Indonesian Journal of
Electrical
Engineer
ing and
Computer Science
V
o
l. 10
, No
. 3, Jun
e
20
18
, pp
. 94
3
~
95
0
ISSN: 2502-4752,
DOI: 10.
11591/ij
eecs.v10
.i3.pp943-950
9
43
Jo
urn
a
l
h
o
me
pa
ge
: http://iaescore.c
om/jo
urnals/index.php/ijeecs
A Wideband mm-Wave Printed
Dipole Antenna for 5G
Applications
D
e
wa
n At
iqur Ra
hma
n
1
,
S
a
rah Yasmin Mohamad
2
, Norun
Abdul Malek
3
, Dew
a
n
Ari
f
ur R
a
h
m
an
4
,
Siti Normi Z
a
bri
5
1,2,3
Department o
f
Electr
i
cal
and
Computer Engin
eerin
g,
Int
e
rna
t
iona
l
Isla
mi
c
Unive
r
si
ty
Mal
a
y
s
i
a
4
Departm
e
nt of Ele
c
tri
cal
and
E
l
ectron
i
c Engi
ne
ering,
Ea
st
We
st Unive
r
sity
Ba
ngla
de
sh
5
Faculty
of Electronic and
Comp
uter Engineerin
g
,
Universi
ti
Tekn
ikal
Mala
ysi
a
M
e
lak
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 11, 2018
R
e
vi
sed M
a
r
8,
2
0
1
8
Accepted
Mar 23, 2018
In this paper,
a wideband m
i
llim
ete
r-wave (
m
m
-
W
a
ve) printed dipol
e
antenn
a is p
r
op
osed to b
e
used
for fif
t
h g
e
ner
a
tion (5G)
communications.
The s
i
ngl
e
elem
ent
antenn
a exh
i
bits
a
36 GHz
bandwidth with
m
o
re tha
n
85.71% fraction
a
l bandwid
th (f
or
S
11
<-10 dB)
which covers six of the 5G
candid
a
te frequ
encies; 24
GHz,
25 GHz, 28 GHz, 32 GHz, 38
GHz and 40
GHz. The anten
n
a als
o
exhibits
an averag
e gain of 5.34 dB with a com
p
ac
t
size of
7.35
x 5
.
85 mm
2
. The
antenna
is further d
e
signed
to be an
array
w
ith
eight e
l
em
ents
and m
a
nage to
increas
e
the g
a
in of the an
te
nna with an
averag
e of 12
.63
dB, a fraction
a
l
bandwid
th of 81
.48% and linearly
-polarized
radiation p
a
ttern
.
K
eyw
ords
:
5G
Ant
e
nna
ar
ray
Hi
g
h
gai
n
a
n
t
e
nna
Linear polariza
tion
W
i
de
ban
d
a
n
t
e
nna
Copyright ©
201
8 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Sara
h Yasm
i
n
M
oham
a
d,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
C
o
m
put
er E
ngi
neeri
n
g
,
In
tern
ation
a
l Isla
m
i
c Un
iv
ersity Malaysia,
5
310
0 Jalan Go
m
b
ak
, Selan
g
o
r
, Ku
ala Lu
mp
ur
, Malaysia.
Em
a
il: s
m
o
h
a
mad
@
iiu
m
.
ed
u
.
m
y
1.
INTRODUCTION
W
i
t
h
o
n
g
o
i
n
g
pr
o
g
ressi
on
of
m
odern t
ech
no
l
ogy
, t
h
e cu
rre
nt
fo
urt
h
ge
ner
a
t
i
on m
obi
l
e
com
m
uni
cat
i
o
n
sy
st
em
(4G) i
s
no
w reac
hi
n
g
i
t
s
m
a
t
u
ri
t
y
. Thus
, resea
r
che
s
are no
w f
o
cu
s
i
ng o
n
t
h
e
nex
t
generat
i
o
n m
obi
l
e
co
mm
u
n
i
catio
n
system
(5
G) to
m
eet th
e necessities o
f
futu
re traffic vo
l
u
m
e
, d
a
ta rates and
con
v
e
n
i
en
ce
o
f
new s
o
rt
s o
f
g
a
dget
s
a
nd se
r
v
i
ces [1]
.
Si
nc
e t
h
e freq
u
e
n
c
y
spectrum
below
6 GHz is
q
u
ite co
ng
ested, th
ere is
v
e
ry little scop
e to in
crease tran
sm
issio
n
rate in
t
h
ese
ban
d
s [2
]-[3
]. To
cater t
o
th
is bu
rg
eon
i
n
g
de
m
a
n
d
,
m
i
ll
im
et
er wa
ve
(m
m
-
W
a
ve
) t
ech
n
o
l
o
gi
es
are
bel
i
e
ved
t
o
pl
ay
a
very
i
m
port
a
nt
r
o
l
e
i
n
u
p
c
o
m
i
ng c
e
l
l
u
l
a
r
n
e
two
r
k
s
lik
e 5
G
as it h
a
s t
h
e ab
ility to
o
ffer wid
e
frequ
e
n
c
y b
a
nd
wi
d
t
h
fo
r h
i
g
h
data tran
smissio
n
[4
]
.
M
a
jo
ri
t
y
of t
h
e
p
o
t
e
nt
i
a
l
5
G
c
a
ndi
dat
e
f
r
eq
u
e
ncy
ba
n
d
s
ran
g
i
n
g f
r
o
m
24
GHz
t
o
5
0
G
H
z
are c
ont
ai
ned
2
4
.
6
5
-
27
GHz
, 2
7
-
2
9
.
5 G
H
z a
nd
40
-5
0 G
H
z [
2
]
,
[
5
]
.
K
o
rea,
U
n
i
t
e
d St
at
es and
Eur
o
pe are al
s
o
co
nsi
d
e
r
i
n
g
25
GHz
,
28
G
H
z a
n
d
32
G
H
z as
p
o
t
e
nt
i
a
l
5G
fre
q
u
en
cy
ban
d
s
[
6
]
-
[
7
]
.
Recent trends in comm
unication
requ
ires for
an
ante
nna which displa
y
attributes of wide
bandwidt
h
,
l
o
w pr
o
f
i
l
e
,
st
rai
g
ht
fo
r
w
ar
d feedi
ng st
ru
ct
ure
a
n
d
ease of fa
bri
cat
i
o
n.
Pri
n
t
e
d di
p
o
l
e
ant
e
n
n
as ha
ve
t
h
e
i
r
uni
que a
d
vant
ageo
us
feat
ure
s
of si
m
p
l
e
st
ruct
u
r
e, l
o
w m
a
nu
fact
u
r
i
n
g c
o
st
, ease o
f
fa
bri
cat
i
o
n, hi
g
h
ener
gy
effi
ci
ency
a
nd
om
ni
di
rect
i
ona
l
radi
at
i
on
pat
t
e
rn
whi
c
h m
a
ke t
h
em
i
d
eal
wi
deba
nd el
em
ent
s
[
8
]
.
I
n
o
r
d
e
r t
o
enha
nce a
n
te
nna
gain a
n
d
physical aperture,
an a
n
t
e
n
n
a
ar
r
a
y
coul
d
be em
pl
oy
ed
[
2
]
.
In t
h
i
s
pa
per, a
wi
de
ban
d
pri
n
t
e
d di
p
o
l
e
ant
e
nna
has
been
d
e
si
gne
d t
o
be
use
d
f
o
r
5G a
p
pl
i
cat
i
ons a
t
24 G
H
z,
2
5
G
H
z, 28 GHz
, 32 G
H
z,
3
8
G
H
z
an
d 40 G
H
z.
T
h
e
o
p
e
r
a
t
i
on
ba
n
d
wi
dt
h
o
f
t
h
e pr
op
o
s
ed
5
G
an
tenn
a is m
u
ch
w
i
d
e
r
than
th
e an
tenn
as
rep
o
r
t
ed in [2
], [4
],
[6
],
[9
]-
[1
1
]
. The fr
actio
n
a
l b
a
nd
w
i
d
t
h
o
f
th
is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
94
3 – 95
0
94
4
ant
e
n
n
a i
s
g
r
e
a
t
e
r t
h
an
85
.7
1%.
An ei
ght
el
em
ent
s
ant
e
nna a
rray
i
s
al
so desi
gne
d
t
o
o
b
t
a
i
n
hi
gh
gai
n
com
p
ared t
o
p
r
evi
ous
wo
r
k
[
2
]
,
[6]
.
T
h
e ret
u
r
n
l
o
ss
, 2
D
a
nd
3D
radi
at
i
o
n pat
t
e
r
n
s, a
n
t
e
nna
gai
n
, effi
ci
ency
and
3
dB
beam
wi
dt
h
o
f
t
h
e
pr
op
ose
d
a
n
tenna are st
udie
d
a
n
d analyzed.
2.
R
E
SEARC
H M
ETHOD
A p
r
i
n
t
e
d di
po
l
e
ant
e
n
n
a has
been
desi
gne
d
and
si
m
u
l
a
t
e
d
usi
n
g C
S
T M
i
cro
w
a
v
e St
u
d
i
o
(C
S
T
M
W
S
)
soft
ware
fo
r
5
G
ap
plications
.
The a
n
ten
n
a c
ove
rs
24
G
H
z, 25 GHz, 28
GHz, 32
GH
z,
38
GH
z and
40
G
H
z
of
the
5G candida
te fre
quencies. The
prop
ose
d
ant
e
n
n
a i
s
p
r
i
n
t
e
d
on
a R
oge
r
s
RT588
0 su
b
s
trate with d
i
electric
constant (
) of
2.
2,
l
o
ss
t
a
nge
nt
(
δ
)
of
0
.
00
09
and
t
h
ickn
ess
o
f
0.8 mm
. Th
e
g
e
o
m
etr
y
, to
p an
d
bo
tto
m
v
i
ew
for a p
r
o
t
o
t
yp
e o
f
th
e p
r
op
o
s
ed
an
tenn
a are illu
strated
in
Fig
u
re 1
.
Th
e o
p
tim
ized
p
a
rameters are sh
own
i
n
Tab
l
e 1. Th
e an
tenn
a has two
pr
in
ted
ar
m
s
, on
e on
t
h
e
top and
one
at the bottom
of the s
ubst
r
ate. T
h
ere is
also a ground
plane at th
e
bottom
side, which acts as a
reflector to
t
h
e antenna.
The
substrate size
has a
di
m
e
nsi
on of 7
.
3
5
5.8
5
mm
.
(a)
(b
)
(
c
)
Fi
gu
re
1.
C
o
nfi
g
u
r
at
i
o
n
of t
h
e
di
p
o
l
e
ant
e
n
n
a,
(a)
3
D
vi
ew
,
(
b
)
t
o
p l
a
y
e
r, a
n
d
(c)
b
o
t
t
o
m
l
a
y
e
r
Tabl
e 1. Fi
nal
di
m
e
nsi
ons of
t
h
e
di
pol
e ant
e
nna
pa
ram
e
t
e
rs
Para
m
e
ter Value
(
m
m
)
L
1
1.
90
L
2
1.
90
L
3
2.
30
L
4
1.
20
L
5
2.
70
L
6
0.
90
L
7
1.
60
L
8
2.
30
L
9
1.
90
L
10 1.
60
L
11 1.
30
W
1
0.
40
W
2
1.
00
W
3
0.
80
W
4
0.
40
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
A
Wid
e
b
and
mm-Wa
ve Prin
ted
Dipo
le
An
tenn
a
fo
r
5
G
A
p
pl
i
c
at
i
ons…
(
D
e
w
an
At
i
q
u
r
R
a
hm
a
n
)
94
5
3.
R
E
SU
LTS AN
D ANA
LY
SIS
The proposed
antenna is designe
d in two stages; as
a 1) single ele
m
ent
dipole antenna
,
and
2) eight
el
em
ent
s
di
pol
e ant
e
nna ar
ra
y
.
The sim
u
l
a
t
e
d ret
u
r
n
l
o
s
s
, 2D a
nd 3
D
radi
at
i
on pat
t
erns
, real
i
zed gai
n
,
effi
ci
ency
a
n
d 3 dB
beam
wi
dt
h
a
r
e prese
n
t
e
d
an
d di
scus
sed
.
3.1.
Single
Element Dipole Ante
nna
Si
m
u
lated
return
l
o
ss (
S
11
)
of
the single element di
pole a
n
tenna
is sho
w
n
i
n
Figur
e 2. The r
e
su
lt sh
ow
s
t
h
at
t
h
e p
r
o
p
o
s
e
d ant
e
nna
has
a wi
de
ban
d
w
i
d
t
h
o
f
3
6
GH
z, ra
ngi
ng
fr
o
m
24 G
H
z t
o
60
G
H
z;
i
.
e.
S
11
at 24
G
H
z
= -1
2.623 d
B
,
S
11
at 2
5
G
H
z
= -1
7.498 d
B
,
S
11
at 2
8
G
H
z
= -1
4.496 d
B
,
S
11
at 3
2
G
H
z
= -1
7.578 d
B
,
S
11
at
38 G
H
z =
-2
6.
7
38 dB
, and
S
11
at
4
0
GHz =
-
1
6
.
2
3
9
dB
. The a
n
t
e
nna
has a
fra
ct
i
onal
ba
n
d
wi
dt
h
of
m
o
re t
h
an 85
.7
1% (
f
o
r
S
11
<-
10
dB
).
It
can be co
ncl
u
de
d t
h
at
t
h
e pr
o
p
o
s
ed ant
e
nna
has
a goo
d
pot
e
n
t
i
a
l
for
fut
u
re
5
G
a
ppl
i
cat
i
ons si
nce i
t
co
vers
al
l
t
h
e
si
x
5G
can
di
da
t
e
fre
que
nci
e
s.
Fig
u
re
2
.
Sim
u
lated
return
lo
ss (id
eal
S
11
<
-
1
0
dB
)
o
f
t
h
e
wi
deba
n
d
m
m
-Wave si
ngl
e el
e
m
ent
di
p
o
l
e
a
n
t
e
nna
Sim
u
l
a
t
e
d
radi
at
i
on
pat
t
e
r
n
s of
t
h
e desi
gne
d
ant
e
nna fo
r E
and H pl
ane
s
at
24 GHz
,
2
5
G
H
z, 28 G
H
z
,
3
2
GHz,
3
8
GHz and
40
GHz are illu
strated
in
Fi
gu
re
3
.
It is ob
serv
ed
in
Figu
re
3(a)
th
at th
e an
ten
n
a h
a
s
acceptable a
n
d avera
g
e
gain l
e
vels at
all the selected fre
quencies with e
n
d-
fire m
ode. Fi
gure 4 illust
rates the
r
a
d
i
ation
p
a
ttern
s o
f
th
e pr
oposed
con
f
igur
atio
n
in
3D
.
(a)
(b)
Fi
gu
re
3.
Si
m
u
l
a
t
e
d p
o
l
a
r
ra
di
at
i
on
pat
t
e
rn
s
of
t
h
e si
ngl
e
el
em
ent
di
p
o
l
e
a
n
t
e
n
n
a at
24
G
H
z,
2
5
GHz
,
28
G
H
z,
3
2
G
H
z,
3
8
GHz
an
d
40
G
H
z,
(a
)
E-pl
a
n
e, a
n
d
(b
) H
-
pl
ane
Table 2 s
u
mmarized t
h
e pe
rform
a
nce of the
pri
n
ted
si
ngle ele
m
ent dipole
antenna i
n
term
s of realiz
e
d
gai
n
,
ef
fi
ci
enc
y
and
3
dB
bea
m
wi
dt
h. It
de
m
onst
r
at
es t
h
at
t
h
e p
r
o
p
o
se
d a
n
t
e
n
n
a
has rea
s
on
abl
e
real
i
zed gai
n
,
with a
n
a
v
era
g
e of m
o
re tha
n
5
dB at
all the
selected
fre
qu
enci
es,
e
x
ce
pt
at
28
GHz
wi
t
h
3.
35
3 dB
gai
n
. The
ant
e
n
n
a
has a
p
p
r
oxi
m
a
t
e
ly
m
o
re t
h
an -
1
.
4
dB
a
n
d -
1
.
5
6 dB
of ra
diation e
fficiency
and total efficiency
,
respectively at
all the targete
d
fre
qu
encies
which c
o
nfirm
the
wide
band
f
eature of
the propo
sed ante
nna. The
desi
g
n
e
d
si
n
g
l
e
el
em
ent
ant
e
nna
i
s
al
so
ha
v
i
ng a
fai
r
l
y
wi
de
beam
wi
dt
h,
ran
g
i
n
g
fr
om
72
.4
° t
o
1
2
2
.
3
°. T
h
i
s
is due to the
s
i
ngle elem
ent antenna
a
r
chit
ecture; as
number
of
elem
ents
is
inc
r
ease
d
, the 3 dB beamwidt
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
94
3 – 95
0
94
6
nar
r
o
w
d
o
w
n
f
u
rt
her
a
n
d fu
rt
her
[
12]
.
He
nc
e,
t
h
e si
n
g
l
e
el
em
ent
di
p
o
l
e
a
n
t
e
n
n
a desi
g
n
can be ob
ser
v
e
d
as a
l
e
ss di
rect
i
v
e o
n
e. I
n
com
p
ari
s
on
, t
h
e w
o
rk
r
e
po
rt
ed i
n
[2]
pr
o
v
i
d
es a ba
n
d
wi
dt
h,
fract
i
o
nal
ba
nd
wi
dt
h and a
n
avera
g
e gain of
26 GHz, 70%,
and 5 dB
ga
in
,
r
e
s
p
e
c
tiv
e
l
y.
T
h
e
an
te
nn
a d
e
s
i
gn
in
[6
]
h
a
s
an
av
e
r
ag
e g
a
in of
4.
6 dB
,
a
n
d
a com
p
arat
i
v
el
y
l
o
we
r ban
d
w
i
d
t
h
(
1
0 GHz
)
a
n
d fract
i
o
nal
ba
nd
wi
dt
h (3
5%
)
,
res
p
ect
i
v
el
y
.
It
can
be s
u
m
m
a
ri
zed t
h
at
o
u
r
pr
o
pos
ed
si
n
g
l
e
e
l
em
ent
di
pol
e
ant
e
n
n
a e
x
hi
bi
t
s
a wi
der
b
a
nd
wi
dt
h (
3
6
GHz
),
fract
i
o
nal
ba
nd
wi
dt
h
(8
5.
7
1
%
)
an
d avera
g
e
gai
n
(
5
.
3
4 dB
)
com
p
ared t
o
t
h
ese re
po
rt
ed
wo
rk
s i
n
[
2
]
and
[6]
.
Mo
reo
v
e
r, t
h
is an
tenn
a is covering
six
of th
e po
ten
tial
5G freque
ncies whereas a
n
tenna reported i
n
[6]
cove
rs
fo
ur
o
f
t
h
e
pot
ent
i
a
l
5G
f
r
eq
u
e
ncy
ba
n
d
s.
Table 2. Sim
u
lated
realized
gain, ra
diation e
fficiency, t
o
tal
efficiency
a
n
d 3 dB
beam
wi
dt
h of
t
h
e
si
ngl
e
ele
m
ent dipole antenna at
the
six
5G
candida
te fre
que
ncies
Fr
equency Realized
gain
Radiation
ef
f
i
ciency
T
o
tal efficiency
3 dB beam
width
24 GHz
5.
787 dB
-
0
.
445 dB
-
0
.
687 dB
79.
5°
25 GHz
5.
891 dB
-
0
.
437 dB
-
0
.
517 dB
78.
1°
28 GHz
3.
353 dB
-
1
.
395 dB
-
1
.
557 dB
98.
4°
32 GHz
5.
085 dB
-
0
.
372 dB
-
0
.
412 dB
122.
3°
38 GHz
5.
622 dB
-
0
.
804 dB
-
0
.
864 dB
88.
3°
40 GHz
6.
219 dB
-
1
.
182 dB
-
1
.
326 dB
72.
4°
(a)
(b)
(
c
)
(d)
(e)
(
f
)
Fi
gu
re 4.
Si
m
u
l
a
t
e
d
3
D
radi
at
i
on pat
t
e
r
n
s of
t
h
e
si
n
g
l
e
el
em
ent
di
pol
e ant
e
nna
at
(a
) 24
G
H
z, (
b
) 2
5
GH
z,
(c) 2
8
GHz
, (d
) 32
G
H
z, (e
) 3
8
GHz
,
a
n
d
(
f
)
40
G
H
z
3.
2.
E
i
gh
t
E
l
e
ments Di
p
o
l
e
Ante
nn
a Arra
y
Next
, i
n
or
de
r t
o
acq
ui
re t
h
e
hi
g
h
gai
n
fu
nc
t
i
on, ei
g
h
t
el
em
ent
s
of di
pol
e ant
e
n
n
as ha
v
e
been
used i
n
t
h
e p
r
o
p
o
sed a
rray
.
Si
m
u
l
a
t
i
on o
f
l
i
n
ear
N e
l
em
ent
pat
c
h a
n
t
e
n
n
a ha
s sh
o
w
n t
h
at
, as t
h
e
num
ber
of el
e
m
ent
s
in linear a
rray
antenna i
n
crea
ses, it
produce
s
m
o
re side
lobes and dec
r
eas
es the
m
i
nim
u
m
return l
o
ss
for eac
h
port [12]. T
h
e
r
efore to m
i
nimize
the number
of side lobes and achie
ve accepta
ble gain values for 5G
appl
i
cat
i
o
ns, e
i
ght
el
em
ent
s
of l
i
n
e
a
r a
rray
has
bee
n
c
hos
en. T
h
e
st
ruct
ure
o
f
t
h
e
wi
d
e
ban
d
di
p
o
l
e
a
n
t
e
n
n
a
array is d
e
p
i
ct
ed
in
Figu
re 5. In
th
is
m
a
n
u
s
crip
t, th
e ga
p between ante
nna ele
m
ents
(d) is calculated as about
λ
/
2
,
wh
er
e
λ
i
s
t
h
e
g
u
i
d
e
d
wavel
e
ngt
h
of
3
0
GHz
. T
h
e
array
c
o
nfi
g
u
r
at
i
o
n
has
a
d
i
m
e
nsi
on
of
5
8
.
8
x
5.
85
m
m
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
A
Wid
e
b
and
mm-Wa
ve Prin
ted
Dipo
le
An
tenn
a
fo
r
5
G
A
p
pl
i
c
at
i
ons…
(
D
e
w
an
At
i
q
u
r
R
a
hm
a
n
)
94
7
(a)
(b
)
Fi
gu
re
5.
C
o
nfi
g
u
r
at
i
o
n
of t
h
e
ei
ght
el
em
ent
s
di
p
o
l
e
ant
e
n
n
a
array
,
(a)
t
o
p l
a
y
e
r, a
n
d
(
b
)
b
o
t
t
o
m
l
a
y
e
r.
Th
e sim
u
lated
S-param
e
ters of th
e d
e
sign
ed
an
tenn
a a
rray
are s
h
own i
n
Figure
6.
It indi
cates that the
ope
rat
i
o
n ba
nd
wi
dt
h
of t
h
e a
n
t
e
n
n
a ar
ray
i
s
33
GHz
, co
veri
ng
fr
om
2
4
G
H
z t
o
5
7
GHz
wi
t
h
m
o
re t
h
a
n
8
1
.48
%
fraction
a
l b
a
n
d
wid
t
h
.
As illu
strated, th
e b
a
n
d
wi
d
t
h
of th
e an
tenn
a array co
nfi
g
uration
is slig
h
tly
decrease
d
from the si
ngle ele
m
ent design
due to
m
u
tu
al-cou
p
ling
effects [2
].
(a)
Fig
u
re
6
(
a). Si
m
u
la
ted
return
lo
ss (i
d
eal
S
11
<-1
0
dB
)
o
f
t
h
e wi
de
ba
nd
m
m
-W
ave
eight
ele
m
ents dipole
antenna,
S
11
to
S
81
(b
)
Fig
u
re 6
(
b). Sim
u
la
ted
return
lo
ss
(i
d
eal
S
11
<-1
0
dB
)
o
f
t
h
e wi
de
ba
nd
m
m
-W
ave
eight
ele
m
ents dipole
antenna,
S
11
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
94
3 – 95
0
94
8
Th
e sim
u
lated
3
D
rad
i
ation
pattern
s of th
e
d
e
sign
ed
ante
nna array at 0°
scanning angle
are shown i
n
Fi
gu
re 7
.
It
i
s
obs
er
ved t
h
at
,
as t
h
e n
u
m
b
er of a
rray
elements is increas
ed, the
ga
in
is in
creased
,
while th
e
beam
width has
dec
r
eased in
t
h
e azim
u
th direction
[12].
(a)
(
b
)
(c
)
(
d
)
(e
)
(
f
)
Fig
u
re
7
.
Sim
u
lated
3D
rad
i
at
io
n
p
a
ttern
s
o
f
th
e eigh
t elem
e
n
ts
d
i
po
le an
ten
n
a
array wh
en
its
b
eam
s are tilted
to 0
°
elev
ation
at (a)
2
4
GHz
,
(b
)
25
G
H
z,
(c
)
28
G
H
z,
(
d
)
3
2
GHz
, (
e
)
3
8
GHz
, a
n
d
(
f
)
4
0
GHz
The sim
u
lated realized gai
n
,
effi
ci
ency
an
d
3 dB
beam
wi
dt
h of t
h
e ante
nna array are summarized in
Tabl
e
3.
The
c
a
l
c
ul
at
i
ons
usi
n
g
t
h
e C
S
T s
o
ft
ware
i
n
di
cat
es t
h
at
t
h
e
p
r
op
ose
d
a
n
t
e
n
n
a i
s
l
i
n
earl
y
-
pol
a
r
i
zed,
has
nar
r
o
w
e
r
3
dB
b
eam
wi
dt
h (ra
n
g
i
n
g f
r
om
6.
6° t
o
1
1
.
2
°
)
and
hi
ghe
r real
i
zed gai
n
(
r
a
n
g
i
ng
fr
om
9.4
7
dB
t
o
14.57 dB
) com
p
ared to the single elem
en
t structure. T
h
is eight elem
en
t array
i
s
dem
onst
r
at
i
ng
a
na
rr
ow
e
r
3
dB beam
width as the
num
b
er of el
em
ents is increas
ed
from
single elem
ent to eight
ele
m
ents. He
nce, the
array
st
r
u
ct
u
r
e
bec
o
m
e
s
m
o
re di
rect
i
v
e
wi
t
h
hi
ghe
r
ga
in. The
ante
nna
efficiencies a
r
e m
oderate a
t
the
t
a
rget
ed f
r
e
que
nci
e
s whi
c
h co
nfi
r
m
t
h
e wi
deban
d
feat
ure.
In
com
p
arison, the
array
struc
t
ure re
po
rted i
n
[2]
has a
ban
d
w
i
d
t
h
o
f
22
G
H
z w
i
t
h
a fract
i
o
nal
ban
d
w
i
d
t
h
o
f
60
%,
whi
l
e
t
h
e
array
desi
g
n
r
e
po
rt
ed i
n
[
6
]
has a
b
a
ndwid
th
o
f
4
GHz with
a fraction
a
l b
a
ndwid
th
o
f
a
bou
t 1
6
.
66
%. Reg
a
rd
i
n
g
an
tenn
a g
a
in
, it is flu
c
tu
ating
bet
w
ee
n 1
2
dB
t
o
14
dB
at
di
f
f
ere
n
t
fre
q
u
enc
i
es (i
.e. w
o
r
k
i
n
[
2
]
exhi
bi
t
e
d
gai
n
o
f
1
4
dB
(2
8 G
H
z
)
an
d
13
dB
(4
5 G
H
z
)
, w
h
i
l
e wor
k
i
n
[6]
exhi
bi
t
e
d a gai
n
o
f
1
3
dB
(3
2
GHz
) an
d
12
dB
(
28
GHz a
nd
2
5
G
H
z)
. It
can be
summ
arized that our
propose
d
8 elem
en
ts ar
r
a
y str
u
ct
u
r
e has a r
e
lativ
ely
h
i
gh
b
a
ndw
id
t
h
(33
G
H
z
)
,
f
r
actio
n
a
l
ban
d
w
i
d
t
h
(
8
1.
48
%)
a
n
d
a
v
er
age gai
n
(
1
2
.
6
3
dB
)
at
si
x di
f
f
ere
n
t
f
r
eq
ue
nc
i
e
s.
Table 3. Sim
u
lated
realized
gain, ra
diation e
fficiency, t
o
tal
efficiency
a
n
d 3 dB
beam
wi
dt
h of
t
h
e
ei
ght
ele
m
ents dipole antenna
array at the si
x
5G c
a
ndi
date fre
q
uencies
Fr
equency Realized
gain
Radiation
ef
f
i
ciency
T
o
tal efficiency
3 dB beam
width
24 GHz
12.
30 dB
-
0
.
90 dB
-
1
.
12 dB
11.
2°
25 GHz
12.
21 dB
-
0
.
98 dB
-
1
.
22 dB
10.
7°
28 GHz
9.
47 dB
-
2
.
30 dB
-
2
.
95 dB
9.
3°
32 GHz
12.
96 dB
-
0
.
81 dB
-
1
.
17 dB
7.
9°
38 GHz
14.
28 dB
-
1
.
08 dB
-
1
.
17 dB
7°
40 GHz
14.
57 dB
-
1
.
39 dB
-
1
.
60 dB
6.
6°
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
A
Wid
e
b
and
mm-Wa
ve Prin
ted
Dipo
le
An
tenn
a
fo
r
5
G
A
p
pl
i
c
at
i
ons…
(
D
e
w
an
At
i
q
u
r
R
a
hm
a
n
)
94
9
4.
CO
NCL
USI
O
N
Thi
s
st
udy
p
r
esent
s
a wi
de
ban
d
l
i
n
earl
y
-
pol
a
r
i
zed p
r
i
n
t
e
d di
p
o
l
e
an
t
e
nna f
o
r t
h
e
use of 5
G
appl
i
cat
i
o
ns. T
h
e ant
e
nna c
o
vers si
x o
f
t
h
e pot
e
n
t
i
a
l
5G
candi
dat
e
fre
que
ncy
ba
n
d
s
whi
c
h are
24
GHz
,
25 G
H
z, 2
8
G
H
z, 32
G
H
z, 3
8
G
H
z
a
n
d
4
0
GHz
.
T
h
e
d
e
si
gn has bee
n
va
l
i
d
at
ed
by
ful
l
wave
EM
si
m
u
l
a
t
i
ons.
Thi
s
a
n
t
e
n
n
a
p
r
o
v
i
d
es
a
wi
de
im
pedance
ba
n
d
wi
dt
h
o
f
85
.7
1% i
n
t
h
e
si
n
g
l
e
el
em
ent
,
and
a usa
b
l
e
ban
d
w
i
d
t
h
of
8
1
.
4
8
%
i
n
t
h
e
pha
sed
ar
ra
y
appl
i
cat
i
o
n.
The ei
ght
el
e
m
ent
s
array
i
m
pl
em
ent
a
t
i
on en
hance
s
bot
h
ant
e
n
n
a
apert
u
re and a
n
tenna gain
(i.e. realized
gai
n
increase
from an average
of 5.
34 dB in t
h
e single element, to an
avera
g
e o
f
1
2
.
63
dB
i
n
t
h
e p
h
ase
d
array
ap
pl
i
cat
i
on)
. The
pr
op
ose
d
di
po
l
e
ant
e
nna s
h
o
w
s g
o
od
per
f
o
r
m
a
nc
e
i
n
t
e
rm
s of
ba
n
d
wi
dt
h,
ra
di
at
i
o
n
pat
t
e
r
n
a
n
d
gai
n
,
w
h
i
c
h
m
a
ke i
t
a
go
o
d
ca
ndi
dat
e
f
o
r
f
u
t
u
re
5
G
a
p
pl
i
cat
i
ons.
ACKNOWLE
DGE
M
ENTS
This resea
r
ch
was su
p
p
o
r
ted
by
Inter
n
atio
nal
Islam
i
c Unive
r
sity
M
a
lay
s
ia (IIUM
)
thr
o
ug
h I
I
U
M
Research In
itiativ
e Gran
t (RIGS1
5-134
-01
3
4
)
.
REFERE
NC
ES
[1]
B. Xu,
et al.
, "I
nvestigat
ion of Planar Near-F
i
e
l
d
Measurem
ent of Millim
eter-W
av
e Antenn
a for 5G Application
,
”
in
International
Symposium on Antennas and
Propagation (
I
SAP)
,
pp. 600-601, 20
16.
[2]
Y. Wang,
et al.
, "Design of Dip
o
le Beam-steer
ing Antenna
Array
for 5G Handset
Applica
tions
," in
Progress i
n
Electromagnetic Research
Symp
osium (
P
IERS)
, pp. 2450-2453
,
2016.
[3]
J.
Qia
o
,
et a
l
.
,
"Enabling Dev
i
c
e
-to-Devi
ce Co
m
m
unications i
n
Millim
et
er-W
ave 5G Cel
l
ul
ar
Networks,"
IE
EE
Communications Magazine
, vol.
53, no
. 1
,
pp
. 20
9-215, 2015
.
[4]
N. A. J
aafar
,
et al.
, "H-Shaped
Dielectric Reson
a
tor Ante
nn
a for
Future 5G Application," in
IEEE International
RF
and Microwave
Conference (
R
FM)
,
pp. 115-117
, 2015.
[5]
H. Tan,
et al.
, "
T
he Analy
s
is on the Candid
a
te
Frequency
Band
s of Future Mob
ile Communication Sy
stems," in
China Communications,
vol. 12
,
pp. 140-149
, 20
15.
[6]
N. O. Parchin,
et al.
, "UWB
MM-Wave Ant
e
nna Array
with Quas
i Omnidirectional Be
ams for 5G
Handheld
Devices
,"
in
IEEE International
Conference on
Ubiquitous Wireless Broadband
(
I
CUWB
), pp. 1-
4, 2016
.
[7]
Federal Communications Commission,
“Use of
Spectrum Bands above 24 GHz
for Mobile Radio Services,” 81
Fed. Reg
.
, 47 C
F
R Parts 1, 2, 15
, 25
, 30
, & 101,
2016.
[8]
F. Y. Kuo,
et al
., "A Novel
Dipole Antenna Design with
an over 100 % Operation
a
l B
a
ndwidth,"
IEEE
Transactions on
Antennas and
Pr
opagation
, vol.
58(8), pp
. 2737-
2741, 2010
.
[9]
N. O. Parchin,
et al.
, "Wide-Scan Phased Array
Antenna Fed b
y
Co
ax-to-Micros
triplin
es for 5G
Cell Phones," in
International Co
nference on
Microwaves
Radar
and Wireless Communications (
MIKON)
,
pp. 1-
4, 2016
.
[10]
N. O. Parchin,
et al.
, "Design
of Vivaldi Antenna A
rray
with
End-Fire Beam Steer
ing Functio
n
for 5G Mobile
Term
inals,"
in
T
e
le
communicati
ons Forum (
T
ELFOR)
,
pp. 5
87-5
90, 2015
.
[11]
N.
O.
Parchin,
et a
l
.
, "Multi-
lay
e
r
5G Mobil
e
Phone Anten
n
a fo
r Mult
i-User MIMO Com
m
unications," i
n
T
e
lecommunica
t
i
ons Forum (
T
EL
FOR)
,
pp. 559-
562, 2015
.
[12]
C. A. Balanis, “Antenna
Theor
y
:
Anal
y
s
is and
D
e
sign,” John Wiley
& Sons, 2005
.
[13]
T. F
i
rm
ans
y
ah,
et al.
, "Bandwid
th and G
a
in
Enh
a
ncement of MI
MO
Antenna b
y
Using Ring and
Circular Par
a
sitic
with Air-Gap M
i
crostrip
Structu
r
e,"
in
Telecom
m
unication
,
Co
mputing,
Electro
n
ics and Con
t
rol
(
Telkomnika)
,
pp
.
1155-1163, 201
7.
[14]
I. M. Rafiqu
l,
et al.
, "A 2X2
MIMO
Patch Antenna fo
r Mult
i-Band Applic
at
ions," in
Indonesian Journal o
f
Ele
c
trica
l
Eng
i
n
eering and
Infor
m
atics (
I
JEEI)
,
pp. 383-389
, 20
17.
[15]
S. Pramono,
et al.
, "Performance of
Ground
plane Shaping
in F
our-Element Dualband
MI
MO Antenna,"
in
Telecommunica
tion, Computing,
Electronics
and
Control
(
Telkomnika)
,
pp. 220-2
26, 2017
.
BIOGRAP
HI
ES OF
AUTH
ORS
Dew
a
n Atiqur
Rahman
was bo
rn in Dhaka, Bangladesh,
in 1994. Currently
pur
suing the B.En
g
(Hons) in Co
mmunication Eng
i
neer
ing at Intern
ation
a
l Islam
i
c
Universit
y
Mala
ysi
a
, Kual
a
Lum
pur, Mala
ys
ia. Main
are
a
s of interests in
cl
u
d
e ele
c
trom
agne
tics
,
an
tenn
as
,
m
i
crowave, RF
,
tel
ecom
m
unicati
on, an
d
signal pr
ocessing.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
94
3 – 95
0
95
0
Sar
a
h Yasmin
M
o
hamad
receiv
e
d a M
E
n
g
. degre
e
in
Com
m
unication and Com
puter
Engine
ering fro
m
the Univers
i
t
i
Kebangs
aan M
a
la
ys
i
a
(UKM
) and a P
h
.D
. deg
r
ee in
El
ec
tric
al
and Electronic Engineer
ing
from the Queen’s University
Belfas
t,
Belfast, U.K., in
2011 in 2015
,
res
p
ect
ivel
y.
S
h
e has
been
appo
inted as
an As
s
i
s
t
ant P
r
ofes
s
o
r in the Depar
t
m
e
nt of Ele
c
tr
ica
l
and Computer
Engineer
ing, Faculty
of
Engin
eer
i
ng, In
tern
ation
a
l Islam
i
c
Univer
sit
y
Mal
a
y
s
i
a
(IIUM). Her cu
rrent r
e
search interests in
clud
e antenn
as and
wave
propag
a
tion and wireless
communication s
y
stems.
Norun Abdul
Malek
obtained
her PhD degr
ee from School
of Electron
i
c, Electrical
and
S
y
stems Engineering, Loughbor
ough University
, UK
in 2013.
She has been appointed as an
As
s
i
s
t
ant P
r
ofess
o
r in Electr
i
ca
l and Com
puter E
ngineer
ing Department, Faculty
of Engineer
ing
,
International Islamic University
Malay
s
ia (IIUM
)
.
Her research interest in
clud
es to antenn
a and
propagation, signal processing
particularly
o
f
antenn
a ar
ray
s
,
algorithms and wireless
com
m
unication
s
y
s
t
em
s
.
S
h
e is
a
n
acti
v
e m
e
m
b
er of the IE
EE,
a r
e
gis
t
er
ed m
e
m
b
er of the Board
of Engin
eers Ma
la
y
s
ia
(BEM)
an
d institu
te
of
eng
i
neers Ma
la
ysi
a
(IEM).
Dew
a
n Arifur
Rahman
was born in Dhak
a,
Banglad
esh. Cu
rrently
pursuing
the B.Sc in
Electrical and Electronic
Engin
e
e
r
ing
a
t
Ea
st We
st Unive
r
sity
,
Ba
ngla
de
sh. Ma
in a
r
ea
s of
inter
e
s
t
s
ar
e an
te
nna,
el
ectrom
a
g
n
eti
c
s
,
t
e
l
ecom
m
unica
tion,
and
m
i
croe
lec
t
roni
cs
.
Siti Nor
m
i Z
a
b
r
i
receiv
e
d th
e
B.Eng degr
ee fr
om
Univ
ersiti T
e
knologi MARA, Malay
s
ia, in
2007, MSc. (En
g
.) degr
ee from
the Univ
ersity
o
f
Sheffield, U.K., in
2008
and a
Ph.D. degr
ee
in
Electrical
and Electron
i
c Eng
i
neering from the Queen
’s University Belfast, U.K
., in 2015. She is
current
l
y
a S
e
ni
or Lectur
er with
the F
acul
t
y
of
Electronic
and Computer Engineer
ing, Universiti
Teknik
a
l Mala
ysia Melaka
. He
r
current res
e
ar
ch inter
e
s
t
s
inc
l
ude m
e
tam
a
te
ri
als
abs
o
rber,
frequenc
y
s
e
l
ect
i
v
e s
u
rfa
ces
and
antenn
as
.
Evaluation Warning : The document was created with Spire.PDF for Python.