mum difference, while
∆
is maximum
differenc
e .
ρ∈
0
,
1
, as the syst
em discrimi
n
a
ting coeffi
ci
ent, indicate
the indire
ct effecting
degree of eve
r
y factor on
correlation.
(3)
Calc
ulate
relevanc
y:
γ
∑
ζ
k
(8)
Thro
ugh rele
vancy
γ
estima
te the deg
re
e
of releva
nce
betwe
en X0
(k)
and Xj
(k).
Afte
r
su
ccessively cal
c
ulatin
g ea
ch in
flue
nce para
m
eter
of certai
n rel
e
va
ncy and
relati
ve coefficie
n
t, a
factor,
amon
g eq
uipme
n
t’s o
w
n
temp
erature,
ex
tern
al environm
e
n
t‘s tem
perature
and
hu
mi
dity,
interface co
ntamination, is
finally
confirm
ed, whi
c
h is the clo
s
e
s
t to variation tend
ency of monit
o
r
s
e
ries
, tan
δ
,
so the in
sulati
on pro
p
e
r
ty of capa
citive equipme
n
t is judge
d accu
ra
tely.
2.3. Sy
stem
Structure
Acco
rdi
ng to
the structu
r
e
of sma
r
t gird, t
he implem
e
n
tation of the
function
is
d
i
vided
into three pa
rts: monitorin
g
terminal
s in pro
c
e
ss
laye
r, IED of capacitive equipm
ent monitori
n
g
in
spa
c
e
r
laye
r, and mo
nitori
ng ho
st in
su
bstation
co
ntrol layer [6, 7]
. The wh
ole
stru
cture of the
system i
s
sh
o
w
n in Figu
re
1.
Figure 1. Wh
ole Structu
r
e
of Syst
em
Figure 2. Hardwa
re Prin
cip
l
e
The
workin
g
pro
c
e
s
s of t
he whole
sy
stem i
s
: mon
i
toring
ho
st in Sub
s
tation
Cont
rol
Layer give
s
measuri
ng in
stru
ction
s
, which
are t
r
an
smitted to every terminal mo
nitors i
n
Pro
c
ess
Layer throug
h IED. Receiving IRIG-B code a
s
a synchro
n
o
u
s cl
ock, terminals m
easure
referen
c
e vo
ltage a
nd l
e
aka
ge
cu
rre
n
t at the
same time.
After every
terminal
finished
measurement
and data p
r
ocessin
g
, IED ask every
terminal for collecte
d
d
a
ta, and obtain
diele
c
tric loss, leaka
ge
cu
rrent, eq
uivale
nt cap
a
ci
ty by d
e
a
lin
g
thes
e
da
ta
. T
h
en
IED
,
in
Sp
ac
e
r
Layer,
will pa
ck data
and
uploa
d them
to monitori
ng
host foll
owi
n
g IEC61
850
pro
c
toco. After
receiving
dat
a an
d
analyzi
ng th
rou
gh
e
x
pert
softwa
r
e, monito
ring
ho
st
will ju
d
ge the
o
perating
state and
store data into da
ta base fo
r histori
c
al an
alysis.
3. Sy
stem Implementa
tio
n
The a
c
cura
cy of dielectri
c
loss m
e
a
s
u
r
ement
is g
r
e
a
tly influence
d
by external
factors
due to co
mpl
e
x site con
d
ition, so the re
quire
m
ent
s for monito
ring
device are h
i
gh. Monitori
n
g
terminal
ad
o
p
ted d
ual-co
r
e st
ru
cture
of
FPGA
a
nd
DSP, achiev
ed lo
ng-dista
n
ce
syn
c
h
r
on
ous
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
On-lin
e Monit
o
ring S
ystem
of Capa
citive E
quipm
ent Di
electri
c
Lo
ss (Xin-b
o Hu
an
g)
4137
sampli
ng th
rough
IRIG-B
co
de. IED
of ca
pa
ci
tive
equi
pment monitori
ng a
dopted
du
al-core
stru
cture of ARM and
DSP, which have
strong po
we
r o
n
control and
operation.
3.1. Hard
w
a
r
e
of Monito
ring Terminal
As sh
own in
Figure 2. F
P
GA accom
p
lish
e
s fun
c
ti
on such as
measuri
ng re
feren
c
e
voltage an
d
leakage
cu
rrent, de
codin
g
syn
c
h
r
o
n
o
u
s
clo
c
k, co
ntrolling
A/D co
nversion,
and
comm
uni
cati
ng thro
ugh
RS-232. Th
e
main fun
c
tion
of DSP incl
u
de: dealin
g the data
with
FFT
(Fa
s
t Fouri
e
r transfo
rm),
sen
d
ing h
and
sha
k
e
sign
al
s to FPGA regula
r
ly to determin
e
wh
e
t
her
workin
g p
r
op
erly, and
reset wh
en th
e
device
ru
nnin
g
ab
normal. I
n
ad
dition, DSP comm
uni
cate
with IED thro
ugh RS4
85.
3.2. Signal Collection
The a
c
curacy of the se
n
s
or is
of vital impor
ta
nt for the
re
sult
of mea
s
ure
m
ent [8],
becau
se the leakage current of capa
cit
i
ve equipme
n
t
s is usually in mA level even in uA level.
Usi
ng p
e
rm
al
loy as the
co
re mate
rial, a
dopting
dee
p
negative fee
dba
ck te
ch
no
logy to re
alize
automatic co
mpen
sation
for
core, the
sen
s
o
r
u
s
e
d
in this
syste
m
ca
n obtai
n
s
lea
k
a
ge
cu
rre
nt
from 50
0uA t
o
700
mA a
c
curately, on th
e co
ndition
o
f
phase e
r
ror less tha
n
0.
01°,
which
can
meet the requirement in ac
curac
y
c
o
mpletely [9].
3.3. IRIG-B
Code Decoding Unit
IRIG-B
cod
e
is d
e
code
d b
y
FPGA in
stead
of tra
d
itional
de
codin
g
chip, a
s
well a
s
i
n
orde
r to
avoi
d un
stable
e
rro
rs affectin
g the
a
c
cura
cy of me
asu
r
eme
n
t [10,
11]. Shown
as
follows
:
Figure 3. IRIG-B Time
-De
c
odi
ng
Fi
gure 4. IRIG-B Synch
r
o
nou
s Pulse
-
De
codi
ng
The
simulatio
n
s
sho
w
th
at the de
co
din
g
er
ro
r of
synch
r
on
ou
s p
u
lse i
s
no m
o
re th
an
2ns,
while
50
ns
whe
n
mea
s
ured by o
s
cil
l
oscop
e
in
a
c
t
ual ci
rcuit. And it can
co
mp
letely meet th
e
requi
rem
ent of monitorin
g
cap
a
citive eq
uipment.
3.4. A/D Sam
p
ling Unit
After IED send collection command, A/D sa
mpling uni
t is enabled.
When 1PPS (1 pulse
per
se
con
d
si
gnal ge
ne
rate
d by IRIG-B
code
sync
h
r
o
n
ous clo
c
k)
re
ach
e
s,
A/D sampling unit will
execute
51
2-point
sampli
n
g
a
c
cordi
ng t
o
the
sa
mp
le
rate, whi
c
h
i
s
cal
c
ul
ated b
a
se
d
o
n
syst
em-
freque
ncy [12
,
13].
3.5. On-Line
Monitoring I
E
D of Capac
i
tiv
e
Equipment
3.5.1. Cons
tr
uction of IE
D
As sh
own in Figure 5, the system u
s
e
s
the ARM and
DSP double
CPU a
r
chitectures
a
s
the hard
w
a
r
e
core. ARM
with addition
al perip
heral
device
s
, su
ch as keyboa
rd, liquid cry
s
tal,
Ethernet co
mmuni
cation
and other hard
w
a
r
e
equipm
ent a
r
e all used
to complet
e
the
manag
eme
n
t and cont
rol the whol
e system. Taki
ng
advantag
e of high-spe
ed
comp
uting an
d a
variety of p
e
r
iphe
ral
characteri
stics on
the
ch
i
p
, DSP is
used t
o
compl
e
te
cal
c
ulatin
g a
n
d
analyzi
ng of collecte
d
data.
The way of communi
cate
betwe
en DSP
and ARM is
SPI.
Implementati
on p
r
o
c
e
s
s o
f
IED is
sh
o
w
n i
n
Fig
u
re
6: when
ARM
receives collecting
comm
and, DSP transmits it to terminal. After that,
DSP dema
n
d
s
for data
by polling throu
g
h
RS485, th
en
cal
c
ulatin
g th
e value of
di
elecbn tr
i
c
lo
ss
and
amplit
ude of le
aka
ge current. A
R
M
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4134 – 4
141
4138
will
store the
data transmitted by
DSP through SPI, and transmi
tted data capsul
ated to
host
on
sub
s
tation
co
ntrol layer through Ethe
rne
t
.
Figure 5. Hardwa
re of IED
Figure 6. Software Pro
c
e
s
s
3.5.2. IEC618
50 Proto
c
ol Implementa
tion
Followi
ng IE
C61
850, O
n
-line monito
ri
ng IED
of
capa
citive eq
uipment b
u
il
ds mo
del
about p
r
in
cipl
es in th
e fun
c
tion o
b
je
ct, according to
the data a
n
d
data p
r
op
ert
y
related to t
he
same
fun
c
tio
n
obj
ect, exp
r
essing
what
and
ho
w to
communi
cate
[14]. The
first
thing of
buildi
ng
model to IED is to d
e
scri
b
e
the fun
c
tio
n
co
mpletely:
describe
ea
ch monito
ring
terminal
as
o
n
e
obje
c
t of IED and buil
d
th
e small
e
st fu
nction
unit as one logi
cal
node [15]. La
yered m
odul
e is
sho
w
n in Fi
g
u
re 7, an
d th
e description
of all logical node
s, acco
rding to IEC6
1850, is
sh
o
w
n is
c
h
ar.1.
Figure 7. Layered M
odul
e of IED
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
On-lin
e Monit
o
ring S
ystem
of Capa
citive E
quipm
ent Di
electri
c
Lo
ss (Xin-b
o Hu
an
g)
4139
Table 1. De
scriptio
n of Lo
gical
Nod
e
s
Propert
y
Name
Propert
y
Ty
p
e
Descr
iption
EEHealth
INS
Health of externa
l
device
EEName
DPL
Nameplate of e
x
t
e
rnal device
OpTm
h
INS
Oper
ation
time
Vol
MV
Voltage of CVT
LosFact
MV
Dielectric loss factor
Hz MV
S
y
stem
frequ
ency
Amp SAV
Leakage
curre
nt
React MV
Equivalent
capacitance
EnvTmp MV
Environmental
temperatu
r
e
EnvHum MV
Environmental
humid
4. Opera
t
ion Resul
t
s and
Analy
s
is
4.1. Opera
t
ion Resul
t
s
The
system
has
bee
n succe
ssfully in
st
alled a
nd op
erating i
n
33
0kV
sub
s
tatio
n
, sho
w
n
as foll
owi
ng
pictures.
Maj
o
r m
onitori
ng
pro
g
ram
wa
s in
sul
a
tion
p
r
ope
rty on
-lin
e monito
rin
g
of
CVT. Virtual
monitori
ng pa
ramete
r is a
s
followin
g
:
diel
ectri
c
lo
ss, th
e leakage
cu
rrent of termin
a
l
scree
n
, re
sist
ive current, capa
citative cu
rre
nt, and eq
uivalen
c
e cap
a
citan
c
e.
Figure 8. Structure of Te
rni
m
al Device
Figure 9. IED of Capa
citive Equipment
Figure 10. Monitorin
g
Terminal on CV
T
Figure 11. Monitorin
g
Terminal on PT
Figure 1
2
sh
ows the
three
-
pha
se
di
electric l
o
ss
va
ria
t
ion
tre
nd of 330
kV CVT
from
2
8
th
Jan
uary to 2
9
t
h Jan
uary, 2
013. As
sho
w
n belo
w
, diel
ectri
c
lo
ss i
s
gene
rally ra
n
ge from
0.00
4 to
0.02. As CV
T’s thre
e ph
ase
s
op
erate
under
sam
e
level of voltage an
d similar ope
rati
ng
environ
ment, so the variati
on trend of di
electri
c
lo
ss i
s
app
roximat
e
ly same.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4134 – 4
141
4140
Figure 12. Th
ree
-
ph
ase Di
electri
c
Lo
ss Variation T
r
e
nd of 330
kV CVT
The vari
ation
trend
of 330
kV CVT’
s th
ree-p
h
a
s
e le
a
k
ag
e current
is sho
w
n Fi
g
u
re
13,
from 28th
Ja
nuary to
29th
Jan
uary, 20
13. As
sho
w
n belo
w
, diel
ectri
c
lo
ss is
one of the vi
rtual
para
m
eter
which
ca
n refl
ect in
sulation
prop
er
ty, ra
nging from 3
.
12mA to 3.2
0
mA. Insulati
on
con
d
ition of
cap
a
citive eq
uipment
can
be judg
ed throu
gh the v
a
lue an
d variation tren
d of
leakage
curre
n
t. Meanwhil
e
, it can validate effect
iven
ess of each o
t
her with diel
ectri
c
loss.
Figure 13.Th
ree-p
h
a
s
e Le
a
k
ag
e Cu
rrent
Variation T
r
e
nd of 330
kV CVT
4.2. Analy
s
is
In orde
r to verify the accuracy of the s
ystem, two term
inals
were used to monitori
ng one
simulate
cu
rrent sign
al at the sam
e
time
, taking
one o
f
them as the referen
c
e dev
ice. The resul
t
is sh
own in Table 2.
Table 2. Experime
n
tal Re
sults
NO.
Dielectric Loss F
a
ctor Erro
r(
%)
NO.
Dielectric Loss F
a
ctor Erro
r(
%)
1 0.0012
7 0.0004
2 0.0061
8 0.0017
3 0.0013
9 0.0014
4 0.0020
10
0.0057
5 0.0032
11
0.0047
6 0.0050
12
0.0038
The re
sult
sh
ows that the diele
c
tric lo
ss fa
ctor e
rro
r i
s
no mo
re th
an 0.01%, much lo
we
r
than tran
ditio
nal mea
s
u
r
e
m
ent usi
ng p
hase-lo
ck
loo
p
or othe
rs,
and can com
p
letely match
the
internatio
nal requireme
nt of dielectri
c
lo
ss facto
r
monit
o
ring.
0.
00
0.
20
0.
40
0.
60
0.
80
1.
00
1.
20
1.
40
1.
60
1.
80
2.
00
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
Dielectric
Loss
of
Phas
e
A(
%)
Dielectric
Loss
of
Phas
e
B(
%)
Dielectric
Loss
of
Phas
e
C(%
)
3.
080
3.
100
3.
120
3.
140
3.
160
3.
180
3.
200
3.
220
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
29
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
2013
‐
01
‐
28
…
Leakage
C
u
rren
t
of
Phas
e
A
(
mA
)
Leakage
C
u
rren
t
of
Phas
e
B
(
mA
)
Leakage
C
u
rren
t
of
Phas
e
C
(
mA
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
On-lin
e Monit
o
ring S
ystem
of Capa
citive E
quipm
ent Di
electri
c
Lo
ss (Xin-b
o Hu
an
g)
4141
5.Conclu
sion
Based
on
IEC61
850
proto
c
ol, a
syste
m
of
ca
pa
citive equip
m
ent o
n
-line
monito
ring an
d
fault diagno
si
s is p
r
op
ose
d
in this pape
r,
which ta
ke
s
advantag
e of IED. T
he syst
em co
nsi
s
ts
o
f
intelligent m
onitorin
g
terminal, onlin
e
monitori
ng
IED, and m
onitorin
g
ho
st. The intelligent
monitori
ng te
rminal,
which
adopt
s FPG
A
and DSP d
ual-co
r
e
stru
cture, is g
ood
at colle
cting
and
digitalizin
g
a
nalog signal immediately.
Adopt
ing ARM and
DS
P dual-core stru
cture, IED of
cap
a
citive e
q
u
ipment
on-li
ne mo
nitorin
g
mana
ge
s th
e
tran
smissio
n
of instructio
n
s
an
d
control
o
f
terminal
s in
pro
c
e
ss laye
r, taking adva
n
tage
of its
good a
b
ility on co
ntrollin
g
and co
mputi
n
g
.
With syn
c
h
r
o
nou
s erro
r n
o
more than
50n
s,
long
-distan
c
e
syn
c
hrono
us
sa
mpling of e
a
c
h
monitori
ng te
rminal, i
s
a
c
h
i
eved by u
s
in
g high
-a
ccura
c
y IRIG-B
co
de. RS4
85 b
u
s i
s
ad
opted
to
reali
z
e
comm
and transmission
and
data
comm
uni
cati
on bet
wee
n
monitori
ng te
rminal
s a
nd I
E
D,
throug
h whi
c
h can ove
r
come the ele
c
trom
agn
etic
interfere
n
ce
on con
d
ition
of high voltage,
mean
while, it can en
su
re t
he relia
bility and real-t
ime
ability of data tran
smissio
n
. What’s m
o
re,
the fault dia
g
nosi
s
m
e
tho
d
of expe
rt software
can j
udge th
e
run
n
ing
con
d
itio
n of capa
citi
ve
equipm
ent accurately. Run
n
ing re
sult
s o
f
system
ope
rated in Ningxi
a
sho
w
s that the system can
measure the
operating
condition of
capa
citive
equ
ipment a
c
curately, ensu
r
e
equipm
ents to
operate safe
and sta
b
le, provide a reli
a
b
le gua
r
ante
e
for the saf
e
and
stabl
e operation of the
s
u
bs
tation.
Referen
ces
[1]
Hua
ng
Xi
n-b
o
, Che
ng R
o
n
g
-
gui. Su
bstatio
n
on-
lin
e mo
ni
toring
and f
aul
t diag
nosis. B
e
iji
ng: C
h
in
a
Electric Po
w
e
r Press. 2008: 5
3
-54.
[2]
Lin Ji
an-
lon
g
, Den
g
Min, L
i
n
Li-hu. A
n
on-
l
i
ne i
n
su
latio
n
monitori
ng s
y
s
t
em for hig
h
v
o
ltag
e curre
nt
transformer.
Power System
Technology
. 200
2; 26(1): 86-8
8
.
[3]
Z
hang
Hui-
pi
n
g
, Don
g
Xi
ao-
pen
g. On-Li
n
e
Monitor
i
ng
of
Cap
a
citive A
ppar
atus tan
δ
Verification
mode
l.
High V
o
ltag
e Eng
i
ne
e
r
ing
. 20
01; 27(
2): 35-36.
[4]
W
ang Ji
a-j
un,
Hon
g
B
i
n,
W
ang H
o
n
g
m
e
i. Electric
In
sulati
on
Detec
t
ion Met
hod
for Hi
ghv
oltag
e
Insulators.
T
E
L
K
OMNIKA Indones
ian J
ourn
a
l of Electrica
l
Engi
neer
in
g
. 2013; 11(
7): 408
6-40
90.
[5]
LI Guo-q
i
n
g
,
Z
hang
Z
h
o
ng,
W
ang
Z
h
e
n
-h
ao. On-L
in
e M
onitor
i
ng
of
Di
electric
Loss
of Ca
pacitiv
e
Appar
atus.
Po
w
e
r System T
e
chno
logy
. 2
007
; 31(7): 55-58.
[6]
Li Z
e
-
w
e
n
,
Z
e
ng
Xia
ng-j
un,
T
an Dan. On-
l
ine
M
eas
uri
n
g
S
y
stem of
Di
elec
tric
Loss
of Ca
pacitiv
e
Appar
atus Bas
e
s on F
P
GA.
A
u
tomation of Electric Power System
. 20
06; 3
0
(12): 92-
96.
[7]
Xu
Da-k
e, Ya
n Z
han
g. On-li
ne mo
nitori
ng
s
y
stem o
n
HV
capac
itive t
y
p
e
eq
uipm
ent.
High
Vo
l
t
age
Engi
neer
in
g
. 2003; 29(
10): 35
-38.
[8]
Hamza
h
Eterudd
in. Re
duc
ed Di
el
ectric Losse
s for U
nder
grou
nd C
abl
e Distrib
uti
on S
y
stem
s
.
Internatio
na
l Journ
a
l of App
l
i
ed Pow
e
r Eng
i
neer
ing (IJAPE
).
2012; 1(1): 3
7
-46.
[9]
Han
g
Jia
n
-h
ua
, He Qing. Onl
i
ne Insu
lati
on
Monitori
ng S
y
s
t
em for capac
itive e
qui
pme
n
t and s
e
lecti
o
n
princi
pl
e.
High Voltag
e
Eng
i
ne
erin
g
. 200
1; 27
(5): 13-16.
[10]
Z
hu De-
h
e
ng,
Yan Z
h
ang. E
l
ectric eq
ui
pme
n
t co
n
d
itio
n m
onitor
i
ng
an
d f
ault d
i
a
gnos
is
techno
lo
g
y
.
Beiji
ng: Ch
in
a Electric Po
w
e
r Press. 2009: 6
6
-67.
[11]
Z
O
U Hon
g
-
y
a
n
, Z
hen
g Ji
a
n
-
y
on
g. T
i
me s
y
nchr
oniz
a
ti
on
base
d
on
GPS clock.
Electric P
o
wer
Autom
a
tion Equipment.
200
4; 24(12): 59- 6
1
.
[12]
K Vinoth Ku
mar. A Revie
w
of Vo
ltag
e
and Cu
rr
ent
Signatur
e Di
agn
osis in In
dustria
l Drives
.
Internatio
na
l Journ
a
l of Pow
e
r El
ectronics a
nd Driv
e Systems (IJPEDS)
. 201
1; 1(1): 75-
82.
[13]
T
e
chnical gu
id
e for Smar
t Substation. 2
009;
12: 25.
[14]
Lon
g F
eng. On
line mo
nitori
ng
research of d
i
elec
tric l
o
ss of capac
itive e
qui
pment. Master Dissertati
o
n
.
Che
ngd
u: Sout
h
w
est Jia
o
T
ong Univ
ersit
y
. 2
004.
[15]
F
U
Hong-z
h
i,
Z
hu Z
u
-
y
i. An inq
u
ir
y a
bout the time s
y
nc
hr
oniz
a
tion
in p
o
w
e
r
s
y
st
em.
Automation of
Electric Power System
s.
19
94
; 18(10): 44-4
6
.
Evaluation Warning : The document was created with Spire.PDF for Python.