TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 16, No. 3, Dece
mbe
r
2
015, pp. 463
~ 472
DOI: 10.115
9
1
/telkomni
ka.
v
16i3.876
3
463
Re
cei
v
ed Au
gust 9, 201
5; Re
vised O
c
to
ber 30, 20
15;
Accept
ed No
vem
ber 2
0
, 2015
Application of Coupled Inductors for Reducing
Switching Stresses in a Hybrid Power System
Dharani M*, Usha P
Dep
a
rtment of Electrical
and
Electron
ics En
gin
eeri
ng, Da
yana
nd
a Sagar
Coll
eg
e of Engi
neer
ing,
Bang
alor
e, Indi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: m.dharan
i80
7
@gma
il.com
A
b
st
r
a
ct
T
h
is pap
er pr
esents a n
o
ve
l meth
od
olo
g
y
using
co
up
le
d ind
u
ctor for hybrid
i
z
i
n
g multi in
pu
t
sources. A four
port three in
pu
t dc-dc convert
e
r is
chose
n
, tw
o photovo
l
tai
c
sources a
nd
a storage
medi
u
m
are i
n
terface
d
w
i
th the co
nver
ter. T
he tw
o so
urces c
an
s
u
p
p
ly th
e l
oad
as
w
e
ll as
ch
arge
the
battery. F
o
u
r
ind
epe
nd
ently
control
l
ed sw
it
ches ar
e e
m
p
l
oyed to
pr
ovi
d
e dc re
gul
ated
output. T
he
h
y
bridi
z
a
t
io
n of
the
sources a
nd c
onverter is
ach
i
eve
d
by cou
p
l
ed in
ducto
rs.
T
he results sh
ow
that
the presenc
e of cou
p
le
d
ind
u
ctors i
n
cre
a
ses th
e vo
lta
ge
gai
n
and
re
duces
the sw
it
chin
g stress. T
he
prop
ose
d
s
ystem
is ver
i
fi
ed
and va
lid
ated i
n
MAT
L
AB env
iron
me
nt un
der
various o
perat
ing co
nditi
on.
Ke
y
w
ords
:
hybri
d
i
z
a
t
i
on, DC-DC b
oost c
onverter, cou
p
l
ed
in
ductor, vol
t
age ga
in, sw
itchin
g stress, solar
cell w
i
th MPPT
algor
ith
m
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introducti
on
In re
ce
nt de
cade
s g
r
ee
n e
nergy
technol
ogy
is a
c
qui
ri
ng a
lot atten
t
ion toward
s
energy
prod
uctio
n
which
give
s
cl
ean
and
re
si
due f
r
ee
en
ergy
and
th
ese
give
s th
e motivation
of
prod
uci
ng po
wer
usi
ng re
newable e
n
e
r
gy so
urce
s.
The main
constraint in
usin
g ren
e
wable
sou
r
ce li
ke
solar i
s
m
a
tching lo
ad
re
quire
ment a
n
d
extra
c
ting
maximum p
o
wer from
it. To
overcome
th
is, multi i
n
p
u
t co
nverte
r topolo
g
y
are inve
stigate
d
which int
egrate
s
va
ri
ous
rene
wa
ble so
urces into a
uniqu
e stru
ct
ure.
De
pen
di
ng on the literatu
r
e surve
y
, now a days
variou
s
kind
s of
conve
r
ter topolo
g
ie
s h
a
ve be
en
pro
posed
due
to
the
advanta
ges of m
u
ltip
ort
conve
r
ters configuration
s
. One co
uld
sele
ct
a pro
p
e
r topolo
g
y by con
s
ide
r
in
g many asp
e
cts
su
ch a
s
b
u
lkiness, ove
r
all
co
st and
re
li
ability depe
nding
on the
appli
c
ation
s
.
Refe
ren
c
e [
1
]
pre
s
ent
s the
combi
nation
strategy o
n
m
u
lti port c
onv
erters fo
r sh
a
r
ing
swit
che
s
,
cap
a
cito
rs, a
nd
indu
ctors. A
high volta
ge
gain i
s
achie
v
ed in [2
]
by co
nne
cting
a converte
r t
o
a volta
ge
gain
extensio
n
ce
ll su
ch
a
s
cou
p
led
indu
ctor, i
s
olatio
n tran
sfo
r
me
r an
d
swit
ched
ca
pa
cito
rs.
Referen
c
e [3] explains the signifi
can
c
e o
f
coupled
in
d
u
ctor a
nd act
i
ve clamp ci
rcuits in DC-DC
conve
r
ters. The pape
r [4] has bee
n mainly focu
sed on the control sy
ste
m
of multiple-input
power ele
c
tronic convert
e
r
whi
c
h
ha
s bee
n d
e
vo
ted to
combin
e the
po
we
r
flowing
of m
u
lti-
sou
r
ce onb
oa
rd ene
rgy systems. Two po
werful
a
nd practical metho
d
s for maxim
u
m power poi
nt
tracking of P
V
systems a
r
e investigate
d
and comp
a
r
ed in pa
pe
r [5], the optimal control
strat
egy
for MPPT
strongly
dep
en
ds
on m
a
tch
i
ng loa
d
a
n
d
tracke
r
ch
a
r
acte
ri
stics.
The p
ape
r [
6
]
pre
s
ent
s a n
e
w FC-batte
ry hybrid power syst
e
m
analysi
s
and
desi
gn, whe
r
e active cu
rrent
sha
r
ing a
nd
sou
r
ce man
a
gement is a
c
hieve
d
. A three
-
p
o
rt se
ries re
so
nant
converte
r was
introdu
ce
d in
[7] to interfa
c
e rene
wabl
e
energy so
u
r
ces
and
the l
o
ad, alo
ng
wit
h
en
ergy
sto
r
age.
It was p
r
ove
n
by analysi
s
an
d expe
ri
mental re
sults that po
we
r flow bet
wee
n
port
s
can
be
controlled by
seri
es re
so
na
nce and pha
se-shifting
th
e sq
uare wave output
s of the thre
e po
rt
s.
The propo
se
d conve
r
ter i
n
[8] is su
ppli
ed by differe
nt DG sou
r
ce
s such
as a
PV array, a
Fuel
cell and a B
a
ttery. This stru
cture pro
v
ides accu
rat
e
MPPT of
PV array, FC optimal po
wer
operation a
n
d
battery
cha
r
ging/di
scha
rging p
e
rf
o
r
m
ances
simult
aneo
usly. Pa
per [9] p
r
op
o
s
e
s
the MPPT te
chni
que for t
r
ackin
g
maximum power
from the sol
a
r usi
ng sin
g
le stage MP
PT
controlle
r. Re
feren
c
e [10]
gives the co
mbination
a
l result of solar-battery sy
ste
m
who
s
e p
r
o
per
control me
ch
anism
co
ntrol
s
the o
u
tput throu
gh
o
u
ter
loop a
nd ren
e
wa
ble
sou
r
ce by inne
r lo
op.
Referen
c
e [1
1] pre
s
e
n
ts
a
co
ncept on
multiple
d
c
source
s
con
n
e
cted
in a
u
n
ique
man
n
e
r
in
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 463 – 472
464
whi
c
h th
e
sm
all ind
u
cto
r
redu
ce
s the
converte
r p
o
wer
l
o
sse
s
and
thereby redu
cing
the si
ze
of
the pa
ra
sitic
cap
a
cito
r. Th
e fou
r
p
o
rt
converte
r
top
o
l
ogy for hybri
d
sy
stem [1
2
-
14]
explain
s
the
controlling te
chni
que of m
u
ltiple source
s supplyi
ng i
n
dividually the
load u
nde
r va
riou
s op
eratin
g
con
d
ition
s
d
u
r
ing
differe
nt duty ratios.
Modeli
ng a
nd simulatio
n
for switchin
g
mod
e
DC-DC
power
suppli
e
s with
soft switchi
ng natu
r
e for imp
r
ovi
ng the efficie
n
cy of
sol
a
r
energy syste
m
s
are
given u
n
d
e
r [15
-
16].
Referen
c
e
[17]
gives th
e co
ntrolling
tech
nique fo
r fou
r
port bi
dire
cti
onal
DC-DC
conv
erter fo
r PV/ battery
syste
m
s. Seein
g
to the overa
ll idea on th
ese
con
c
e
p
ts a n
e
wly
prop
osed
DC-DC converte
r is p
r
e
s
ente
d
in this p
a
p
e
r. Figu
re 1
gives the ov
erall top
o
logy
of
usin
g multi i
nputs i
n
a h
y
bridized ma
nner
wh
os
e
controlling
st
rategy de
pen
ds o
n
the in
put
sou
r
ces
whi
c
h is reg
u
lated
by duty ratio of the switche
s
.
Figure 1. Block
Diag
ram o
f
High Voltag
e Gain Multi-i
nput DC-DC
Conve
r
ter
The organi
za
tion of the paper is a
s
follo
ws: t
he ope
ra
ting prin
cipal
of the converter are
dis
c
u
s
s
ed u
n
der
se
ct
ion I
I
.
The op
er
at
ing mo
de
s of
t
he co
nv
ert
e
r
are
dis
c
u
s
se
d in
se
ct
ion I
II.
The
p
e
rfo
r
ma
nce wi
se re
sults
a
r
e simul
a
ted
an
d
vali
dating re
sults
are explain
e
d
in se
ction
IV
and future d
e
v
elopment an
d scope o
n
this are
a
is di
scussed u
nde
r V.
2. Principal
of Oper
ation
This
se
ction
deal
s with th
e ba
sic p
r
in
ci
pal und
er
whi
c
h the hi
gh v
o
ltage gai
n m
u
lti input
DC
-D
C
boo
st
conv
e
r
t
e
r
w
o
rk.
I
t
ba
si
call
y
con
s
ist
s
of
three
dc source
s
which a
r
e integ
r
ated i
n
a
unique manner to achieve maximum
reliability. One of such source
s is a bi
-di
r
ectional battery
whi
c
h ha
s
ch
argin
g
/disch
a
r
ging
ca
pabili
ty. The ot
her two source
s are
sola
r ce
lls which
gives
variable d
c
sou
r
ce. The
output voltage is regul
ated und
er
variou
s ope
rating co
nditi
ons
depe
nding
o
n
the d
u
ty ra
tio of the
swi
t
che
s
. It con
s
ist
s
of fou
r
MOSFET swi
t
che
s
op
erating
unde
r differe
nt instant to
control the
pe
rforman
c
e
of the converte
r
topol
ogy. Two sol
a
r p
anel
s at
its extrem
e
operating
ra
nge u
nde
r h
i
gh irradi
an
ce level i
s
capabl
e of
sa
tisfying the l
oad
deman
d. If th
ere i
s
any de
cre
a
se in the
input
so
urce range the d
e
crea
sed level i
s
co
mpe
n
sated
by the use b
a
ttery whi
c
h i
s
discu
s
sed i
n
deta
il in three differe
nt operatin
g mod
e
s. A cou
p
le
d
indu
ctor i
s
used in betwee
n
t
he so
urce
block an
d co
nverter bl
ock cre
a
ting a isolation bet
we
en
them and re
d
u
cin
g
the swit
chin
g stre
ss across
switch
es and p
r
od
u
c
ing hig
h
gai
n comp
arativ
ely.
Inducto
rs
L
1
and L2
are source
indu
cta
n
ce
of dep
en
dent sou
r
ce
s.
The
conve
r
ter
ope
ration
i
s
also o
perated
under
soft switchi
ng
natu
r
e to avoid switchi
ng lo
sses.
3. Opera
t
ing Modes o
f
th
e Conv
erter
The p
r
op
ose
d
multi-in
put
dc-dc hybri
d
boo
st
co
nvert
e
r top
o
logy in
tegrating
two
PV cells
and a battery
is as
sho
w
n i
n
the Figure 2.
The co
nverte
r stru
ctu
r
e interfaces two input
po
wer
source
s V1 an
d V2. Where V1 and
V2
are
ta
ken
as ren
e
wable
ene
rgy sou
r
ces normally
solar
pan
els are empl
oyed i
n
this st
ructu
r
e.
Since
sola
r p
anel outp
u
t depen
ds o
n
the nominal
we
ather
con
d
ition and irradi
ation level of su
n,
battery is u
s
ed a
s
th
e
storag
e el
eme
n
ts fo
r
sup
p
lying loa
d
d
u
ring lo
w i
n
ten
s
ity level of
sola
r
energy. Four MOSFET switch
es a
r
e u
s
ed in the
circuit for allo
wi
ng hybridi
z
ati
on between t
h
e
sou
r
ces. Sin
c
e four switch
es a
r
e empl
o
y
ed in t
he circuit the voltage stress on
the swit
che
s
is
found to
be
high. To
ove
r
co
me thi
s
i
n
con
s
i
s
ten
c
y
cou
p
led
indu
ctor is incorp
orated
into t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Coupl
ed Ind
u
ctors for
Re
duci
ng Sw
itching Stre
sses in a Hyb
r
id…
(Dha
ra
ni M)
465
circuit b
e
twe
en the t
w
o
source
s a
nd a
boo
sting
ac
ti
on is pe
rform
ed. The
duty ratio lie
s in
the
rang
e of 0.6-0.7 for differe
nt
operatin
g mode
s of con
v
erter.
Operating m
ode
s of the conve
r
ter ma
inta
ined at 2
0
kHz switch
ing frequ
en
cy and at
spe
c
ified d
u
ty ratio are:
1) No b
a
ttery contri
bution
mode.
2) Battery discha
rgin
g mod
e
.
3) Battery c
h
arging mode.
Figure 2. Circuit topology
o
f
the propo
se
d system
The
choi
ce
of sele
cting
the mode
of
operation
depe
nd
s o
n
the state
of input
requi
rem
ents;
co
ntrol l
ogi
c is d
e
fined
fo
r this pa
rticul
ar
ca
se
usi
n
g duty ratio
adju
s
tment.
The
algorith
m
whi
c
h state
s
the
choi
ce of mo
de sel
e
ctio
n is as give
n in the Figu
re 3.
Figure 3. Switchin
g algo
rith
m of operatin
g mode
s
3.1. First Op
erating Mo
d
e
In this operati
ng mode, two
input powe
r
sou
r
ces V1 a
nd V2 are su
pplying the lo
ad and
battery ha
s n
o
existen
c
e
d
u
ring thi
s
m
o
de. This
ope
rating mod
e
is said to
be a
basi
c
o
perating
mode
of the
co
nverter.
This i
s
achi
eved un
de
r
maximum irradian
ce l
e
vel
.
Thre
e diffe
rent
swit
chin
g
states
are
o
b
tain
ed u
nde
r thi
s
ope
rating
m
ode. T
he
switchin
g p
a
ttern
for thi
s
mod
e
is
as de
picte
d
in the Table1.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 463 – 472
466
Table 1. Swit
chin
g States of mode 1
S
w
itching
Sta
t
e
Dut
y
C
y
cle
S1
S2 S3 S4
State 1
0 < t < d
1
T O
FF
O
N
O
N
O
FF
State 2
d
1
T < t < d
2
T
O
N
O
FF
O
FF O
N
State 3
d
2
T
< t
< T
O
FF
O
FF
O
FF
O
FF
Figure 4. First operating m
ode
Applying voltage bal
an
ce l
a
w to this mo
de,
the followi
ng expre
s
sio
n
s are obtain
ed:
L
∶d
T
V
i
.
r
d
T
V
r
.
i
M
V
V
(
1
)
L
∶d
T
V
i
.
r
d
T
V
r
.
i
M
V
V
(
2
)
C∶
1d
Ti
1d
Ti
(
3
)
I
batt
=0,
P
ba
t
t
=
0
(
4
)
It is obse
r
ved
that the battery cu
rrent a
nd ba
ttery po
wer
are
ze
ro,
which justifie
s that no
power i
s
d
e
li
vered from t
he batte
ry a
nd p
r
ove
s
th
at load i
s
sat
i
sfied o
n
ly by
the two
voltage
sou
r
c
e
s V
1
a
nd V
2
.
3.2. Second Mode of O
p
e
r
ation
In this operating mode
we can o
b
serve three
in
put so
urces o
p
e
r
at
ed to satisfy the load
deman
d un
d
e
r ap
pro
p
ri
ate swit
chin
g
con
d
ition.
Under thi
s
m
ode we hav
e four different
swit
chin
g sta
t
es and
sin
c
e there i
s
a existen
c
e of
battery whi
c
h
is going to
discha
rge in
this
mode. Thi
s
mode of o
peration is
said
to be battery
discha
rgin
g mode. Thi
s
mode
come
s into
existen
c
e d
u
ring any po
we
r de
crea
se in
V1 and
V2.
The de
crea
sed amo
unt of
power from the
sola
r so
urce
s is sup
p
lied b
y
the battery and satisfie
s the load d
e
ma
nd maintaini
n
g the reg
u
late
d
output voltag
e con
s
tant.
Table 2. Swit
chin
g States of mode 2
S
w
itching
Sta
t
e
Dut
y
C
y
cle
S1
S2 S3 S4
State 1
0 < t < d
4
T
ON
OF
F
ON
ON
State 2
d
4
T < t < d
1
T
O
FF
O
N
O
N
O
FF
State 3
d
1
T < t < d
2
T
O
N
O
FF O
FF O
N
State 4
d
2
T
< t
< T
O
FF
O
FF
O
FF
O
FF
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Coupl
ed Ind
u
ctors for
Re
duci
ng Sw
itching Stre
sses in a Hyb
r
id…
(Dha
ra
ni M)
467
Figure 5. Second op
eratin
g
mode
Applying voltage bal
an
ce l
a
w to this mo
de,
the followi
ng expre
s
sio
n
s are obtain
ed:
L
∶d
T
V
i
.r
V
1
d
T
V
r
.i
V
d
d
T
V
r
.
i
MV
V
(5)
L
∶d
T
V
i
.r
V
1d
T
V
r
.i
V
d
d
T
V
r
.
i
MV
V
(6)
C∶
1d
Ti
1d
Ti
(
7
)
Battery dis
c
harging i
batt
=
d
iL
i
L
(
8
)
P
batt
=V
b
(
d
iL
i
L
(
9
)
The first stat
e in thi
s
mo
d
e
is
battery di
sc
harging
sta
t
e whi
c
h
com
b
ine
s
with
th
e so
urce
V1 to pro
d
u
c
e as th
e sin
g
l
e
so
urce , th
e de
cre
a
se i
n
po
wer
of V1 is n
o
w in
serie
s
with
bat
ter
y
power to pro
duce the set
range, the o
t
her thr
ee
states depi
cts
the same op
eration a
s
ba
sic
mode.
3.3. Third Mode of Op
er
ation
This
mod
e
o
f
operation i
s
explaine
d fo
r cases whe
n
re
ne
wabl
e
energy sou
r
ces
are
use
d
at its p
eak
ran
ge a
nd battery b
a
ckup i
s
p
r
o
v
ided und
er
off peak
peri
ods. In off p
e
a
k
perio
ds the p
o
we
r d
e
crea
se i
s
comp
e
n
sate
d by
ex
ternal
ene
rgy
storage
devi
c
e
s
to me
et
the
load dem
and
and in pea
k peri
o
d
s
these e
nergy st
ora
ge devi
c
e
s
su
ch a
s
battery is b
e
ing
cha
r
ge
d for furthe
r use. This mod
e
of oper
ation is
explained fo
r peak p
e
rio
d
of renewabl
e
sou
r
ces a
nd
has fou
r
ope
rating state
s
during
whi
c
h the battery is
getting ch
arg
ed and he
nce it
is sai
d
to be chargi
ng mo
de
.
Figure 6. Third Operating
Mode
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 463 – 472
468
Table 3.Swit
ching States of
mode 3
S
w
itching
Sta
t
e
Dut
y
C
y
cle
S1
S2 S3 S4
State 1
0 < t < d
4
T O
FF
O
N
O
FF
O
FF
State 2
d
4
T < t < d
1
T
O
FF
O
N
O
N
O
FF
State 3
d
1
T < t < d
2
T
O
N
O
FF O
FF O
N
State 4
d
2
T
< t
< T
O
FF
O
FF
O
FF
O
FF
P
ma
x
(battery Charging)
=
V
d
.i
L
d
.i
L
(
1
0
)
L
∶d
T
V
i
.r
1d
T
V
r
.i
V
d
d
T
V
r
.
i
V
MV
V
(11)
L
∶d
T
V
i
.r
1
d
T
V
r
.i
V
d
d
T
V
r
.
i
V
MV
V
(12)
C∶
1d
Ti
1d
Ti
(
1
3
)
I
d
d
iL
d
d
iL
(
1
4
)
P
batt
= V
b
[
d
d
iL
d
d
iL
(
1
5
)
Duri
ng thi
s
m
ode th
e
sou
r
ce V1 a
nd V2
sup
p
lie
s both
battery a
n
d l
oad
whi
c
h
m
a
ke
s th
e
regul
ated out
put DC voltag
e to remain
consta
nt.
4. Simulation Resul
t
s
The pro
p
o
s
e
d
conve
r
ter
topology is
been validat
ed in MATLAB environm
ent. The
behavio
r of t
he conve
r
ter in all the t
h
ree
mod
e
s
are
simul
a
te
d and
the result
s a
r
e b
een
tabulated. Th
e regul
ated d
c
output is fo
und to be 11
0v and 30w p
o
we
r. A lamping load of 6w is
cho
s
e
n
an
d the pe
rforman
c
e i
s
an
alyze
d
. Two PV
cells a
r
e m
o
d
e
led
with ma
ximum po
wer of
30w
and th
e
behavio
r of
it unde
r MP
PT con
d
ition
is a
s
given
in the Fig
u
re 7 an
d 8.
The
maximum po
wer i
s
extra
c
ted usi
ng pe
rturb an
d ob
se
rve method u
nder 1
000
w/
m
2
irradi
ation
.
Figure 7. P-V Characte
ri
stics of Sola
r Panel
Figure 8. I-V Cha
r
a
c
teri
stics of Solar Pa
nel
It is
see
n
that
the m
a
ximu
m po
we
r extracted
from
th
e sola
r
cell
using MPPT
alg
o
rithm i
s
30w for
nomi
nal o
perating
voltage
17v, the
corre
s
p
o
n
ding
P-V a
n
d
I-V
curve
s
are
as sho
w
n
in
the Figure 7
and 8.usi
ng this sol
a
r cell
s as the
two
input sou
r
ce
s and battery, the conve
r
ter is
simulate
d in
MATLAB. All the thre
e mode
s of
the conve
r
ter re
sult
s are see
n
with
its
corre
s
p
ondin
g
duty ratio. Dep
endin
g
o
n
the si
mulati
on re
sults th
ree mode
s a
r
e
discusse
d.
First simula
tion stage
:
Duri
ng thi
s
stage the
con
v
erter i
s
op
e
r
ated o
n
ly u
nder t
w
o
rene
wa
ble
so
urces. thi
s
co
mes i
n
to existence
du
ring
pea
k irradi
ation level
s
wh
ere th
ere
is
no
need fo
r addi
tional po
wer t
o
be supplie
d
to satisfy the load de
ma
nd, and thi
s
is sai
d
to be t
he
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Coupl
ed Ind
u
ctors for
Re
duci
ng Sw
itching Stre
sses in a Hyb
r
id…
(Dha
ra
ni M)
469
basi
c
set up
of the co
nvert
e
r. T
he
outpu
t of the DC-DC converte
r i
s
same i
n
all
the thre
e sta
ges
and inp
u
t po
wer
remai
n
s
con
s
tant un
d
e
r vario
u
s
circum
stan
ce
s.
Second simulation
s
t
ag
e:
Thi
s
stag
e
of the convert
e
r i
s
said to
b
e
battery di
schargi
ng
stage
si
nce t
he in
put p
o
wer d
e
cre
a
se
due to
vario
u
s
we
ather chang
e
can
b
e
compe
n
sated
usin
g the
ad
ditional
ene
rgy sto
r
ag
e
medium.
The
battery volt
age
co
me
s i
n
seri
es with
the
corre
s
p
ondin
g
so
urce d
e
livering voltag
e less
than t
he pre set voltage. The
duty ratio un
de
r
whi
c
h this mo
de is op
erate
d
is as
sho
w
n
in the Figure
9.
Third simulation sta
g
e:
This sta
ge of
the converte
r is ch
osen d
u
ring o
p
timu
m rang
e
input from bo
th the solar
cell
s and cap
able of
sati
sfying both loa
d
deman
d an
d cha
r
gin
g
the
battery. Du
rin
g
this
stage
b
a
ttery also be
haves
as
l
o
a
d
and th
e ch
argin
g
curren
t across b
a
ttery
durin
g this m
ode of ope
rati
on is a
s
sh
own in the Figure 17.
The
swit
chin
g patterns
of all the t
h
ree
sta
g
e
s
are
discu
s
sed i
ndividu
ally. The
gene
rali
zed
switchi
ng patt
e
rn i
s
a
s
sh
o
w
n in the Fi
g
u
re 8
whi
c
h
allow all th
e three
so
urce
s to
sup
p
ly the load req
u
ireme
n
t.
Figure 9. Switchin
g Pattern
The re
gulate
d
DC o
u
tput voltage an
d cu
rre
nt unde
r al
l three ope
r
ati
ng mode
s is
as sho
w
n in the
Figure 10 an
d Figure 11.
Figure 10. Ou
tput Voltage Wavefo
rm
Fi
gure 11. Ou
tput Current
Wavefo
rm
The p
r
e
s
en
ce of co
uple
d
indu
ctor all
o
ws i
n
le
ss
switchi
ng
stre
ss
and
soft
swit
chin
g
behavio
r of the swit
che
s
is
also
see
n
as i
n
the Figure1
2 and Figu
re
13.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 463 – 472
470
The soft swit
chin
g nature allows the switch
es to op
erate un
de
r either current
zero o
r
voltage
zero
to re
du
ce
po
wer lo
ss a
c
ross the
switches which
co
ntribute
to ov
erall
co
nvert
e
r
losse
s
and t
here
b
y incre
a
sin
g
the overall
conve
r
te
r efficien
cy. The stress a
c
ro
ss switche
s
for
110v dc o
u
tp
ut is found to be in the ran
g
e
of 5-10v for all the four switch
es.
Figure 12. Soft Switching Behavior Of M
O
SFET Switches
Figure 13. Switchi
ng Stre
ss A
c
ro
ss M
O
SFET Switches
The cu
rre
nt
a
c
ro
ss sou
r
ce indu
ctan
ce
fo
r
de
pen
dent
sou
r
ces for
al
l the three m
o
de
s is
as sho
w
n in the Figu
re1
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Coupl
ed Ind
u
ctors for
Re
duci
ng Sw
itching Stre
sses in a Hyb
r
id…
(Dha
ra
ni M)
471
Figure 14. Inducto
r Cu
rren
t
The batte
ry o
f
capa
city 6v and 4.5Ah i
s
app
lie
d, the d
i
scharging
ca
pacity of the
battery
durin
g disch
a
r
ging m
ode of
operatio
n is
as sho
w
n in the Figu
re 16.
Figure 15. Battery current
Figure 16. Battery voltage
The perfo
rm
ance of the battery durin
g cha
r
gin
g
mode i.e the battery current durin
g
cha
r
gin
g
mod
e
is as
sho
w
n
in the Figure
15.
Figure 17. Battery charging
current
5. Conclusio
n
A hybrid boo
st DC-DC co
nverter
with less
switchi
n
g
stress an
d soft switchi
ng behavio
r
for sol
a
r ap
pl
ication
s
is p
r
opo
sed in thi
s
pap
er. The
powe
r
flow
across the lo
ad is regulat
ed
using duty ratio of the
swi
t
ch
es, depending
on the
utilization stat
e of battery
three modes
of
operation
are
define
d
and
the re
sults are
tabul
ated. The co
nver
te
r mo
de
eq
uat
ions a
r
e fo
un
d
usin
g voltag
e balan
ce la
w and the
result
s are seen in the
MATLAB en
vironme
n
t. Stress
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 463 – 472
472
redu
ction
ach
i
eves in
high
er voltage
gai
n and l
e
ss
e
r
conve
r
ter l
o
sse
s
which are validated i
n
the
results t
here
f
ore th
e ov
erall
efficien
cy of
the
converte
r i
s
i
n
crea
sed.
T
he impl
eme
n
ted
methodol
ogy
is a b
e
tter sui
t
for pro
d
u
c
in
g high
er volta
ges from
sola
r ene
rgy
sou
r
ce
s with
simp
le
desi
gn and
l
o
we
r co
st.
T
h
is ca
n also
be
im
pleme
n
ted
o
n
other alternativ
e
en
ergy
so
urce
s for
the effective use of poll
u
tion free en
erg
y
produ
ction.
Referen
ces
[1]
SH Choung, A
Kw
asinski.
Mul
t
iple-i
np
ut DC-
DC co
nverter t
opo
log
i
es c
o
mparis
on.
In Pr
o
c
. 34th A
nnu
.
Conf. IEEE Ind. Electron. 200
8: 2359-
23
64.
[2]
A Huan
g. A
vision for the future grid
, In Proc. IEEE Po
w
e
r Energ
y
Soc. Ge
n. Meet. 2010:
1–4
[3]
W
Li, X He. R
e
vie
w
of
no
n i
s
olate
d
hig
h
-step-
u
p
D
C
/DC
converters
in
photov
olta
ic gr
id-co
nnecte
d
app
licati
ons.
IEEE Trans. Ind.
Electron
. 20
11;
58(4): 123
9-1
250.
[4]
JL D
uarte, M
Hen
d
ri
x, MG
Simoes. T
h
ree
-
port b
i
dir
e
ctio
nal
conv
erter f
o
r h
y
b
r
id
fuel
cell s
y
st
ems.
IEEE Trans. P
o
wer Electron.
200
7; 22(2): 48
0-48
7.
[5]
N Kato, K Kurozumi,
N Sus
u
ld, S Muro
yam
a
.
Hybrid
pow
e
r
supply syste
m
co
mpose
d
o
f
photovo
l
tai
c
and fue
l
-cel
l systems.
In Proc. Int.
T
e
lecommun. Energ
y
C
o
nf. 2001: 63
1-6
35.
[6]
OC Onara, M Uzuno
glu, M
S
Alam. Modelin
g,
control
and sim
u
lati
on
of an auton
omous
w
i
n
d
turbin
e/ph
otov
oltaic/fue
l
cel
l
/ultra
ca
pa
ci
to
r hy
b
r
i
d
po
w
e
r sy
ste
m
.
J. Power Sources.
2008; 1
85(
2):
127
3-12
83.
[7]
R Gopin
a
th, S Kim, JH Hahn,
PN Enjeti, MB Year
y
,
JW
Ho
w
z
e. D
e
ve
lop
m
ent of a lo
w
cost fuel ce
l
l
inverter s
y
stem
w
i
th DSP c
ont
rol.
IEEE Trans. Power Electron.
2004; 1
9
(5): 125
6-12
62.
[8]
W
i
de Input Ran
ge DC to DC Conv
e
r
ter. De
sign
Note DN0
60
0
7
/D. ON Semicon
ductor.
www
.
ons
emi.c
o
m.
[9]
W
uhua L
i
, Xi
a
ngn
ing H
e
. R
e
vie
w
of hig
h
step DC-
DC
converter i
n
p
hotovo
l
taic gri
d
conn
ected
app
licati
on.
IEEE Trans. on Industri
a
l Electr
onics.
20
11; 58
(4).
[10] Miaos
en
S
hen
,
F
ang Z
h
eng
P
eng
an
d L
eon
M.
T
o
lbert.
Mul
t
ilevel
DC
–DC Po
w
e
r Conv
er
sion
S
y
ste
m
With Multiple DC Sources.
IEEE TRANSACTIONS ON
P
O
WER ELECTRONICS.
2008; 23(1).
[11]
T
s
ai-F
u W
u
, jeng-Gu
ng Ya
n
g
.
Soft-s
w
itch
i
ng bi-
d
irecti
on
al isol
ated ful
l
-
b
rid
ge conv
erter
w
i
t
h
active
and p
a
ssiv
e
sn
ubb
ers.
IEEE Trans. on Industrial Electr
onics.
2014; 6
1
(3).
[12] Ben
Y
o
rk
,
W
enso
ng Y
u
,
Ji
h-She
ng.
A
n
Integrated
Bo
ost Res
ona
nt Conv
erter fo
r Photov
olta
i
c
Appl
icatio
ns.
IEEE TRANSACTIONS ON
P
O
WER ELECTRONICS.
2013
; 28(3).
[13] F
a
rzam
Ne
jab
a
tkhah
,
S
a
e
ed
Dan
y
a
li, S
e
yed
Hosse
in
Hoss
eini
,
M
ehr
an S
aba
hi.
Mo
del
in
g an
d C
ontr
o
l
of a Ne
w
T
h
r
ee-Inp
u
t DC
–
DC Bo
ost Co
nverter for H
y
brid PV/F
C
/Ba
tter
y
Po
w
e
r S
y
stem.
IEEE
TRANSACTIONS ON PO
WE
R ELECTRONICS.
2012; 2
7
(5
).
[14]
Yang
Ha
n. A
Ped
a
g
ogic
a
l
Appr
oach
for
Mo
d
e
li
ng an
d
Sim
u
lati
on of
S
w
itch
ing
Mode
DC-D
C
Conv
erters for Po
w
e
r El
ectron
ics Course.
T
E
LKOMNIKA Indon
esia
n Jour
nal of
Electric
al
Engin
eeri
n
g
.
201
2; 10(6): 13
19-1
326.
[15]
Alireza
Kav
i
an
i
-
Arani, A
lirez
a
Gheiratma
nd.
Soft
S
w
itchi
ng
Boost C
onvert
e
r So
lutio
n
for
Increase
th
e
Efficienc
y
of S
o
lar E
ner
g
y
S
ystems.
T
E
LKOMNIKA Indo
ne
sian J
our
nal
of Electrical
En
gi
neer
ing.
20
15
13(3): 44
9-4
5
7
.
[16] Shan
gg
uan,
X
uanfe
ng,
Huim
in Y
ang,
Yon
g
l
i
an
g W
a
n
g
, Be
nlo
ng S
h
i. T
h
e
Desi
gn
a
nd S
i
mulati
on
o
f
Improved a
nd
Multipl
e
x Boost
Converter.
T
E
LKOMNIKA Indon
esia
n Jour
nal of
El
ectrica
l
Engi
ne
erin
g
.
201
4; 12(4): 25
99-2
605.
[17]
Dhar
ani. M, P Usha.
A Nov
e
l T
opolo
g
y
fo
r Control
lin
g a
F
our Port DC
-DC Boost C
o
nverter for
a
Hy
brid PV/PV/Batter
y
Po
w
e
r
S
y
stem.
T
E
L
K
OMNIKA Ind
ones
ian
Jo
urn
a
l of E
l
ectric
al
Eng
i
ne
erin
g
.
201
5; 14(3): 44
6-45
4.
Evaluation Warning : The document was created with Spire.PDF for Python.