TELKOM
NIKA
, Vol.11, No
.11, Novemb
er 201
3, pp. 6673
~6
678
e-ISSN: 2087
-278X
6673
Re
cei
v
ed Ma
y 6, 2013; Re
vised June
2
3
, 2013; Acce
pted Jul
y
25,
2013
Electronically Tunable Impedance-Matching Networks
for Intelligent RF Power Amplifiers
Liang Li, Taijun Liu*, Yan Ye, Xiaojun
Luo, Gang Cao, Xiaofeng
Guo, Ming Hui
Coll
eg
e of Information Sci
enc
e and En
gi
neer
ing, Ni
ngb
o Un
iversit
y
, 8
18 F
e
ngh
ua R
oad, N
i
ng
bo, Z
heji
a
n
g
,
315
21
1, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: liutaij
un
@nb
u
.edu.cn
A
b
st
r
a
ct
T
h
is pap
er p
r
esents the
si
mu
lati
on a
nd
opti
m
i
z
at
ion
d
e
sig
n
of the
electro
n
ica
lly t
una
bl
e
impe
danc
e-
ma
tching n
e
tw
orks for intelli
g
ent RF pow
er amp
lifiers i
n
a cogn
itive
radio syste
m
.
Reco
nfigur
ab
le
ele
m
e
n
ts, such as varacto
r
s and RF
sw
itches are u
t
ili
z
e
d to ac
hi
eve the dy
na
mi
c
impe
danc
e
ma
tching
both i
n
t
he i
nput a
nd
o
u
tput
matchi
ng
circuit, provi
d
i
ng co
arse a
nd
fine tun
i
n
g
of th
e
target i
m
pe
da
nces w
i
th low
loss and exc
e
lle
nt i
m
pe
da
n
c
e covera
ge f
r
om 5
00M
H
z
to 800MH
z
.
T
h
e
topol
ogy of var
a
ctor mo
de
l
is illustrate
d to ensur
e the pre
c
ision of
si
mu
l
a
tion. In add
iti
on, hig
h
-prec
i
s
i
on
bias v
o
ltage controlli
ng system
is
designed
to improve t
he
nonlin
ear pr
oblem
c
aus
ed by
the varactor. The
simulati
on
res
u
lts d
e
m
onstr
ate the
exc
e
ll
ent p
e
rfor
ma
n
c
e of th
e tu
nab
le
netw
o
rk
s, satisfying
th
e
requirem
ent of the c
ognitive radio system
s.
Ke
y
w
ords
:
co
gnitiv
e
radi
o systems, varacto
r
, RF s
w
itch, i
m
p
e
n
denc
e-
matchin
g
netw
o
r
k
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Curre
n
tly, with the
rapid
developm
ent
of
wi
rele
ss
com
m
uni
cat
i
on s
e
rv
i
c
e,
su
ch a
s
wirel
e
ss lo
ca
l area n
e
two
r
k
(WLAN) a
nd wi
re
le
ss person
a
l are
a
netwo
rk (WPAN), with
an
increa
sing
n
u
mbe
r
of pe
ople acce
ss to
the
Intern
et throu
gh
WLAN,
WPA
N
, the
sp
ect
r
um
resou
r
ces b
e
c
ome le
ss an
d less, bringi
ng the pro
b
le
m of the sca
rcity of radio electroma
gne
tic
s
p
ec
tr
um [1
]. C
o
gn
itive
R
a
d
i
o
s
y
s
t
em c
a
n
mon
i
to
r
th
e
us
age
o
f
sp
ec
tr
um r
e
s
o
urc
e
s b
y
spe
c
tru
m
se
n
s
ing a
nd intell
igent and
systematic
lea
r
ni
ng, adju
s
ting the transmission paramete
r
s
dynamically to use the
sp
ectru
m
re
sou
r
ce
s effi
cie
n
tly. Cognitive Radi
o System can ma
ke
full
use
of the idl
e
sp
ect
r
um
reso
urce
s in ti
me and
sp
ace, so a
s
to
solve the prob
lem of spe
c
trum
resou
r
ces ten
s
ion effe
ctively.
RF
power am
plifier i
s
the
mo
st
power consumption
a
nd mo
st expe
nsive key co
mpone
nt
in wir
e
le
ss
co
mmuni
cat
i
on
sy
st
em [
2
]
.
A
s
f
o
r
Co
g
n
itive Ra
dio
syst
em, RF p
o
we
r amplifie
r u
s
ed
sho
u
ld
be
a
b
le to
be tu
ned to
any
operating f
r
e
quen
cy rapid
l
y among
th
e coverin
g
b
and.
Therefore,
the
re
sea
r
ch
on
vara
cto
r
s an
d
RF
Switche
s
–tu
n
ed el
ect
r
oni
cally imped
an
ce
matchin
g
net
works are
suitable for th
is kind of
RF powe
r
am
plifier, havin
g some reali
s
tic
signifi
can
c
e i
n
the con
s
tru
c
tion of Co
gni
tive Radio sy
stem.
The main th
ought
s of this pap
er focus on introd
ucin
g re
confi
gura
b
le elem
ents to
achi
eve the
dynamic imp
edan
ce
matching b
o
th in
t
he inp
u
t and
output mat
c
hi
ng ci
rcuit of
RF
power
amplifi
e
r in
Cognitiv
e
Radio
sy
ste
m
[3], t
he p
r
o
posed m
e
tho
d
can
gre
a
tly redu
ce
the
si
ze
and
circuit
co
mplexity of ci
rcuit. Alo
ng
with the matu
rit
y
of RF tu
nab
le compo
nent
s, the
cove
rin
g
rang
e of impe
dan
ce matchi
ng network wi
ll becom
e wid
e
r [4].
This paper i
s
organized as
follows: In
section II, descript
ion i
s
m
ade on the previous
works, in a
ddi
tion, both the
theory
a
nd
th
e
structu
r
e of our wo
rk
are
given. At the
same
time, it
is
necessa
ry to kno
w
the cha
r
a
c
teri
stics of vara
cto
r
s. A desi
g
n methodol
o
g
y for tuna
ble
impendence
matching net
work is
proposed in section III, with the method of designing high-
pre
c
isi
on bia
s
voltage co
ntrolling
syst
em whi
c
h is done to improve the no
nlinea
r pro
b
l
e
m
cau
s
e
d
by vara
ctor. Se
ction IV describes the
exp
e
rime
ntal re
sults of elect
r
onically tune
d
impeda
nce m
a
tchin
g
net
works a
nd the
high-preci
s
io
n bia
s
voltag
e su
pplie
r. Finally, applications
of the desig
n are di
scusse
d, following a
brief co
ncl
u
si
on.
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 11, Novemb
er 201
3: 667
3 – 6678
6674
2. The Propo
sed Me
thod
Traditio
nal
broadb
and
RF
power amplifi
e
r m
a
tc
hi
ng t
e
ch
niqu
es ca
n be
cl
assifie
d
into
three
cate
go
ri
es: T
he first
method i
s
to
use
the
novel
tran
sformer-matchin
g n
e
tworks a
nd
active
matchin
g
to increa
se the
width of PAs’
freque
nc
y re
spo
n
se. With
the advanta
ge of solving
the
probl
em of la
rge o
p
timal i
m
peda
nce ch
ange
s, but
brings a l
o
wer
efficien
cy an
d output po
wer,
and the maxi
mum output p
o
we
r will cha
nge a
c
cordi
n
g to different frequ
en
cy [5].
The
se
con
d
way i
s
to d
e
si
gn the
multi-b
and m
a
tchi
ng
network for
both inp
u
t an
d outp
u
t
port, depe
ndi
ng on the RF switche
s
to chang
e wo
rking state
s
a
nd improve t
he output po
wer
and PAE effectively, with the disadvant
age of much more
compl
e
x circuit [6].
The third ide
a
that use
d
in
this pap
er i
s
to introdu
ce
reco
nfigurable
element
s to achi
eve
the dynami
c
impeda
nce matchin
g
bot
h in the i
npu
t and output
matchin
g
circuit. Althoug
h it
requi
re
s m
u
ch high
er
abili
ty of quick tu
ning
(fre
q
uen
cy agile
) [7],
the si
ze
an
d complexity of
matchin
g
net
works are
re
duced sig
n
ificantly,
in
ad
dition, the
efficien
cy a
nd
output p
o
wer are
both gua
rant
eed.
Usually,
π
-an
d
τ
-type stru
ctures a
r
e utili
zed to achi
ev
e a wide tuni
ng ran
ge [8-1
1], but
a
cert
ai
n kind
o
f
sep
a
r
a
t
e
st
r
u
ct
ur
e ha
s
a
cert
ai
n frequ
ency
ra
nge
a
nd b
and
width
co
nst
r
aint
s f
o
r
the power am
plifier in pract
i
cal ap
plicatio
ns.
Powe
r a
m
plifiers al
ways
work
with hi
gh
po
we
r, there
f
ore,
DC bl
o
c
k cap
a
cit
o
r must
be
use
d
to
prevent the
DC v
o
ltage to
imp
a
ct
syst
em.
T
h
is
pap
er ha
s ado
pted
a
combinatio
n of
π
-
and
τ
-type structure
after many
experi
m
ents, the m
a
in prin
cipl
e is sh
own in Figure 1.
Figure 1. Structure of Tu
na
bl
e Impend
en
ce Mat
c
hing
Network
The ju
nctio
n
cap
a
cita
nce
of vara
ctor i
s
det
ermi
ned
by the bia
s
v
o
ltage p
r
ovid
ed, wh
en
the reverse b
i
as on the PN junctio
n
is chang
ed,
the capa
citan
c
e of it will be
influence
d
. The
highe
r
reverse bia
s
, the
l
e
ss ju
nctio
n
cap
a
cita
nc
e,
the relation
ship b
e
twe
en
the reverse
bias
and j
u
n
c
tion
cap
a
cita
nce i
s
n
onlin
ear.
Therefore,
at
tention
sho
u
l
d
be
p
a
id to
the a
c
curacy
of
reverse
bia
s
l
oade
d on th
e
varacto
r
whe
n
usi
ng it. As
a re
sult, the a
c
curate
vara
ctor mod
e
l mu
st
be ma
de
accordin
g to th
e
approp
riate i
ndicators a
n
d
paramete
r
s i
n
the A
D
S20
08 [12], throu
gh
model
buildi
n
g, the relatio
n
shi
p
b
e
twee
n bia
s
volta
g
e
an
d the
correspon
ding
capa
citan
c
e v
a
lue
coul
d be a
c
hi
eved, and the
target value can b
e
rea
c
h
ed by addin
g
pre
c
isi
on bia
s
voltage finally.
3. Rese
arch
Metho
d
3.1. High-Pre
c
ision Bias
Voltage Con
t
rolling Sy
stem
A high-preci
si
on bi
as voltage
cont
rolling system
i
s
designed
by usi
ng the high-preci
sion
10-bit
digital
potentiomete
r. First, the in
put volt
age i
s
conve
r
ted to
the tuning
voltage
rang
e
(0-
30V) of varactor thro
ugh th
e DC-DC
co
n
v
erter (LM2
5
76). In the
circuit, seve
ral f
ilter ci
rcuits a
r
e
utilized
to red
u
ce
noi
se
s
a
nd
ripple
s
of t
he o
u
t
put volt
age, e
n
surin
g
the
stability
and
relia
bility o
f
output voltag
e. Then A
R
M7 chip (A
DuC7
026
) ut
ili
zed
help
s
to
cont
rol the
acce
ss
re
si
stance
dynamically t
h
rou
g
h
the S
P
I interface
p
r
otocol
adju
s
t
i
ng the
outp
u
t
voltage. At t
he o
u
tput
port,
the emitter fol
l
owe
r
circuit
is u
s
e
d
to
cut
down
n
o
ises
and
rip
p
les of
the
output vo
ltage. Of
whi
c
h
the emitter fo
llowe
r is a
c
hi
eved
by the
high-preci
s
io
n ope
ration
al
amplifier i
n
trodu
cing fe
ed
back
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Electro
n
ically Tunable Im
pedan
ce
-Mat
ching Netwo
r
ks for Intellige
n
t RF Powe
r… (Lian
g
Li)
6675
to the invertin
g input po
rt form the output
por
t. A 4×4 keyboard and
corre
s
p
ondin
g
indicators a
r
e
desi
gned to improve human-com
puter interope
rability of this system, ensuring a bett
e
r
perfo
rman
ce i
n
the ca
se of indep
ende
nt operation.
The A
D
52
92
is a
sin
g
le-cha
nnel,
102
4-po
sition
di
gital pote
n
tio
m
eters that
combi
n
e
s
indu
stry leadi
ng variabl
e re
sisto
r
perfo
rmance with
low re
si
stor to
leran
c
e e
r
ror
feature sim
p
li
fies
open
-loo
p ap
plicatio
ns a
s
well as p
r
e
c
isi
on calibra
tion and tole
ran
c
e mat
c
hi
ng appli
c
atio
ns.
These devices are cap
a
b
le of
operat
ing acro
ss a
wide voltag
e rang
e, sup
porting b
o
th dual
sup
p
ly operation at ±10.5 V to ±16.5 V and singl
e supply ope
rati
on at +21 V to +33 V, while
ensurin
g le
ss than
1% e
n
d
-to-end
resi
stor tole
ran
c
e e
rro
r
and
o
ffering
20-tim
e
p
r
og
ramm
a
b
le
(20
-
TP) m
e
m
o
ry. The AD5292
device
wipe
r setting
s are controll
able throug
h
the SPI digital
interface.
3.2. Varactor
Model
The vara
ctors in the m
a
tching n
e
two
r
k ar
e
NXP BB179 varacto
r
diode
s. Since NXP
doe
s not prov
ide an ADS model [10], the diode mo
d
e
l
was u
s
ed in
ADS together with the model
para
m
eters
o
f
the spice m
odel
NXP p
r
o
v
ided. The
r
ef
ore, th
e first
step i
s
to
de
sign the
vara
ct
or
model. Fig
u
re 2 sho
w
s th
e topolo
g
y of varacto
r
mo
del. The
simu
lation of the
model in th
e
ADS
matche
s the
data sh
eet fro
m
NXP fairly very well.
Figure 2. The
Topology of Vara
ctor Mo
d
e
l
3.3. Tunable
Impendenc
e Matchin
g
Ne
t
w
o
r
k Desig
n
Figure 3. Circuit of the Tunable Impen
de
nce Mat
c
hin
g
Netwo
r
k
P
a
r
a
m
S
w
eep
S
w
eep1
S
t
ep=
0.
05
S
t
op=
30
St
a
r
t
=
0
S
i
m
I
nst
anc
eN
am
e[
6]
=
S
i
m
I
nst
anc
eN
am
e[
5]
=
S
i
m
I
nst
anc
eN
am
e[
4]
=
S
i
m
I
nst
anc
eN
am
e[
3]
=
S
i
m
I
nst
anc
eN
am
e[
2]
=
S
i
m
I
nst
anc
eN
am
e[
1]
=
"
SP
1"
S
w
eepV
ar
=
"
v
1
"
PA
RA
M
E
T
E
R S
W
EE
P
VAR
VAR
1
v1
=
1
.
0
Eq
n
Va
r
S_
Pa
r
a
m
SP1
F
r
eq=
0.
632 G
H
z
Ca
l
c
Z
=
y
e
s
S-
PA
RA
M
E
TER
S
C
C1
C
=
43.
0 pF
B
B
179_sy
m
bl
e_v
3
X1
L
L1
R=
L=
1000.
0 nH
V_
DC
SR
C1
Vd
c
=
v
1
V
Te
r
m
Te
r
m
1
Z
=
50 O
h
m
Nu
m=
1
S_
Pa
r
a
m
SP1
S
t
ep
=
0
.
0
1 G
H
z
S
t
o
p
=
0
.8
G
H
z
S
t
ar
t
=
0.
5
G
H
z
S-
P
A
R
A
M
E
T
E
R
S
D
i
s
p
l
a
y
T
e
m
pl
at
e
di
s
p
t
e
m
p
1
"
S
_P
ar
a
m
s
_
Q
uad
_dB
_S
m
i
t
h
"
Te
m
p
Di
s
p
M
URA
T
A
I
n
c
l
u
d
e
mu
R
a
t
a
mu
R
a
t
a
MS
U
B
MS
u
b
1
R
ough
=
0
m
m
T
anD
=
0
.
002
T
=
35 um
H
u
=
1
.
0e+
0
33 m
m
C
ond=
1.
0E
+
5
0
Mu
r
=
1
Er
=
3
.
5
H=0
.
8
m
m
MS
u
b
Po
r
t
P2
Nu
m
=
2
ML
I
N
TL
2
6
L=
0.
5 m
m
W=
1
.
2
m
m
Su
b
s
t
=
"
M
Su
b
1
"
ML
I
N
TL
3
1
L
=
0.
05 m
m
W=
1
.
2
m
m
S
u
bs
t
=
"
M
S
ub1"
ML
I
N
TL
3
0
L=
0
.
05
m
m
W
=
1.
2 m
m
S
u
bs
t
=
"
M
S
u
b1"
C
C3
3
C=
c
2
p
F
{
t
}
M
T
EE_
AD
S
T
ee6
W3
=
1
.
2
m
m
W2
=
1
.
2
m
m
W1
=
1
.
2
m
m
S
ubs
t
=
"
M
S
u
b
1
"
V_
D
C
S
RC5
Vd
c
=
v
1
V
C
C3
4
C
=
20
0.
0 pF
L
L5
R=
L
=
100
0.
0
nH
B
B
179
_s
y
m
b
l
e_v
3
X5
C
C3
2
C
=
18 pF
{
o
}
M
T
EE_
AD
S
Te
e
5
W
3
=
1
.2
m
m
W
2
=
1
.2
m
m
W
1
=
1
.2
m
m
S
u
bs
t
=
"
M
S
u
b1"
ML
I
N
T
L29
L=
0.
05
m
m
W=
1
.
2
m
m
S
ubs
t
=
"
M
S
u
b
1
"
ML
I
N
T
L27
L=
0.
05
m
m
W=
1
.
2
m
m
S
ubs
t
=
"
M
S
u
b
1
"
C
C2
5
C
=
18 p
F
{
o
}
C
C3
0
C=c
2
p
F
{
t
}
B
B
1
79_
s
y
m
b
l
e
_v
3
X3
L
L3
R=
L=
100
0.
0 n
H
C
C2
8
C
=
200
.
0
p
F
V_
D
C
S
RC3
Vd
c
=
v
1
V
ML
I
N
TL
2
5
L=
0
.
5 m
m
W
=
1.
2 m
m
S
u
bs
t
=
"
M
S
ub1"
M
T
EE_
AD
S
T
ee3
W3
=
1
.
2
m
m
W
2
=
6
.
2
9
236
0 m
m
W
1
=
3
.
0
2
684
0 m
m
S
ubs
t
=
"
M
S
u
b
1
"
ML
I
N
T
L24
L=
6.
28
m
m
W
=
6
.
29 m
m
S
ubs
t
=
"
M
S
u
b
1
"
ML
I
N
TL
2
3
L=
9.
6 m
m
W=
3
.
0
3
m
m
S
u
bs
t
=
"
M
S
ub1
"
M
T
EE_
AD
S
Te
e
4
W
3
=
1
.2
m
m
W2
=
3
.
0
3
m
m
W1
=
1
.
7
7
m
m
S
u
bs
t
=
"
M
S
u
b1"
ML
I
N
TL
2
2
L=
33
.
6
m
m
W=
1
.
7
7
m
m
S
u
bs
t
=
"
M
S
ub1
"
Po
r
t
P1
Nu
m
=
1
ER
B1
8
C2
7
V
a
l
u
e
=
"
3
.9
[p
F
]
"
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 11, Novemb
er 201
3: 667
3 – 6678
6676
The tunabl
e
impende
nce matchin
g
netwo
rk p
r
o
posed is firstly desig
ne
d in the
ADS200
8, The load-pull a
nd sou
r
ce-pul
l simulation
s are do
ne first
l
y to obtain the optimal in
put
and
o
u
tput
im
peda
nces at different cent
er
fre
que
ncy,
co
rre
sp
ondi
n
g
the maxim
u
m output p
o
wer
and PAE, using the Freescale’ devi
c
es MRF
906
0 of 60W-PEP LDMOSFET
. After that the
matchin
g
net
works are ob
tained a
c
cord
ing to Smit
h cha
r
t tool in
ADS200
8, utilizing mi
crost
r
ip
lines, va
ra
ct
ors,
RF
swi
t
che
s
a
nd
capa
citan
c
e
s
. Attention
should
be
p
a
id that
se
ries
cap
a
cita
nce must be use
d
to avoid
th
e
influe
nce
o
f
DC
cur
r
e
n
t
.
Opt
i
mi
zat
i
on
de
sign
mu
st
be
done to o
b
tai
n
the optimu
m
length of m
i
cro
s
tri
p
lin
e
s
corre
s
p
ondin
g
different ce
nter
fre
quen
ci
es,
the value
s
of
cap
a
cita
nces
and voltag
e could b
e
tune
d
by the tool
s
of
ADS200
8. Figure
3 sho
w
s
the circuit o
b
t
ained when
usin
g re
al-m
odel
s, MTEEs
an
d Mu
Rat
a
ca
pacita
n
ces to repla
c
e
the
ideal DC blo
c
k and transmi
ssi
on line
s
.
4. Results a
nd Discu
ssi
on
4.1. Computer Simulation and Analy
s
is
The simul
a
tio
n
test of the
varacto
r
s an
d RF Switch
e
s
–tun
ed ele
c
troni
cally Impedan
ce
-
matchin
g
n
e
tworks
wa
s p
e
r
forme
d
o
n
th
e ADS2
008.
At first, the b
and i
s
divide
d into
6 p
a
rts,
the
cente
r
fre
que
ncie
s a
r
e 5
0
0
MHz, 550
M
H
z, 6
00M
Hz,
630M
Hz, 7
0
0
MHz, 750
M
H
z, 8
00M
Hz.
it is
importa
nt to simulate the
netwo
rk at dif
f
erent cent
er
freque
ncy, le
aving the len
g
th of micro
s
trip
lines fixed, th
e state
s
of switch
es b
e
in
g on o
r
off and value
s
for bias voltag
e
adjusta
ble.
After
this wo
rk, th
e con
d
ition
s
of the varact
ors,
RF
switches a
nd cap
a
citan
c
e
s
are
all determin
ed
according to the req
u
ireme
n
t.
The tuning
ra
nge is p
e
rfo
r
med in Figu
re 4, as
sh
own in the resul
t
s, it could re
ach
wide
rang
e imp
e
d
ances,
co
rre
spondi
ng fre
q
uen
cy from 5
00-8
00M
Hz. As a result o
f
fixed length
of
microstri
p
lin
es, there a
r
e
still some im
peda
nces
wh
ich the match
i
ng network could not re
ach.
But for the
RFPA appli
c
ati
ons, the
imp
edan
ce
s a
r
e
relatively co
n
c
entrated, a
n
d it is e
nou
g
h
to
meet the req
u
irem
ent.
Figure 4. Smith Chart
s
for
Matche
d Imp
ende
nce Cov
e
rag
e
from 5
00M to 800M
Hz
Figure 5. Inse
rtion Lo
ss
(S21) of Matchi
ng
Netw
or
k
Figure 6. Ret
u
rn Lo
ss (S1
1
) of Matchi
n
g
Netw
or
k
3
4
5
6
7
8
9
x 1
0
8
-5
-4
.
5
-4
-3
.
5
-3
-2
.
5
-2
-1
.
5
-1
-0
.
5
0
F
r
eq(
Hz
)
d
B
(s
(
2
,
1
))
T
unab
l
e
Range
3
4
5
6
7
8
9
x 1
0
8
-70
-60
-50
-40
-30
-20
-10
0
F
r
eq(
H
z
)
dB
(s
(1,
1
)
)
T
unabl
e R
ange
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Electro
n
ically Tunable Im
pedan
ce
-Mat
ching Netwo
r
ks for Intellige
n
t RF Powe
r… (Lian
g
Li)
6677
In addition, F
i
gure
5 sho
w
s the results
of in
se
rtion lo
ss
(S21
) of
the matching
netwo
rk
whi
c
h is well above -0.5
dB at 500-80
0M
Hz, by tuni
ng
the varactors and turning t
he RF switch
es
on or off, the controlling
signals are given by t
he ARM7(ADuC7026), in addition, the bias voltage
of varacto
r
s i
s
obtaine
d by the high-p
r
e
c
isi
on
bia
s
voltage cont
rolli
ng system. S-pa
ramete
rs had
a good p
e
rfo
r
mance from
500M
Hz to 8
00MHz. From
Fi
gure 5, it is clea
r to obtai
n that the wid
t
h
of the stability of in-band freque
ncy re
sp
onse
be
come
s wid
e
r by the increa
sing f
r
equ
en
cy.
S11 are di
sp
layed in Figu
re 6, co
rresp
ondi
n
g
value
s
are mainly unde
r -2
0 dB in the
whol
e ba
nd.
With in
crea
ses of
ope
rati
ng fre
que
ncy
,
band
width
belo
w
-20 dB
is a
bout 6
times
wide
r than th
at desig
ned i
n
lowe
r freq
u
ency a
s
a re
sult of the optimum micro
s
trip lines.
4.2. Hard
w
a
r
e
Implementation of Bia
s
Voltage Co
ntrolling Sy
s
t
em
The photo o
f
high-p
r
e
c
isi
on bia
s
voltage c
ontrolli
ng system i
s
sho
w
n in F
i
gure 7,
verifying the reliability and
effectiveness of the
method proposed i
n
this
paper, 8
hi
gh-preci
si
on
10-bit di
gital
potentiometers are used f
o
r the ha
rdware im
plementation, the controlling dev
ice
utilized in the system is A
D
uC7026, experim
ent pla
tform is
built accordi
ng to di
gital multimeter
(UT
58E) a
nd
oscillo
scope (Agilent 5462
2
D
).
Figure 7. Hardwa
re Imple
m
entation of High
-
pre
c
isi
on Bia
s
Voltage Co
ntrolling Syst
em for
Varac
t
or
Figure 8. The
Graph
of the Absolute Erro
r
(AbsE
)
of the Measured Vo
ltage Re
sult a
t
the
Ran
ge of 2.5
V
~5V
Finally, this pape
r gives t
he key testin
g data of the controlling system. As sh
own i
n
Figure 8, a
b
solute e
rro
r m
easure
d
i
s
le
ss than
5mV, gre
a
ter th
an
or
equ
al to 1
m
V for the
fine-
tuning ne
ed
s. The analy
s
is of the testing re
sult
s
sho
w
s the fea
s
ib
ility of the controlling
syst
em
and meetin
g the actu
al req
u
irem
ent.
5. Conclusio
n
This pa
per h
a
s i
n
tro
d
u
c
ed
a
ne
w
stru
ct
ur
e
for a tu
n
able i
m
ped
an
ce-matching
netwo
rk
for intelligent
RF Front-E
nds of p
o
we
r amplifie
rs
whi
c
h a
r
e ap
plied in b
r
oa
dban
d Co
gni
tive
Radi
o syste
m
s. The tuna
ble imped
an
ce matchin
g
n
e
twork con
s
i
s
ts of vara
ct
ors,
RF switches
and micro
s
tri
p
lines utilize
d
both individually
and combine
d
fro
m
500M to 800M Hz that has
variable
cha
r
acteri
stic im
p
edan
ce
s. In addition,
in orde
r to imp
r
ove the non
linear p
r
obl
e
m
cau
s
e
d
by varacto
r
, a high
-preci
sio
n
bia
s
voltage sup
p
lier is d
e
si
gn
ed.
Thro
ugh
sim
u
lation
s and
measurement
s, it is
sho
w
n
that the desi
gn co
uld be
use
d
to
reali
z
e a tu
na
ble matching
netwo
rk fo
r
Cognitive
Radi
o appli
c
ation
s
, with the S11
mainly und
er -
20dB an
d S21 well ab
ove
-0.5dB for the
netwo
rk.
Hi
g
h
-p
re
cisi
on bi
as voltage
co
ntrolling
syste
m
is demo
n
st
rat
ed togethe
r with absol
ute e
rro
r mo
stly closin
g to 1mV.
0.000
0.001
0.002
0.003
0.004
0.005
0.006
2.500 3.000 3.500 4.000
4.500 5.000
AbsE|OUTPU-INPUT|(V)
INPUT VO
LTAG
E(V)
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 11, Novemb
er 201
3: 667
3 – 6678
6678
Ackn
o
w
l
e
dg
ements
This work
was
pa
rtially suppo
rted
by
the National
Scie
nce a
n
d
Te
ch
nolog
y Major
Proje
c
t of Chin
a (2
010
ZX0300
7-0
0
3
-
04
), the National
Natu
ral Sci
e
n
c
e
Found
ation
of
Chin
a(6
117
1
040),
the K
e
y Proje
c
t
o
f
Internati
o
n
a
l Coop
erati
on of
the P
r
ovinci
al S
c
i
ence
Tech
nolo
g
y Major P
r
oje
c
ts of Z
heji
ang
(201
0C1400
7), the
Provinci
al
Natural Sci
e
nce
Found
ation
o
f
Zhejia
ng
(Y
1101
270
), th
e Natural Sci
ence F
ound
a
t
ion of
Ning
b
o
(2011A
610
188)
and the Scie
n
t
ific Research
Foundatio
n o
f
Gradu
ate Scho
ol of Ning
bo Unive
r
sity(G12
JA019
).
Referen
ces
[1]
W
en C, Y
Z
h
a
o
, Z
Jun.
Com
pact a
n
d
W
i
de
Up
perSto
pba
nd T
r
ipleM
o
d
e
Broa
db
and
Mi
crostrip BPF
.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2012; 1
0
(2): 3
53-3
58.
[2]
Li S, J Z
hou.
T
r
ansmitter
Station R
e
mot
e
Moni
t
o
r S
y
s
t
em Based
on
Bro
w
ser/Serv
er Structure.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2013; 1
1
(3): 1
594-
159
9.
[3]
Don
g
ji
ang
Qia
o
, Rob
e
rt Mo
lfino, et
al. A
n
in
te
lli
ge
ntl
y
control
l
e
d
R
F
po
w
e
r
amp
lifier
w
i
t
h
a
reconfi
gura
b
l
e
MEMS-varacto
r tuner.
IEEE Transacti
ons o
n
Microw
ave The
o
ry and Tec
hni
ques
. 20
05;
53(3): 10
89-
10
94.
[4]
Maune H, M
Sazegar, R Jakoby
.
T
una
bl
e impe
danc
e match
i
n
g
netw
o
rks for agil
e
RF
pow
er
amplifi
e
rs
. in M
i
cro
w
av
e S
y
mp
osium Di
gest (
M
TT), IEEE MTT-S International. 20
11; 1-4.
[5] Youn
gch
ang
Y
oon,
Ji
h
w
a
n
Ki
m, et al.
A
dua
l
-mode
CMOS
RF
po
w
e
r
amp
lifier
w
i
th
int
egr
ated t
una
bl
e
matchin
g
net
w
o
rk.
IEEE Transactions o
n
Mi
crow
ave Theor
y and Techn
i
q
ues
. 201
2; 60(
1): 77-88.
[6]
Gani Re
gi
na, Grant A Ellis,
T
eoh Chin So
on. Reco
nfig
ur
abl
e GaAs MMIC Po
w
e
r A
m
plifier D
e
si
gn
Method
olo
g
y
U
s
ing a T
unab
le
Interstage Net
w
o
r
k.
Microw
ave Journ
a
l
. 20
11; 54(4): 7
8
-9
2.
[7]
Qin Shen, N
Scott Barker. Distribut
ed ME
MS t
unabl
e matchin
g
net
w
o
r
k
using mi
nim
a
l-co
ntact RF
-
MEMS varactors.
IEEE
Transactions o
n
Micr
ow
ave Theory
and Tech
ni
que
s
. 2006; 54(
6): 264
6-26
58.
[8]
Hon
g
-T
euk Kim, Hong-T
euk Kim, et al. Low
-
l
o
ss a
nal
og
and d
i
git
a
l micr
omach
i
ne
d imp
eda
nce tun
e
rs
at the Ka-ba
n
d
.
IEEE
Transac
tions on Micr
o
w
ave Theory a
nd Techn
i
q
ues
. 2001; 49(
12): 239
4-24
00.
[9]
H
y
un
g
w
o
o
k Ki
m, Youngc
han
g Yoo
n
I, et al.
A fully inte
grat
ed CMOS RF
pow
er a
m
pl
ifie
r w
i
th tunab
l
e
m
a
tching network for GSM/ED
GE dua
l-
mod
e
ap
plic
atio
n
. in Micro
w
ave
S
y
mposium Digest (MTT
)
.
IEEE MTT
-
S
In
ternatio
nal. 2
0
10; 800-
80
3.
[10]
Che
n
K, Perou
lis D. Desi
gn
o
f
Adaptive H
i
g
h
l
y
Efficient G
a
N Po
w
e
r Amplifier for Octa
ve-Ban
d
w
i
d
t
h
Appl
icatio
n an
d D
y
nam
ic Lo
a
d
Modu
lati
on.
IEEE Transacti
ons on Micr
ow
ave Theory
an
d Techni
qu
es
.
201
2; 60(6): 18
29-1
839.
[11]
F
r
eitas V, Arnould J, F
e
rrari P.
T
heoretical a
nalysis a
nd d
e
s
ign of efficie
n
t tunabl
e matchi
ng netw
o
rks.
in IEEE M
T
T
-
S
International
Micro
w
av
e
& Optoelectronics
Con
f. 2011; 303-307.
[12]
van B
e
zo
oij
e
n
A, Maur
ice
A, et al. A
d
a
p
tive
Imp
e
d
a
n
c
e-Matchi
ng T
e
chn
i
qu
es for
Co
ntroll
ing
L
-
net
w
o
rks.
IEEE Transactions
on
Circuits and System
s
. 20
10; 57(2): 4
95-
505.
Evaluation Warning : The document was created with Spire.PDF for Python.